
LEARNING BY CHOICE
OF INTERNAL REPRESENTATIONS

Tal Grossman, Ronny Meir and Eytan Domany
Department of Electronics, Weizmann Institute of Science

Rehovot 76100 Israel

ABSTRACT
We introduce a learning algorithm for multilayer neural net

works composed of binary linear threshold elements. Whereas ex
isting algorithms reduce the learning process to minimizing a cost
function over the weights, our method treats the internal repre
sentations as the fundamental entities to be determined. Once a
correct set of internal representations is arrived at, the weights are
found by the local aild biologically plausible Perceptron Learning
Rule (PLR). We tested our learning algorithm on four problems:
adjacency, symmetry, parity and combined symmetry-parity.

I. INTRODUCTION
Consider a network of binary linear threshold elements i, whose state Si = ±1

is determined according to the rule

Si = sign(L WijSj + Oi) . (1)
j

Here Wij is the (unidirectional) weight assigned to the connection from unit j to
i; 0i is a local bias. We focus our attention on feed-forward networks in which N
units of the input layer determine the states of H units of a hidden layer; these, in
turn, feed one or more output elements.

For a typical A vs B classification task such a network needs a single output,
with sout = + 1 (or -1) when the input layer is set in a state that belongs to catego~y
A (or B) of input space. The basic problem of learning is to find an algorithm, that
produces weights which enable the network to perform this task. In the absence
of hidden units learning can be accomplished by the PLR [Rosenblatt 1962], which
we now briefly Jcscribe. Consider j = 1, ... , N source units and a single target unit
i. When the source units are set in anyone of p. = 1, .. M patterns, i.e. Sj = er,
we require that the target unit (determined using (1» takes preassigned values er.
Learning takes place in the course of a training session. Starting from any arbitrary
initial guess for the weights, an input 1/ is presented, resulting in the output taking
some value Sr. Now modify every weight according to the rule

W·· -+ W·· + "(1 - SI!CI!)CI!Cl(
11 IJ" 1 ~I ~I ~J ' (2)

73

74 Grossman, Meir and Domany

where TJ > 0 is a parameter (er = 1 is used to modify the bias 0). Another
input pattern is presented, and so on, until all inputs draw the correct output.
The Perceptron convergence theorem states [Rosenblatt 1962, Minsky and Papert
1969] that the PLR will find a solution (if one exists), in a finite number of steps.
However, of the 22N possible partitions of input space only a small subset (less than
2N2 / N!) is linearly separable [Lewis and Coates 1967], and hence soluble by single
layer perceptrolls. To get around this, hidden units are added. Once a single hidden
layer (with a large enough number of units) is inserted beween input and output,
every classification problem has a solution. But for such architectures the PLR
cannot be implemented; when the network errs, it is not clear which connection is
to blame for the error, and what corrective action is to be taken.

Back-propagation [Rumelhart et al 1986] circumvents this "credit-assignment"
problem by dealing only with networks of continuous valued units, whose response
function is also continuous (sigmoid). "Learning" consists of a gradient-descent
type minimization of a cost function that measure the deviation of actual outputs
from the required ones, in the space of weights Wij, 0i. A new version of BP, "back
propagation of desired states", which bears some similarity to our algorithm, has
recently been introduced [Plaut 1987]. See also Ie Cun [1985] and Widrow and
Winter [1988] for related methods.

Our algorithm views the internal representations associated with various inputs
as the basic independent variables of the learning process. This is a conceptually
plausible assumption; in the course of learning a biological or artificial system should
form maps and representations of the external world. Once such representations
are formed, the weights can be found by simple and local Hebbian learning rules
such as the PLR. Hence the problem of learning becomes one of searching for proper
internal representations, rather than one of minimization. Failure of the PLR to
converge to a solution is used as an indication that the current guess of internal
representations needs to be modified.

