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ABSTRACT 

We have mathematically shown that cortical maps in the 
primary sensory cortices can be reproduced by using three 
hypotheses which have physiological basis and meaning. 
Here, our main focus is on ocular.dominance column formation 
in the primary visual cortex. Monte Carlo simulations on the 
segregation of ipsilateral and contralateral afferent terminals 
are carried out. Based on these, we show that almost all the 
physiological experimental results concerning the ocular 
dominance patterns of cats and monkeys reared under normal 
or various abnormal visual conditions can be explained from a 
viewpoint of the phase transition phenomena. 

ROUGH SKETCH OF OUR THEORY 
In order to describe the use-dependent self-organization of neural connections 
{Singer,1987 and Frank,1987}, we have proposed a set of coupled equations 
involving the electrical activities and neural connection density {Tanaka, 
1988}, by using the following physiologically based hypotheses: (1) Modifiable 
synapses grow or collapse due to the competition among themselves for some 
trophic factors, which are secreted retrogradely from the postsynaptic side to 
the presynaptic side. (2) Synapses also sprout or retract according to the 
concurrence of presynaptic spike activity and postsynaptic local membrane 
depolarization. (3) There already exist lateral connections within the layer, 
into which the modifiable nerve fibers are destined to project, before the 
synaptic modification begins. Considering this set of equations, we find that 
the time scale of electrical activities is much smaller than time course 
necessary for synapses to grow or retract. So we can apply the adiabatic 
approximation to the equations. Furthermore, we identify the input electrical 
activities, i.e., the firing frequency elicited from neurons in the projecting 
neuronal layer, with the stochastic process which is specialized by the spatial 
correlation function Ckp;k' p'. Here, k and k' represent the positions of the 
neurons in the projecting layer. II stands for different pathways such as 
ipsilateral or contralateral, on-center or off-center, colour specific or 
nonspecific and so on. From these approximations, we have a nonlinear 
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stochastic differential equation for the connection density, which describes a 
survival process of synapses within a small region, due to the strong 
competition. Therefore, we can look upon an equilibrium solution of this 
equation as a set of the Potts spin variables 0jk11'S {Wu, 1982}. Here, if the 
neuron k in the projecting layer sends the axon to the position j in the target 
layer, 0jk11 = 1 and if not, 0jk11 = O. The Potts spin variable has the following 
property: 

If we limit the discussion within such equilibrium solutions, the problem is 
reduced to the thermodynamics in the spin system. ' The details of the 
mathematics are not argued here because they are beyond the scope of this 
paper {Tanaka}. We find that equilibrium behavior of the modifiable nerve 
terminals can be described in terms of thermodynamics in the system in 
which Hamiltonian H and fictitious temperature T are given by 

where k and Ck11 ;k' 11' are the averaged firing frequency and the correlation 
function, respectively. Vii' describes interaction between synapses in the 
target layer. q is the ratio of the total averaged membrane potential to the 
a veraged membrane potential induced through the modifiable synapses from 
the projecting layer. "tc and "ts are the correlation time of the electrical 
activities and the time course necessary for synapses to grow or collapse. 

APPLICATION TO THE OCULAR DOMINANCE 
COLUMN FORMATION 

A specific cortical map structure is determined by the choice of the correlation 
function and the synaptic interaction function. Now, let us neglect k 
dependence of the correlation function and take into account only ipsilateral 
and contralateral pathways denoted by p, for mathematical simplicity. In this 
case, we can reduce the Potts spin variable into the Ising spin one through the 
following transformation: 
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where j is the position in the layer 4 of the primary visual cortex, and Sj takes 
only + 1 or -1, according to the ipsilateral or contralateral dominance. We 
find that this system can be described by Hamiltonian: 

J 
H = -h " S .- - "" "" V .. , S . S., L. J 2 L. L. JJ J J 

j j j':;ej 
(3) 

The first term of eq.(3) reflects the ocular dominance shift, while the second 
term is essential to the ocular dominance stripe segregation. 

