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ABSTRACT 

We propose a parallel network of simple processors to find 
color boundaries irrespective of spatial changes in illumi
nation, and to spread uniform colors within marked re-. 
glOns. 

INTRODUCTION 

To rely on color as a cue in recognizing objects, a visual system must have at least 
approximate color constancy. Otherwise it might ascribe different characteristics to 
the same object under different lights. But the first step in using color for recog
nition, segmenting the scene into regions of different colors, does not require color 
constancy. In this crucial step color serves simply as a means of distinguishing 
one object from another in a given scene. Color differences, which mark material 
boundaries, are essential, while absolute color values are not. The goal of segmen
tation algorithms is to achieve this first step toward object recognition by finding 
discontinuities in the image irradiance that mark material boundaries. 

The problems that segmentation algorithms must solve is how to choose color la
bels, how to distinguish material boundaries from other changes in the image that 
give rise to color edges, and how to fill in uniform regions with the appropriate 
color labels. (Ideally, the color labels should remain constant under changes in the 
illumination or scene composition and color edges should occur only at material 
boundaries.) Rubin and Richards (1984 ) show that algorithms can solve the sec
ond problem under some conditions by comparing the image irradiance signal in 
distinct spectral channels on either side of an edge. 

The goal of the segmentation algorithms we discuss here is to find boundaries be
tween regions of different surface spectral reflectances and to spread uniform colors 
within them, without explicitly requiring the colors to be constant under changes 
in illumination. The color labels we use are analogous to the CIE chromaticity 
coordinates x and y. Under the single source assumption, they change across space 
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only when the surface spectral reflectance changes, except when strong speculari
ties are present. (The algorithms therefore require help at a later stage to identify 
between color label changes due to specularities, which we have not yet explicitly 
incorporated.) The color edges themselves are localised with the help of luminance 
edges, by analogy with psychophysics of segmentation and filling-in. The Koftka 
Ring illusion, for example, indicates that color is attributed to surfaces by an inter
action between an edge-finding operator and a filling-in operator.1 The interaction 
is justified by the fact that in the real world changes in surface spectral reflectance 
are almost always accompanied by changes in brightness. 

Color Labels 

We assume that surfaces reflect light according to the neutral-interface-reflection 
model. In this model (Lee, 1986 , Shaefer, 1984 [3]) the image irradiance I(X,y,A) 
is the sum of two components, the surface reflection and the body reflection: 

I(x, y, A) = L(r(x, y), A)[a(r, A)g(6(r)) + bh(6(r))], 

where A labels wavelength and r( x, y) is the point on the 3D surface to which 
the image coordinates (x, y) correspond. L(r(x, y), A) is the illumination on the 
surface. a(r, A) is the spectral reflectance factor of the body reflection component 
and g(6(r)) its magnitude, which depends on the viewing geometry parameters 
lumped together in 6(r). The spectral reflectance factor of the specular, or surface 
reflection, component b is assumed to be constant with respect to A, as is true 
for inhomogeneous materials such as paints and plastics. For most materials, the 
magnitude of the specular component h depends strongly on the viewing geometry. 
Using the single source assumption, we may factor the illumination L into separate 
spatial and spectral components (L(r, A) L(r)c(A)). Multiplying I by the 
spectral sensitivities of the color sensors i = 1,2,3 and integrating over wavelength 
yields the triplet of color values (R, G, B), where 

and so forth and where the a i and bi are the reflectance factors in the spectral 
channels defined by the sensor spectral sensitivities. 

We define the hues u and v as 

R 
u= --__ --

R+G+B 

and 

1 Note that Land's original retinex algorithm, which thresholds and swns the differences in image 
irradiance between adjacent points along many paths, accounts for the contribution of edges to 
color, without introducing a separate luminance edge detector. 
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G 
v=-----

R+G+B 

at each pixel. 

In Lambertian reflection, the specular reflectance factor b is zero. In this case, u and 
v are piecewise constant: they change in the image only when the ai(x,y) change. 
Thus u or v mark discontinuities in the surface spectral reflectance function, e.g 
they mark material boundaries. Conversely, image regions of constant u correspond 
to regions of constant surface color. Synthetic images generated with standard 
computer graphics algorithms (using, for example, the Phong reflectance model) 
behave in this way: u is constant across the visible surface of a shaded sphere. 
Across specularities, u in general changes but often not much. Thus one approach 
to the segmentation problem is to find regions of "constant" u and their boundaries . 

The difficulty with this approach is that real u data are noisy and unreliable: u is 
the quotient of numbers that are not only noisy themselves but also, at least for 
biological photosensor spectral sensitivities, very close to one another. The goals of 
segmentation algorithms are therefore to enhance discontinuities in u and, within 
the regions marked by the discontinuities, to smoothe over the noise and fill in the 
data where they are unreliable. We have explored several methods of meeting these 
goals. 

Segmentation Algorithms 

One method is to regularize - to eliminate the noise and fill in the data, while 
preserving the discontinuities. Using an algorithm based on Markov Random Field 
techniques, we have obtained encouraging results on real images (see Poggio et 
al., 1988) . The MRF technique exploits the constraint that u should be piecewise 
constant within the discontinuity contours and uses image brightness edges as guides 
in finding the contours. 