II. THE ALGORITHM
If we know the internal representations (e.g. the states taken by the hidden

layer when patterns from the training set are presented), the weights can be found
by the PLR. This way the problem of learning becomes one of choosing proper
internal representations, rather than of minimizing a cost function by varying the
values of weights. To demonstrate our approache, consider the classification prob
lem with output values, sout,~ = eout,~, required in response to J1. = I, ... , M input
patterns. If a solution is found, it first maps each input onto an internal represen
tation generated on the hidden layer, which, in turn, produces the correct output.
Now imagine that we are not supplied with the weights that solve the problem;
however the correct internal representations are revealed. That is, we are given a
table with M rows, one for each input. Every row has H bits e;'~, for i = I, .. H,
specifying the state of the hidden layer obtained in response to input pattern JJ.
One can now view each hidden-layer cell i as the target cell of the PLR, with the
N inputs viewed as source. Given sufficient time, the PLR will converge to a set

Learning by Choice of Internal Representations 75

of weights Wi,j, connecting input unit j to hidden unit i, so that indeed the input
output association that appears in column i of our table will be realized. In a
similar fashion, the PLR will yield a set of weights Wi, in a learning process that
uses the hidden layer as source and the output unit as target. Thus, in order to
solve the problem of learning, all one needs is a search procedure in the space of
possible internal representations, for a table that can be used to generate a solution.
Updating of weights can be done in parallel for the two layers, using the current
table of internal representations. In the present algorithm, however, the process is
broken up into four distinct stages:

1. SETINREP: Generate a table of internal representations {e?'II} by presenting
each input pattern from the training set and calculating the state on the hidden
layer,using Eq.(la), with the existing couplings Wij and ej.
2. LEARN23: The hidden layer cells are used as source, and the output as the
target unit of the PLR. The current table of internal representations is used as
the training set; the PLR tries to find appropriate weights Wi and e to obtain the
desired outputs. If a solution is found, the problem has been solved. Otherwise
stop after 123 learning sweeps, and keep the current weights, to use in IN REP.

3. INREP: Generate a new table of internal representations, which, when used in
(lb), yields the correct outputs. This is done by presenting the table sequentially,
row by row, to the 11idden layer. If for row v the wrong output is obtained, the
internal representation eh ,1I is changed. Having the wrong output means that the
"field" produced by the hidden layer on the output unit, hout ,lI = Ej Wje~'11 is
either too large or too small. We then randomly pick a site j of the hidden layer,
and try to flip the sign of e;'II; if hout ,lI changes in the right direction, we replace
the entry of our table, i.e.

&~,II -. _&~,II
'3 'J'

We keep picking sites and changing the internal representation of pattern v until
the correct output is generated. We always generate the correct output this way,
provided Ej IWjl > leoutl (as is the case for our learning process in LEARN23).
This procedure ends with a modified table which is our next guess of internal
representations.

4. LEARN12: Apply the PLR with the first layer serving as source, treating
every hidden layer site separately as target. Actually, when an input from the
training set is presented to the first layer, we first check whether the correct result
is produced on the output unit of the network. If we get wrong overall output, we
use the PLR for every hidden unit i, modifying weights incident on i according
to (2), using column i of the table as the desired states of this unit. If input v
does yield the correct output, we insert the current state of the hidden layer as the
internal representation associated with pattern v, and no learning steps are taken.
We sweep in this manner the training set, modifying weights Wij, (between input
and hidden layer), hidden-layer thresholds ei, and, as explained above, internal

76 Grossman, Meir and Domany

representations. If the network has achieved error-free performance for the entire
training set, learning is completed. If no solution has been found after 112 sweeps
of the training set, we abort the PLR stage, keep the present values of Wij, OJ, and
start SETINREP again.

This is a fairly complete account of our procedure (see also Grossman et al
[1988]). There are a few details ·that need to be added.

a) The "impatience" parameters: 112 and 123, which are rather arbitrary, are
introduced to guarantee that the PLR stage is aborted if no solution is found. This
is necessary since it is not clear that a solution exists for the weights, given the
current table of internal representations. Thus, if the PLR stage does not converge
within the time limit specified, a new table of internal representations is formed.
The parameters have to be large enough to allow the PLR to find a solution (if
one exists) with sufficiently high probability. On the other hand, too large values
are wasteful, since they force the algorithm to execute a long search even when
no solution exists. Therefore the best values of the impatience parameters can be
determined by optimizing the performance of the network; our experience indicates,
however, that once a "reasonable" range of values is found, performance is fairly
insensitive to the precise choice.

b) Integer weights: In the PLR correction step, as given by Eq.2, the size of
D.. W is constant. Therefore, when using binary units, it can be scaled to unity (by
setting T] = 0.5) and one can use integer Wi,j'S without any loss of generality.

