
NEURAL NETWORK RECOGNIZER FOR 
HAND-WRITTEN ZIP CODE DIGITS 

J. S. Denker, W. R. Gardner, H. P. Graf, D. Henderson, R. E. Howard, 
W. Hubbard, L. D. Jackel, H. S. Baird, and I. Guyon 

AT &T Bell Laboratories 
Holmdel, New Jersey 07733 

ABSTRACT 

This paper describes the construction of a system that recognizes hand-printed 
digits, using a combination of classical techniques and neural-net methods. The 
system has been trained and tested on real-world data, derived from zip codes seen 
on actual U.S. Mail. The system rejects a small percentage of the examples as 
unclassifiable, and achieves a very low error rate on the remaining examples. The 
system compares favorably with other state-of-the art recognizers. While some of 
the methods are specific to this task, it is hoped that many of the techniques will 
be applicable to a wide range of recognition tasks. 

MOTIVATION 

The problem of recognizing hand-written digits is of enormous practical and the~ 
retical interest [Kahan, Pavlidis, and Baird 1987; Watanabe 1985; Pavlidis 1982]. 
This project has forced us to formulate and deal with a number of questions rang
ing from the basic psychophysics of human perception to analog integrated circuit 
design. 

This is a topic where "neural net" techniques are expected to be relevant, since 
the task requires closely mimicking human performance, requires massively parallel 
processing, involves confident conclusions based on low precision data, and requires 
learning from examples. It is also a task that can benefit from the high throughput 
potential of neural network hardware. 

Many different techniques were needed. This motivated us to compare various clas
sical techniques as well as modern neural-net techniques. This provided valuable 
information about the strengths, weaknesses, and range of applicability of the nu
merous methods. 

The overall task is extremely complex, so we have broken it down into a great 
number of simpler steps. Broadly speaking, the recognizer is divided into the pre
processor and the classifier. The two main ideas behind the preprocessor are (1) to 
remove meaningless variations (i .e. noise) and (2) to capture meaningful variations 
(i.e . salient features). 

Most of the results reported in this paper are based on a collection of digits taken 
from hand-written Zip Codes that appeared on real U.S. Mail passing through the 

323 



324 Denker, et al 

(j{OL3l-/.jGIJ JI<=t 
OI~.?4--:; ~789 

d/~~'f.!Jd,7 87 
012dL/-S-67 get 

Figure 1: Typical Data 

Buffalo, N.Y. post office. Details will be discussed elsewhere [Denker et al., 1989]. 
Examples of such images are shown in figure 1. The digits were written by many 
different people, using a great variety of writing styles and instruments, with widely 
varying levels of care. 

Important parts of the task can be handled nicely by our lab's custom analog 
neural network VLSI chip [Gra! et aI., 1987; Gra! & deVegvar, 1987], allowing us 
to perform the necessary computations in a reasonable time. Also, since the chip 
was not designed with image processing in mind, this provided a good test of the 
chips' versatility. 

THE PREPROCESSOR 

Acquisition 

The first step is to create a digital version of the image. One must find where on 
the envelope the zip code is, which is a hard task in itself (Wang and Srihari 1988]. 
One must also separate each digit from its neighbors. This would be a relatively 
simple task if we could assume that a character is contiguous and is disconnected 
from its neighbors, but neither of these assumptions holds in practice. It is also 
common to find that there are meaningless stray marks in the image. 

Acquisition, binarization, location, and preliminary segmentation were performed 
by Poetal Service contractors. In some images there were extraneous marks, so we 
developed some simple heuristics to remove them while preserving, in most cases, 
all segments of a split character. 

Scaling and Deskewing 

At this point, the size of the image is typically 40 x 60 pixels, although the scaling 
routine can accept images that are arbitrarily large, or as small as 5 x 13 pixels. A 
translation and scale factor are then applied to make the image fit in a rectangle 



Neural Network Recognizer for Hand-Written Zip Code Digits 325 

20 x 32 pixels. The character is centered in the rectangle, and just touches either 
the horizontal or vertical edges, whichever way fits. It is clear that any extraneous 
marks must be removed before this step, lest the good part of the image be radically 
compressed in order to make room for some wild mark. The scaling routine changes 
the horizontal and vertical size of the image by the same factor, so the aspect ratio 
of the character is preserved. 

As shown in figure 1, images can differ greatly in the amount of skew, yet be 
considered the same digit. This is an extremely significant noise source. To remove 
this noise, we use the methods of [Casey 1970]; see also [Naylor 1971]. That is, we 
calculate the XY and YY moments of the image, and apply a linear transformation 
that drives the XY moment to zero. The transformation is a pure shear, not a 
rotation, because we find that rotation is much less common than skew. 

