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Abstract. An improved learning paradigm that offers a significant reduction in com­
putation time during the supervised learning phase is described. It is based on 
extending the role that the neuron plays in artificial neural systems. Prior work 
has regarded the neuron as a strictly passive, non-linear processing element, and 
the synapse on the other hand as the primary source of information processing and 
knowledge retention. In this work, the role of the neuron is extended insofar as allow­
ing its parameters to adaptively participate in the learning phase. The temperature 
of the sigmoid function is an example of such a parameter. During learning, both the 
synaptic interconnection weights w[j and the neuronal temperatures Tr are opti­
mized so as to capture the knowledge contained within the training set. The method 
allows each neuron to possess and update its own characteristic local temperature. 
This algorithm has been applied to logic type of problems such as the XOR or parity 
problem, resulting in a significant decrease in the required number of training cycles. 

INTRODUCTION 

One of the current issues in the theory of supervised learning concerns the scal­
ing properties of neural networks. While low-order neural computations are easily 
handled on sequential or parallel processors, high-order problems prove to be in­
tractable. The computational burden involved in implementing supervised learning 
algorithms, such as back-propagation, on networks with large connectivity and/or 
large training sets is immense and impractical at present. Therefore the treatment 
of 'real' applications in such areas as image recognition or pattern classification 
require the development of computationally efficient learning rules. This paper 
reports such an algorithm. 

Current neuromorphic models regard the neuron as a strictly passive non-linear 
element, and the synapse on the other hand as the primary source of knowledge 
retention. In these models, information processing is performed by propagating the 
synaptically weighed neuronal contributions in either a feed forward, feed backward, 
or fully recurrent fashion [1]-[3). Artificial neural networks commonly take the point 
of view that the neuron can be modeled by a simple non-linear 'wire' type of device. 

However, evidence exists that information processing in biological neural net­
works does occur at the neuronal level [4]. Although neuromorphic nets based on 
simple neurons are useful as a first approximation, a considerable richness is to 
be gained by extending 'learning' to the neuron. In this work, such an extension 
is made. The neuron is then seen to provide an additional or secondary source 
of information processing and knowledge retention. This is achieved by treating 
both the neuronal and synaptic variables as optimization parameters. The temper­
ature of the sigmoid function is an example of such a neuronal parameter. In much 
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the same way that the synaptic interconnection weights require optimization to 
reflect the knowledge contained within the training set, so should the temperature 
terms be optimized. It should be emphasized that the method does not optimize a 
global neuronal temperature for the whole network, but rather allows each neuron 
to posses and update its own characteristic local value. 

ADAPTIVE NEURON MODEL 

Although the principle of neuronal optimization is an entirely general concept, 
and therefore applicable to any learning scheme, the popular feed forward back 
propagation (BP) learning rule has been selected for its implementation and per­
formance evaluation. In this section we develop the mathematical formalism nec­
cessary to implement the adaptive neuron model (ANM). 

Back propagation is an example of supervised learning where, for each presenta­
tion consisting of an input vector iJip and its associated target vector tp, the algo­
rithm attemps to adjust the synaptic weights so as to minimize the sum-squared 
error E over all patterns p. In its simplest form, back propagation treats the inter­
connection weights as the only variable and consequently executes gradient descent 
in weight space. The error term is given by 

E = L: Ep = ~ L: L: [tf - o?]2 
P P i 

The quantity tf is the ith component of the pth desired output vector pattern 
and o? is the activation of the corresponding neuron in the final layer n . For 
notational ease the summation over p is dropped and a single pattern is considered. 
On completion of learning, the synaptic weights capture the transformation linking 
the input to output variables. In applications other than toy problems, a major 
drawback of this algorithm is the excessive convergence time. 

In this paper it is shown that a significant decrease in convergence time can be 
realized by allowing the neurons to adaptively participate in the learning process. 
This means that each neuron is to be characterized by a set of parameters, such as 
temperature, whose values are optimized according to a rule, and not in a heuris­
tic fashion as in simulated annealing. Upon training completion, learning is thus 
captured in both the synaptic and neuronal parameters. 