c) Optimization: The algorithm described uses several parameters, which should
be optimized to get the best performance. These parameters are: 112 and 123 - see
section (a) above; Imax - time limit, i.e. an upper bound to the total number of
training sweeps; and the PLR training parameters - i.e the increment of the weights
and thresholds during the PLR stage. In the PLR we used values of 1] ~ 0.1 [see
Eq. (2)] for the weights, and 1] ~ 0.05 for thresholds, whereas the initial (random)
values of all weights were taken from the interval (-0.5,0.5), and thresholds from
(-0.05,0.05). In the integer weights program, described above, these parameters are
not used.

d) Treating Multiple Outputs: In the version of inrep described above, we
keep flipping the internal representations 'until we find one that yields the correct
output, i.e. zero error for the given pattern. This is not always possible when using
more than one output unit. Instead, we can allow only for a pre-specified number
of attempted flips, lin' and go on to the next pattern even if vanishing error was
not achieved. In this modified version we also introduce a slightly different, and less
"restrictive" criterion for accepting or rejecting a flip. Having chosen (at random)

a hidden unit i, we check the effect of flipping the sign of ~;,II on the total output
error, i.e. the number of wrong bits (and not on the output field, as described
above). If the output error is not increased, the flip is accepted and the table of
internal representations is changed accordingly.

This modified algorithm is applicable for multiple-output networks. Results of
preliminary experiments with this version are presented in the next section.

Learning by Choice of Internal Representations 77

III. PERFORMANCE OF THE ALGORITHM

The "time" parameter that we use for measuring performance is the number of
sweeps through the training set of M patterns needed in order to find the solution.
Namely, how many times each pattern was presented to the network. In each cycle
of the algorithm there are 112 + 123 such sweeps. For each problem, and each
parameter choice, an ensemble of many independent runs, each starting with a
different random choice of initial weights, is created. In general, when applying a
learning algorithm to a given problem, there are cases in which the algorithm fails
to find a solution within the specified time limit (e.g. when BP get stuck in a local
minimum), and it is impossible to calculate the ensemble average of learning times.
Therefore we calculate, as a performance measure, either the median number of
sweeps, t m , or the "inverse average rate", T, as defined in Tesauro and Janssen
[1988].

The first problem we studied is contiguity: the system has to determine whether
the number of clumps (i.e. contiguous blocks) of +1 's in the input is, say, equal to
2 or 3. This is called [Denker et al 1987] the "2 versus 3" clumps predicate. We
used, as our training set, all inputs that have 2 or 3 clumps, with learning cycles
parametrized by 112 = 20 and 123 = 5. Keeping N = 6 fixed, we varied H; 500
cases were used for each data point of Fig.l.

400 -

x BP
300

<> CHIR

200

100

3 4 5 6 7 8

H

Figure 1. Median number of sweeps tm , needed to train a network of N = 6
input units, over an exhaustive training set, to solve the" 2 vs 3" clumps predicate,
plotted against the number of hidden units H. Results for back-propagation [Denker
et al 1987] (x) and this work (¢) are shown.

78 Grossman, Meir and Domany

In the next problem, symmetry, one requires sout = 1 for reflection-symmetric
inputs and -1 otherwise. This can be solved with H ~ 2 hidden units. Fig. 2
presents, for H = 2, the median number of exhaustive training sweeps needed to
solve the problem, vs input size N. At each point 500 cases were run, with 112 = 10
and 123 = 5. We always found a solution in' less than 200 cycles.

6

N
8 10

Figure 2. Median number of sweeps t m , needed to train networks on
symmetry (with H = 2).

In the Parity problem one requires sout = 1 for an even number of +1 bits in
the input, and -1 otherwise. In order to compare performance of our algorithm to
that of BP, we studied the Parity problem, using networks with an architecture of
N : 2N : 1, as chosen by Tesauro and Janssen [1988].

We used the integer version of our algorithm, briefly described above. In this
version of the algorithm the weights and thresholds are integers, and the increment
size, for both thresholds and weights, is unity. As an initial condition, we chose
them to be +1 or -1 randomly. In the simulation of this version, all possible input
patterns were presented sequentially in a fixed order (within the perceptron learning
sweeps). The results are presented in Table 1. For all choices of the parameters
(It2, 123), that are mentioned in the table, our success rate was 100%. Namely, the
algorithm didn't fail even once to find a solution in less than the maximal number
of training cycles Imax specified in the table. Results for BP, r(BP) (from Tesauro
and Janssen 1988) are also given in the table. Note that BP does get caught in
local minima, but the percentage of such occurrences was not reported.