The operations of scaling and deskewing are performed in a single step. This yields 
a speed advantage, and, more importantly, eliminates the quantization noise that 
would be introduced by storing the intermediate images as pixel maps, were the 
calculation carried out in separate steps. 

Skeletonization 

For the task of digit recognition, the width of the pen used to make the characters is 
completely meaningless, and is highly variable. It is important to remove this noise 
source. By deleting pixels at the boundaries of thick strokes. After a few iterations 
of this process, each stroke will be as thin as possible. The idea is to remove as 
many pixels as possible without breaking the connectivity. Connectivity is based 
on the 8 nearest neighbors. 

This can be formulated as a pattern matching problem - we search the image 
looking for situations in which a pixel should be deleted. The qecisions can be 
expressed as a convolution, using a rather small kernel, since the identical decision 
process is repeated for each location in the image, and the decision depends on the 
configuration of the pixel's nearest and next-nearest neighbors. 

Figure 2 shows an example of a character before (e) and after (I) skeletonization. 
It also shows some of the templates we use for skeletonization, together with an 
indication of where (in the given image) that template was active. To visualize the 
convolution process, imagine taking a template, laying it over the image in each 
possible place, and asking if the template is "active" in that place. (The template 
is the convolution kernel; we use the two terms practically interchangeably.) The 
portrayal of the template uses the following code: Black indicates that if the cor
responding pixel in the image is ON, it will contribute +1 to the activity level of 
this template. Similarly, gray indicates that the corresponding pixel, if ON, will 
contribute -5, reducing the activity of this template. The rest of the pixels don't 
matter. If the net activity level exceeds a predetermined threshold, the template 
is considered active at this location. The outputs of all the skeletonizer templates 



326 Denker, et al 

a) b) c) d) 

Figure 2: Skeletonization 

are eombined in a giant logieal OR, that is, whenever any template is aetive, we 
eonelude that the pixel presently under the eenter of the template should be deleted. 

The skeletonization eomputation involves six nested loops: 

for each iteration I 
for all X in the image (horizontal eoordinate) 

for all Y in the image (vertical eoordinate) 
for all T in the set of template shapes 

for all P in the template (horizontal) 
for all Q in the template (vertical) 

compare image element(X +P, Y +Q) 
with template(T) element(P, Q) 

The inner three loops (the loops over T, P, and Q) are performed in parallel, in 
a single cyde of our special-purpose ehip. The outer three loops (1, X, and Y) 
are performed serially, calling the ehip repeatedly. The X and Y loops eould be 
performed in parallel with no change in the algorithms. The additional parallelism 
would require a proportionate increase in hardware. 



Neural Network Recognizer for Hand-Written Zip Code Digits 327 

The purpose of template a is to detect pixels at the top edge of a thick horizontal 
line. The three "should be OFF" (light grey shade in figure 2) template elements 
enforce the requirement that this should be a boundary, while the three "should be 
ON" (solid black shade in figure 2) template elements enforce the requirement that 
the line be at least two pixels wide. 

Template b is analogous to template a, but rotated 90 degrees. Its purpose is to 
detect pixels at the left edge of a thick vertical line. 

Template c is similar to, but not exactly the same as, template a rotated 180 degrees. 
The distinction is necessary because all templates are applied in parallel. A stroke 
that is only two pixels thick ·must not be attacked from both sides at once, lest it be 
removed entirely, changing the connectivity of the image. Previous convolutional 
line-thinning schemes [Naccache 1984] used templates of size 3 x 3, and therefore 
had to use several serial sub-stages. For parallel operation at least 3 x 4 kernels are 
needed, and 5 x 5 templates are convenient, powerful, and flexible. 

Feature Maps 

Having removed the main sources of meaningless variation, we turn to the task of 
extracting the meaningful information. It is known from biological studies [Hubel 
and Wiesel 1962] that the human vision system is sensitive to certain features that 
occur in images, particularly lines and the ends of lines. We therefore designed 
detectors for such features. Previous artificial recognizers [\Vatanabe 1985] have 
used similar feature extractors. 

Once again we use a convolutional method for locating the features of interest - we 
check each location in the image to see if each particular feature is present there. 
Figure 3 shows some of the templates we use, and indicates where they become 
active in an example image. The feature extractor templates are 7 x 7 pixels -
slightly larger than the skeletonizer templates. 