The activation of a unit - say the ith neuron on the mth layer - is given by or. 
This response is computed by a non-linear operation on the weighed responses of 
neurons from the previous layer, as seen in Figure 1. A common function to use is 
the logistic funtion, 

1 
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and T = 1/ f3 is the temperature of the network. The net weighed input to the 
neuron is found by summing products of the synaptic weights and corresponding 
neuronal ouputs from units on the previous layer, 
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Figure 1. Each neuron in a network is chara­
terized by a local, temperature dependent, sig­
moidal activation function. 

where oj-1 represents fan-in units and the wij-l represent the pairwise connection 
strength between neuron i in layer m and neuron j in layer m - l. 

We have investigated several mathematical methods for the determination of the 
optimal neuronal temperatures. In this paper, the rule that was selected to optimize 
these parameters is based on executing gradient descent in the sum squared error 
E in temperature space. The method requires that the incremental change in the 
temperature term be proportional to the negative of the derivative of the error term 
with respect to the temperature. Focussing on the 11h neuron on the ouput layer 
n, we have 

~T.', = -71 aE 
" aT," 

In this expression, ij is the temperature learning rate. This equation can be ex­
pressed as the product of two terms by the chain rule 

aE _ aE ao; 
ar.n aon ar.n , " 

Substituting expressions and leaving the explicit functional form of the activation 
function unspecified, i.e. 0; = f(r,n, ... ) we obtain 

aE n af - = - [t, - 0,] -ar,n aT," 

In a similar fashion, the temperature update equation for the previous layer is given 
by, 

~r::-1 __ - aE 
k - TJ ar::- 1 

k 
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U sing the chain rule, this can be expressed as 

aE aE ao; as; ao~-l 
ar::- 1 = L aon asn aon-1 ar;:-l 

k I" 1: 

Substituting expressions and simplifying reduces the above to 

aE [~[ n] af n-l] af ar::-1 = L...J - t, - 0, asn WI1: ar,n-l k, , 1: 

By repeating the above derivation for the previous layer, i.e. determining the partial 
derivative of E with respect to Tj-2 etc., a simple recursive relationship emerges 

for the temperature terms. Specifically, the updating scheme for the kth neuronal 
temperature on the mth layer is given by 

where 

A rpm - aE 
U.l k = -1] ar.m 

k 

aE m af 
ar,m = -6k ar,m 

k 1: 

In the above expression, the error signal 6r takes on the value, 

if neuron m lies on an output layer, or 

em ~ em+l af m 
Vk = L...J v, m+l W'k , as, 

if the neuron lies on a hidden layer. 

SIMULATION RESULTS OF TEMPERATURE OPTIMIZATION 

The new algorithm was applied to logic problems. The network was trained on 
a standard benchmark - the exclusive-or logic problem. This is a classic problem 
requiring hidden units and since many problems involve an XOR as a subproblem. 
As in plain BP, the application of the proposed learning rule involves two passes. 
In the first, an input pattern is presented and propagated forward through the 
network to compute the output values oj. This output is compared to its target 
value, resulting in an error signal for each output unit. The second pass involves a 
backward pass through the network during which the error signal is passed along 
the network and the appropriate weight and temperature changes made. Note that 
since the synapses and neurons have their own characteristic learning rate, i.e 1] 

and fj respectively, an additional degree of freedom is introduced in the simulation. 
This is equivalent to allowing for relative updating time scales for the weights and 
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temperatures, i.e. Tw and TT respectively. We have now generated a gradient 
descent method for finding weights and temperatures in a feed forward network. 

In deriving the learning rule for temperature optimization in the above section, 
the derivative of the activation function of a neuron played a key role. We have 
used a sigmoidal type of function in our simulations whose explicit form is given 
by, 

f (81:\ If) = 1 ~f3"'s", 
+e "" 

and in Figure 2 it is shown to be extremely sensitive to small changes in tempera­
ture. 
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Figure 2. Activation function shown plotted 
for several different temperatures. 