An alternative to the MRF approach is a cooperative network that fills in data 
and filters out noise while enforcing the constraint of piecewise constancy. The 
network, a type of Hopfield net, is similar to the cooperative stereo network of 
Marr and Poggio (1976). Another approach consists of a one-pass winner-take-all 
scheme. Both algorithms involve loading the initial hue values into discrete bins, an 
undesirable and biologically unlikely feature . Although they produce good results 
on noisy synthetic images and can be improved by modification (see Hurlbert, 1989), 
another class of algorithms which we now describe are simple and effective, especially 
on parallel computers such as the Connection Machine. 

Averaging Network 

One way to avoid small step changes in hue across a uniform surface resulting 
from initial loading into discrete bins is to relax the local requirement for piecewise 
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Figure 1: (a) Image of a Mondrian-textured sphere - the red channel. (b) Vertical 
slice through the specularity in a 75 x 75 pixel region of the three-channel image 
(R + G + B) of the same sphere. 

constancy and instead require only that hue be smooth within regions delineated by 
the edge input. We will see that this local smoothness requirement actually yields 
an iterative algorithm that provides asymptotically piecewise constant hue regions. 

To implement the local smoothness criterion we use an averaging scheme that simply 
replaces the value of each pixel in the hue image with the average of its local 
surround, iterating many times over the whole image. 

The algorithm takes as input the hue image (either the u-image or the v-image) 
and one or two edge images, either luminance edges alone, or luminance edges plus 
u or v edges, or u edges plus v edges. The edge images are obtained by performing 
Canny edge detection or by using a thresholded directional first derivative. On each 
iteration, the value at each pixel in the hue image is replaced by the average of its 
value and those in its contributing neighborhood. A neighboring pixel is allowed 
to contribute if (i) it is one of the four pixels sharing a full border with the central 
pixel (ii) it shares the same edge label with the central pixel in all input edge images 
(iii) its value is non-zero and (iv) its value is within a fixed range of the central pixel 
value. The last requirement simply reinforces the edge label requirement when a 
hue image serves as an input edge image - the edge label requirement allows only 
those pixels that lie on the same side of an edge to be averaged, while the other 
insures that only those pixels with similar hues are averaged. 

More formally 
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where Cn(hf,j) is the set of N(Cn) pixels among the next neighbors of i,j that 
differ from h~. less than a specified amount and are not crossed by an edge in the 
edge map(s) (on the assumption that the pixel (i,j) does not belong to an edge). 
The iteration of this operator is similar to nonlinear diffusion and to discontinuous 
regularization of the type discussed by Blake and Zisserman (1987), Geman and 
Geman (1984) and Marroquin (9]. The iterative scheme of the above equation can 
be derived from minimization via gradient descent of the energy function 

E = L:Ei,j 

with 

where V(x, y) = V(x - y) is a quadratic potential around 0 and constant for Ix - yl 
above a certain value. 

The local averaging smoothes noise in the hue values and spreads uniform hues 
across regions marked by the edge inputs. On images with shading but without 
strong specularities the algorithm performs a clean segmentation into regions of 
different hues. 

Conclusions 

The averaging scheme finds constant hue regions under the assumptions of a single 
source and no strong specularities. A strong highlight may originate an edge that 
could then "break" the averaging operation. In our limited experience most spec
ularities seem to average out and disappear from the smoothed hue map, largely 
because even strong specularities in the image are much reduced in the initial hue 
image. The iterative averaging scheme completely eliminates the remaining gradi
ents in hue. It is possible that more powerful discrimination of specularities will 
require specialized routines and higher-level knowledge (Hurlbert, 1989). 

Yet this simple network alone is sufficient to reproduce some psychophysical phe
nomena. In particular, the interaction between brightness and color edges enables 
the network to mimic such visual "illusions" as the Koftka Ring. We replicate the 
illusion in the following way. A black-and-white Koft'ka Ring (a uniform grey annu
lus against a rectangular bipartite background, one side black and the other white) 
(Hurlbert and Poggio, 1988b) is filtered through the lightness filter estimated in 
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Figure 2: (a) A 75x75 pixel region of the u image, including the specularity. (b) The 
image obtained after 500 iterations of the averaging network on (a), using as edge 
input the Canny edges of the luminance image. A threshold on differences in the v 
image allows only similar v values to be averaged. (c) Vertical slice through center 
of (a). (d) Vertical slice at same coordinates through (b) (note different scales of 
(c) and (d». 
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the way described elsewhere (Hurlbert and Poggio, 1988a). (For black-and-white 
images this step replaces the operation of obtaining u and v: in both cases the goal 
is to eliminate spatial gradients of in the effective illumination.) The filtered Koffka 
Ring is then fed to the averaging network together with the brightness edges. When 
in the input image the boundary between the two parts of the background continues 
across the annulus, in the output image (after 2000 iterations of the averaging net
work) the annulus splits into two semi-annuli of different colors in the output image, 
dark grey against the white half, light grey against the black half (Hurlbert, 1989). 
When the boundary does not continue across the annulus, the annulus remains a 
uniform grey. These results agree with human perception. 
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