Here, we adopt the following simplified function as Vii': 

qex qinh 
V . . , = -2 8 (A -d .. ,) - -2- 8 (A . h- d . . ,) , (4) 

J J IIA ex J J IIA . h m J J 
ex tn 

where djj' is the distance between j and j'. Aex and Ainh are determined by the 
extent of excitatory and inhibitory lateral connections, respectively. 8 is the 
step function. q." and q i"~ are propotional to the membrane potentials 
induced by excitatory and inhibitory neurons {Tanaka}. It is not essential to 
the qualitative discussion whether the interaction function is given by the use 
of the step function, the Gaussian function, or others. 

Next, we define 11+1 and 11-1 as the average firing frequencies of ipsilateral 
and contralateral retinal ganglion cells (RGCs), and ~± 1 v and ~± 18 as their 
fluctuations which originate in the visually stimulated and the spontaneous 
firings of RGCs, respectively. These are used to calculate two new 
parameters, r and a: 

(5) 

a= (6) 



454 Tanaka 

r is related to the correlation of firings elicited from the left and right RGCs. 
If there are only spontaneous firings, there is no correlation between the left 
and right RGCs' firings. On the other hand, in the presence of visual 
stimulation, they will correlate, since the two eyes receive almost the same 
images in normal animals. a is a function of the imbalance of firings of the left 
and right RGCs. Now, J and h in eq.(3) can be expressed in terms ofr and a: 

( l_a2 ) 
J=b l-r--

1 1 + a2 ' 

(8) 

where b1 is a constant of the order of 1, and b2 is determined by average 
membrane potentials. 

Using the above equations, it will now be shown that patterns such as the 
ones observed for the ocular dominance column of new-world monkeys and 
cats can be explained. The patterns are very much dependent on three 
parameters r, a and K which is the ratio of the membrane potentials (qinh/qex) 
induced by the inhibitory and excitatory neurons. 

RESULTS AND DISCUSSIONS 

In the subsequent analysis by Monte Carlo simulations, we fix the values of 
parameters: qex=I.O, Aex =O.25, Ainh=l.O, T=O.25, bl=l.O, b2=O.I, and 
dx=O.l. dx is the diameter ofa small area which is occupied by one spin. In 
the computer simulations of Fig. 1, we can see that the stripe patterns become 
more segregated as the correlation strength r decreases. The similarity of the 
pattern in Fig.lc to the well-known experimental evidence {Hubel and Wiesel, 
1977} is striking. Furthermore, it is known that if the animal has been reared 
under the condition where the two optic nerves are electrically stimulated 
synchronously, stripes in the primary visual cortex are not formed {Stryker}. 
This condition corresponds to r values close to I and again our theory predicts 
these experimental results as can be seen in Fig.la. On the contrary, if the 
strabismic animal has been reared under the normal condition {Wiesel and 
Hubel, 1974}, r is effectively smaller than that of a normal animal. So we 
expect that the ocular dominance stripe has very sharp delimitations as it is 
observed experimentally. In the case of a binocularly deprived animal {Wiesel 
and Hubel, 1974},i.e., ~+lv=~_lv=O, it is reasonable to expect that the 
situation is similar to the strabismic animal. 
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Figure 1. Ocular dominance patterns given by the computer 
simulations in the case of the large inhibitory connections 
(K= 1.0) and the balanced activities (a= 0). The correlation 
strength r is given in each case: r=0.9 for (a), r=0.6 for (b), 
and r= 0.1 for (c). 

In the case of a* 0, we can get asymmetric stripe patterns such as one in 
Fig.2a. Since this situation corresponds to the condition of the monocular 
deprivation, we can also explain the experimental observation {Hubel et 
a1.,1977} successfully. There are other patterns seen in Fig.2b, which we call 
blob lattice patterns. The existence of such patterns has not been confirmed 
physiologically, as far as we know. However, this theory on the ocular 
dominance column formation predicts that the blob lattice patterns will be 
found if appropriate conditions, such as the period of the monocular 

Figure 2. Ocular dominance patterns given by the computer 
simulations in the case of the large inhibitory connections 
(K=1.0) and the imbalanced activities: a=0.2 for (a) and 
a= 0.4 for (b). The correlation strength r is given by r= 0.1 for 
both (a) and (b). 
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deprivation, are chosen. 