The sigmoid is shown plotted against the net input to a neuron for temperatures 
ranging from 0.2 to 2.0, in increments of 0.2. However, the steepest curve was for 
a temperature of 0.01. The derivative of the activation function taken with respect 
to the temperature is given by 

of 
oTr: 

As shown in Figure 3, the XOR architecture selected has two input units, two 
hidden units, and a single output unit. Each neuron is characterized by a temper­
ature, and neurons are connected by weights. Prior to training the network, both 
the weights and temperatures were randomized. The initial and final optimization 
parameters for a sample training exercise are shown in Figure 3(a) & (b). Specif­
ically, Figure 3(a) shows the values of the randomized weights and temperatures 
prior to training, and Figure 3(b) shows their values after training the network for 
1000 iterations. This is a case where the network has reached a global minimum. In 
both figures, the numbers associated with the dashed arrows represent the thresh­
olds of the neurons, and the numbers written next to the solid arrows represent the 
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Figure 3. Architecture of NN for XOR prob­
lem showing neuronal temperatures and synap­
tic weights before ( a) and after training (b). 
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excitatory/inhibitory strengths of the pairwise connections. To fully evaluate the 
convergence speed of the proposed algorithm, a benchmark comparison between 
it and plain BP was made. In both cases the training was started with identical 
initial random synaptic weights lying within the range [-2.0, +2.0] and the same 
synaptic weight learning rate TJ = 0.1. The temperatures of the neurons in the AN M 
model were randomly selected to lie wjthin the narrow range of [0.9,1.1] and the 
temperature learning rate ij set at 0.1. Figures 4(a) & (b) summarize the training 
statistics of this comparison. 

100 

10"1 

111"2 

i 10"3 ... 
10-4 

10"5 

10-6 
100 101 102 

10"1 , ._- ....... , , , 
, 

10-2 " /\ '. ", ' .......... / \ , 
\ '. "./ '. ", \ " 1'ct3 i 

10-4 

110"5 

10-6 

- 10"7 
103 104 105 108 100 101 102 103 

ITERATION ITERATION 

Figure 4. Comparison of training statistics 
between the adaptive neuron model and plain 
back propagation. 
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In both figures, the solid lines represent the ANM and the dashed lines represent 
the plain BP model. In Figure 4( a), the error is plotted against the training iteration 
number. In Figure 4(b), the standard deviation of the error over the training set 
is shown plotted against the training iteration. In the first few hundred training 
iterations in Figure 4( a), the performance ofBP and the ANM is similar and appears 
as a broad shoulder in the curve. Recall that both the weights and temperatures 
are randomized prior to training, and are therefore far from their final values. As 
a consequence of the low values of the learning rates used, the error is large, and 
will only begin to get smaller when the weights and temperatures begin to fall in 
the right domain of values. In the ANM, the shoulder terminus is marked by a 
phase-transition like discontinuity in both error and standard deviation. For the 
particular example shown, this occured at the 637th iteration. A several order of 
magnitude drop in the error and standard deviation is observed within the next 10 
iterations. This sharp drop off is followed by a much more gradual decrease in both 
the error and standard deviation. A more detailed analysis of these results will be 
published in a longer paper. 

In learning the XOR problem using standard BP, it has been observed that the 
network frequently gets trapped in local minima. In Figure 5(a) & (b) we observe 
such a case as shown by the dotted line. In numerous simulations on this problem, 
we have determined that the ANM is much less likely to become trapped in local 
mInIma. 
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Figure 5. Training case where the adaptive 
neuron model escapes a local minima and plain 
back propagation does not. 

CONCLUSIONS 

"..-----------

In this paper we have attempted to upgrade and enrich the model of the neuron 
from a simple static non-linear wire-type construct, to a dynamically reconfigurable 
one. From a purely computational point of view, there are definite advantages in 
such an extension. Recall that if N is the number of neurons in a network then the 
number of synaptic connections typically increases as O(N2). Since the activation 
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function is extremely sensitive to small changes in temperature and that there are 
far fewer neuronal parameters to update than synaptic weights, suggests that the 
adaptive neuron model should offer a significant reduction in convergence time. 

In this paper we have also shown that the active participation of the neurons 
during the supervised learning phase led to a significant reduction in the number 
of training cycles required to learn logic type of problems. In the adaptive neuron 
model both the synaptic weight interconnection strengths and the neuronal tem­
perature terms are treated as optimization parameters and have their own updating 
scheme and time scales. This learning rule is based on implementing gradient de­
scent in the sum squared error E with respect to both the weights wr] and temper­
atures Tim. Preliminary results indicate that the new algorithm can significantly 
outperform back propagation by reducing the learning time by several orders of 
magnitude. Specifically, the XOR problem was learnt to a very high precision by 
the network in :::::: 103 training iterations with a mean square error of:::::: 10-6 versus 
over 106 iterations with a corresponding mean square error of:::::: 10-3 . 
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