Feature b is designed to detect the right-hand end of (approximately) horizontal 
strokes. This can be seen as follows: in order for the template to become active 
at a particular point, the image must be able to touch the "should be ON" pixels 
at the center of the template without touching the surrounding horseshoe-shaped 
collection of "'must be OFF" pixels. Essentially the only way this can happen is at 
the right-hand end of a stroke. (An isolated dot in the image will also activate this 
template, but the images, at this stage, are not supposed to contain dots). Feature 
d detects (approximately) horizontal strokes. 

There are 49 different feature extractor templates. The output of each is stored 
separately. These outputs are called feature maps, since they show what feature(s) 
occurred where in the image. It is possible, indeed likely, that several different 
features will occur in the same place. 

Whereas the outputs of all the skeletonizer templates were combined in a very simple 
way (a giant OR), the outputs of the feature extractor templates are combined in 



328 Denker, et al 

a) 

b) c) 

• 
I 

~------~.~ ~.~------~ 
Figure 3: Feature Extraction 

various artful ways. For example, feature" and a similar one are O~d to form a 
single combined feature that responds to right-hand ends in general. Certain other 
features are ANDed to form detectors for arcs (long curved strokes). There are 18 
combined features, and these are what is passed to the next stage. 

We need to create a compact representation, but starting from the skeletonized 
image, we have, instead, created 18 feature maps of the same size. Fortunately, we 
can now return to the theme of removing meaningless variation. 

If a certain image contains a particular feature (say a left-hand stroke end) in the 
upper left corner, it is not really necessary to specify the location of that feature 
with great precision. To recognize the Ihope of the feature required considerable 
precision at the input to the convolution, but the pOlitiora of the feature does not 
require so much precision at the output of the convolution. We call this Coarse 
Blocking or Coarse Coding of the feature maps. We find that 3 x 5 is sufficent 
resolution. 

CLASSIFIERS 

If the automatic recognizer is unable to classify a particular zip code digit, it may 
be possible for the Post Office to determine the correct destination by other means. 
This is costly, but not nearly so costly as a misclassification (substitution error) that 
causes the envelope to be sent to the wrong destination. Therefore it is critically 



Neural Network Recognizer for Hand-Written Zip Code Digits 329 

important for the system to provide estimates of its confidence, and to reject digits 
rather than misclassify them. 

The objective is not simply to maximize the number of classified digits, nor to 
minimize the number of errors . The objective is to minimize the cost of the whole 
operation, and this involves a tradeoff between the rejection rate and the error rate. 

Preliminary Inves tigations 

Several different classifiers were tried, including Parzen Windows, K nearest neigh
bors, highly customized layered networks, expert systems, matrix associators, fea
ture spins, and adaptive resonance. We performed preliminary studies to identify 
the most promising methods. We determined that the top three methods in this 
list were significantly better suited to our task than the others, and we performed 
systematic comparisons only among those three. 

Classical Clustering Methods 

We used two classical clustering techniques, Parzen Windows (PW) and K Near
est Neighbors (KNN), which are nicely described in Duda and Hart [1973]. In 
this application, we found (as expected) that they behaved similarly, although PW 
consistently outperformed KNN by a small margin. These methods have many 
advantages, not the least of which is that they are well motivated and easily un
derstood in terms of standard Bayesian inference theory. They are well suited to 
implementation on parallel computers and/or custom hardware. They provide ex
cellent confidence information. 

Unlike modern adaptive network methods, PW and KNN require no "learning 
time", Furthermore the performance was reproducible and responded smoothly to 
improvements in the preprocessor and increases in the size of the training set. This 
is in contrast to the "noisy" performance of typical layered networks. This is con
venient, indeed crucial, during exploratory work . 

Adaptive Network Methods 

In the early phases of the project, we found that neural network methods gave 
rather mediocre results . Later, with a high-performance preprocessor, plus a large 
training database, we found that a layered network gave the best results, surpassing 
even Parzen Windows. We used a network with two stages of processing (i.e., two 
layers of weights), with 40 hidden units and using a one-sided objective function (as 
opposed to LMS) as described in [Denker and Wittner 1987]. The main theoretical 
advantage of the layered network over the classical methods is that it can form 
"higher order" features - conjunctions and disjunctions of the features provided 
by our feature extractor. Once the network is trained, it has the advantage that the 
classification of each input is very rapid compared to PW or KNN. Furthermore, 
the weights represent a compact distillation of the training data and thus have a 
smaller memory requirement. The network provides confidence information that is 



330 Denker, et al 

just as good as the classical methods. This is obtained by comparing the activation 
level of the most active output against the runner-up unit(s). 