We find that the straightness of the stripe pattern is controlled by the 
parameter K. Namely, if K is large, i.e. inhibitory connections are more 
effective than excitatory ones, the pattern is straight. However if K is small 
the pattern has many branches and ends. This is illustrated in Fig. 3c. We 
can get a pattern similar to the ocular dominance pattern of normal cats 
{Anderson et al., 1988}, ifK is small and r~rc (Fig.3b). The meaning of rc will 
be discussed in the following paragraphs. We further get a labyrinth pattern 
by means of r smaller than r c and the same K. We can think K val ue is specific 
to the animal under consideration because of its definition. Therefore, this 
theory also predicts that the ocular dominance pattern of the strabismic cat 
will be sharply delimitated but not a straight stripe in contrast to the pattern 
of monkey. 

Figure 3. Ocular dominance patterns given by the computer 
simulations in the case of the small inhibitory connections 
(K=0.3) and the balanced activities(a=O). The correlation 
strength r is given in each case: r= 0.9 for (a), r=0.6 for (b) and 
r=O.l for (c). 

Having seen specific examples, let us now discuss the importance of 
parameters r and a, which stand for the correlation strength and the 
imbalance of firings. According to qualitative difference of patterns obtained 
from our simulations, we classify the parameter space (r, !l) into three regions 
in Fig.4: In region (S), stripe patterns appear. The left-eye dominance and the 
right-eye dominance bands are equal in width, for a=O. On the other hand, 
they are not equal for non-zero value. In region (B), patterns are blob lattices. 
In region (U), the patterns are uniform and we do not see any spatial 
modulation. A uniform pattern whose a val ue is close to 0 is a random 
pattern, while if a is close to 1 or -1 either ipsilateral or contralateral nerve 
terminals are present. On the horizontal axis, (S) and (U) regions are devided 
by the critical point rc. In practice if we define the order parameter as the 
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ensemble-averaged amplitude of the dominant Fourier component of spatial 
patterns, and the susceptibility as the variance of the amplitude, then we can 
observe their singular behavior near r = r c' 

Various conditions where animals have been reared correspond positions in 
the parameter space of Fig.4: normal (N), synchronized electrical stimulation 
(SES), strabismus (S), binocular deprivation (BD), long-term monocular 
deprivation (LMD) and short-term monocular deprivation (SMD). If an 
animal is kept under the monocular deprivation for a long period, the absolute 
value of is close to 1 and r value is 0, considering eqs.(5) and (6). For a short­
term monocular deprivation, the corresponding point falls on anywhere on the 
line from N to LMD, because relaxation from the symmetric stripe pattern to 
the open-eye dominant uniform pattern is incomplete. The position on this 
line is, therefore, determined by this relaxation period, in which the animal is 
kept under the monocular deprivation. 

1 

UiD 
(U) 

a 

(5) 
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Figure 4. Schematic phase diagram for the pattern of ocular 
dominance columns. The parameter space (r, a) is devided into 
three regions: (S) stripe region, (B) blob lattice region, and (U) 
uniform region. N, SES, S, BD, LMD, and SMD stand for 
conditions: normal, synchronized electrical stimulation, 
strabismus, binocular deprivation, long-term monocular 
deprivation, and short-term monocular deprivation, 
respectively. We show only the diagram on the upper half 
plane, because the diagram is symmetrical with respect to the 
line of a=O. 
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CONCLUSION 
In this report, a new theory has been proposed which is able to explain such 
use-dependent self-organization as the ocular dominance column formation. 
We have compared the theoretical results with various experimental data and 
excellent agreement is observed. We can also explain and predict self­
organizing process of other cortical map structures such as the orientation 
column, the retinotopic organization, and so on. Furthermore, the three main 
hypotheses of this theory are not confined to the primary visual cortex. This 
suggests that the theory will have a wide applicability to the formation of 
cortical map structures seen in the somatosensory cortex {Kaas et al.,1983}, 
the auditory cortex {Knudsen et al.,1987}, and the cerebellum {Ito,1984}. 
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