Learning by Choice of Internal Representations 79

For testing the multiple output version of the algorithm we use8 the combined
parity and symmetry problem; the network has two output units, both connected to
all hidden units. The first output unit performs the parity predicate on the input,
and the second performs the symmetry predicate. The network architecture was
N:2N:2 and the results for N=4 .. 7 are given in Table 2. The choice of parameters
is also given in that table.

N (I12,/23) Ima.x tm T(CH IR) T(BP)
3 (8,4) 10 3 3 3g
4 (9,3)(6,6) 20 4 4 75
5 (12,4)(9,6) 40 8 6 130
6 (12,4)(10,5) 120 19 9 310

I

7 (12,4)(15,5) 240 290 30 80Q
8 (20,10) 900 2900 150 20db
9 (20,10) 900 2400 1300

Table 1. Parity with N:2N:1 architecture.

N 112 h3 lin Ima.x tm T

4 12 8 7 40 50 33
5 14 7 7 400 900 350
6 18 9 7 900 5250 925
7 40 20 7 900 6000 2640

Table 2. Parity and Symmetry with N :2N:2 architecture.

IV. DISCUSSION

We have presented a learning algorithm for two-Iayerperceptrons, that searches
for internal representations of the training set, and determines the weights by the
local, Hebbian perceptron learning rule. Learning by choice of internal represen
tation may turn out to be most useful in situations where the "teacher" has some
information about the desired internal representations.

We demonstrated that our algorithm works well on four typical problems, and
studied the manner in which training time varies with network size. Comparisons
with back-propagation were also made. it should be noted that a training sweep
involves much less computations than that of back-propagation. We also presented
a generalization of the algorithm to networks with multiple outputs, and found
that it functions well on various problems of the same kind as discussed above. It
appears that the modification needed to deal with multiple outputs also enables us
to solve the learning problem for network architectures with more than one hidden
layer.

80 Grossman, Meir and Domany

At this point we can offer only very limited discussion of the interesting ques
tion - why does our algorithm work at all? That is, how come it finds correct
internal representations (e.g. "tables") while these constitute only a small fraction
of the total possible number (2H2N)? The main reason is that our procedure ac
tually does not search this entire space of tables. This large space contains a small
subspace, T, of "target tables", i.e. those that can be obtained, for all possible
choices of w{j and OJ, by rule (1), in response to presentation of the input patterns.
Another small subspace S, is that of the tables that can potentially produce the
required output. Solutions of the learning problem constitute the space T n S.
Our algorithm iterates between T and S, executing also a "walk" (induced by the
modification of the weights due to the PLR) within each.

An appealing feature of our algorithm is that it can be implemented in a
manner that uses only integer-valued weights and thresholds. This discreteness
makes the analysis of the behavior of the network much easier, since we know
the exact number of bits used by the system in constructing its solution, and do
not have to worry about round-off errors. From a technological point of view, for
hardware implementation it may also be more feasible to work with integer weights.

We are extending this work in various directions. The present method needs, in
the learning stage, M H bits of memory: internal representations of all M training
patterns are stored. This feature is biologically implausible and may be techno
logically limiting; we are developing a method that does not require such memory.
Other directions of current study include extensions to networks with continuous
variables, and to networks with feed-back.

References

Denker J., Schwartz D., Wittner B., SolI a S., Hopfield J.J., Howard R. and Jackel
L. 1987, Complex Systems 1, 877-922

Grossman T., Meir R. and Domany E . 1988, Complex Systems in press.

I1ebb D.O. 1949, The organization of Behavior, J. Wiley, N.Y

Le Cun Y. 1985, Proc. Cognitiva 85, 593

Lewis P.M. and Coates C.L. 1967, Threshold Logic. (Wiley, New York)

Minsky M. and Papert S. 1988, Perceptrons. (MIT, Cambridge).

Plaut D.C., Nowlan S.J. and Hinton G.E. 1987, Tech. Report CMU-CS-86-126

Rosenblatt F. Principles of neurodynamics. (Spartan, New York, 1962)

Rumelhart D.E., Hinton G.E. and Williams R.J. 1986, Nature 323,533-536

Tesauro G. and Janssen H. 1988, Complex Systems 2, 39

Widrow B. and Winter R. 1988, Computer 21, No.3, 25