To check on the effectiveness of the preprocessing stages, we applied these three 
classification schemes (PW, KNN, and the two-layer network) on 256-bit vectors 
consisting of raw bit maps of the images - with no skeletonization and no feature 
extraction. For each classification scheme, we found the error rate on the raw bit 
maps was at least a factor of 5 greater than the error rate on the feature vectors, 
thus clearly demonstrating the utility of feature extraction. 

TESTING 

It is impossible to compare the performance of recognition systems except on iden
tical databases. Using highly motivated "friendly" writers, it is possible to get a 
dataset that is so clean that practically any algorithm would give outstanding re
sults. On the other hand, if the writers are not motivated to write clearly, the result 
will be not classifiable by machines of any sort (nor by humans for that matter). 
It would have been much easier to classify digits that were input using a mouse or 
bitpad, since the lines in the such an image have zero thickness, and stroke-order 
information is available. It would also have been much easier to recognize digits 
from a single writer. 

The most realistic test data we could obtain was provided by the US Postal Service. 
It consists of approximately 10,000 digits (1000 in each category) obtained from the 
zip codes on actual envelopes. The data we received had already been binarized 
and divided into images of individual digits, rather than multi-digit zip codes, but 
no further processing had been done. 

On this data set, our best performance is as follows: if 14% of the images are rejected 
as unclassifiable, only 1% of the remainder are misclassified. If no images are re
jected, approximately 6% are misclassified. Other groups are working with the same 
dataset, but their results have not yet been published. Informal communications 
indicate that our results are among the best. 

CONCLUSIONS 

We have obtained very good results on this very difficult task. Our methods include 
low-precision and analog processing, massively parallel computation, extraction of 
biologically-motivated features, and learning from examples. We feel that this is, 
therefore, a fine example of a Neural Information Processing System. We empha
size that old-fashioned engineering, classical pattern recognition, and the latest 
learning-from-examples methods were all absolutely necessary. Without the careful 
engineering, a direct adaptive network attack would not succeed, but by the same 
token, without learning from a very large database, it would have been excruciating 
to engineer a sufficiently accurate representation of the probability space. 



Neural Network Recognizer for Hand-Written Zip Code Digits 331 

Acknowledgements 
It is a pleasure to acknowledge useful discussions with Patrick Gallinari and tech
nical assistance from Roger Epworth. We thank Tim Barnum of the U.S. Postal 
Service for making the Zip Code data available to us. 

References 

1. R. G. Casey, "Moment Normalization of Handprinted Characters", IBM J. 
Res. Develop., 548 (1970) 

2. J. S. Denker et al., "Details of the Hand-Written Character Recognizer", to 
be published (1989) 

3. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, 
John Wiley and Sons (1973) 

4. E. Gullichsen and E. Chang, "Pattern Classification by Neural Network: An 
Experimental System for Icon Recognition", Proc. IEEE First Int. Conf. on 
Neural Networks, San Diego, IV, 725 (1987) 

5. H. P. Graf, W. Hubbard, L. D. Jackel, P.G.N. deVegvar, "A CMOS Associative 
Memory Chip", Proc. IEEE First Int. Conf. on Neural Networks, San Diego, 
111,461 (1987) 

6. H.P Graf and P. deVegvar, "A CMOS Implementation of a Neural Network 
Model", Proc. 1987 Stanford Conf. Advanced Res. VLSI, P. Losleben (ed.) 
MIT Press, 351 (1987) 

7. D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and 
functional architecture in the cat's visual cortex", J. Physiology 160, 106 
(1962) 

8. S. Kahan, T. Pavlidis, and H. S. Baird, "On the Recognition of Printed Char
acters of Any Font and Size", IEEE Transactions on Pattern Analysis and 
Machine Intelligence, PAMI-9, 274 (1987) 

9. N. J. Naccache and R. Shinghal, ''SPTA: A Proposed Algorithm for Thinning 
Binary Patterns", IEEE Trans. Systems, Man, and Cybernetics, SMC-14, 
409 (1984) 

10. W. C. Naylor, "Some Studies in the Interactive Design of Character Recogni
tion Systems", IEEE Transactions on Computers, 1075 (1971) 

11. T. Pavlidis, Algorithms for Graphics and Image Processing, Computer 
Science Press (1982) 

12. C. Y. Suen, M. Berthod, and S. Mori, "Automatic Recognition of Handprinted 
Characters - The State of the Art", Proceedings of the IEEE 68 4, 469 
(1980). 

13. C-H. Wang and S. N. Srihari, "A Framework for Object Recognition in a Vi
sually Complex Environment and its Application to Locating Address Blocks 
on Mail Pieces", IntI. J. Computer Vision 2, 125 (1988) 

14. S. Watanabe, Pattern Recognition, John Wiley and Sons, New York (1985) 


