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ABSTRACT 

Rumelhart (1987). has proposed a method for choosing minimal or 
"simple" representations during learning in Back-propagation 
networks. This approach can be used to (a) dynamically select the 
number of hidden units. (b) construct a representation that is 
appropriate for the problem and (c) thus improve the generalization 
ability of Back-propagation networks. The method Rumelhart suggests 
involves adding penalty terms to the usual error function. In this paper 
we introduce Rumelhart·s minimal networks idea and compare two 
possible biases on the weight search space. These biases are compared 
in both simple counting problems and a speech recognition problem. 
In general. the constrained search does seem to minimize the number of 
hidden units required with an expected increase in local minima. 

INTRODUCTION 

Many supervised connectionist models use gradient descent in error to solve various 
kinds of tasks (Rumelhart. Hinton & Williams. 1986). However. such gradient descent 
methods tend to be ".opportunistic" and can solve problems in an arbitrary way dependent 
on starting point in weight space and peculiarities of the training set. For example. in 
Figure 1 we show a "mesh" problem which consists of a random distribution of 
exemplars from two categories. The spatial geometry of the categories impose a meshed 
or overlapping subset of the exemplars in the two dimensional feature space. As the 
meshed part of the categories increase the problem becomes more complex and must 
involve the combination of more linear cuts in feature space and consequently more 
nonlinear cuts for category separation. In the top left corner of Figure l(a). we show a 
mesh geometry requiring only three cuts for category separation. In the bottom center 
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I (b) is the projection of the three cut solution of the mesh in output space. In the top right 
of this Figure I(c) is a typical solution provided by back-propagation starting with 16 
hidden units. This Figure shows the two dimensional featme space in which 9 of the 
lines cuts are projected (the other 7 are outside the [0.1] unit plane). 

~ r-------------------------~ 
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Figure 1: Mesh problem (a). output space (b) and typical back-propagation solution (c) 

Examining the weights in the next layer of the network indicates that in fact. 7 of these 9 
line segments are used in order to construct the output surface shown in Figure l(b). 
Consequently. the underlying feature relations determining the output surface and 
category separation are arbitrary. more complex then necessary and may result in 
anomalous generalizations. 

Rumelhart (1987). has proposed a way to increase the generalization capabilities of 
learning networks which use gradient descent methods and to automatically control the 
resources learning networks use-for example. in tenns of "hidden" units. His hypothesis 
concerns the nature of the 'representation in the network: " ... the simplest most robust 
network which accounts/or a data set will, on awrage,lead to the best generalization to 
the population from which the training set has been drawn". 

The basic approach involves adding penalty terms to the usual error function in order to 
constrain the search and cause weights to differentially decay. This is similar to many 
proposals in statistical regression where a "simplicity" measure is minimized along with 
the error term and is sometimes referred to as "biased" regression (Rawlings. 1988). 
Basically. the statistical concept of biased regression derives from parameter estimation 
approaches that attempt to achieve a best linear unbiased estimator ("BLUE"). By 
definition an unbiased estimator is one with the lowest possible variance and 
theoretically. unless there is significant collinearityl or nonlinearity amongst the 

1. For example, Ridge regreuiolt is a special case of biased regression which attempts to make a singular 
correlation matrix non-lingular by adding a small arbitrary coostant to the diagonal of the matrix. This 
increase in the diagonal may lower the impact of the off-diagonal elements and thus reduce the effects of 
collinearity • 
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variables. a least squares estimator (LSE) can be also shown to be a BLUE. If on the 
other hand. input variables are correlated or nonlinear with the output variables (as is the 
case in back-propagation) then there is no guarantee that the LSE will also be unbiased. 
Consequently. introducing a bias may actually reduce the variance of the estimator of 
that below the theoretically unbiased estimator. 

Since back-propagation is a special case of multivariate nonlinear regression methods we 
must immediately give up on achieving a BLUE. Worse ye4 the input variables are also 
very likely to be collinear in that input data are typically expected to be used for feature 
extraction. Consequently. the neural network framework leads naturally to the 
exploration of biased regression techniques. unfortunately. it is not obvious what sorts of 
biases ought to be introduced and whether they may be problem dependent 
Furthennore. the choice of particular biases probably determines the particular 
representation that is chosen and its nature in tenns of size. structure and "simplicity". 
This representation bias may in turn induce generalization behavior which is greater in 
accuracy with larger coverage over the domain. Nonetheless. since there is no particular 
motivation for minimizing a least squares estimator it is important to begin exploring 
possible biases that would lead to lower variance and more robust estimators. 

In this paper we explore two general type of bias which introduce explicit constraints on 
the hidden units. First we discuss the standard back-propagation method. various past 
methods of biasing which have been called "weight decay". the properties of our biases. 
and finally some simple benchmark tests using parity and a speech recognition task. 

BACK·PROPAGATION 

The Back-propagation method [2] is a supervised learning technique using a gradient 
descent in an error variable. The error is established by comparing an output value to a 
desired or expected value. These errors can be accumulated over the sample: 

E = LL (yu - ;ir)2 (1) 
• i 

Assuming the output function is differentiable then a gradient of the error can be found, 
and we require that this derivative be decreasing. 

dE 
--=0 

dWij • 
(2) 

Over multiple layers we pass back a weighted sum of each derivative from units above. 

WEIGHT DECAY 

Past wo~ using biases have generally been based on ad hoc arguments that weights 
should differentially decay allowing large weights to persist and small weights to tend 
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towards zero sooner. Apparently. this would tend to concentrate more of the input into a 
smaller number of weights. Generally. the intuitive notion is to somehow reduce the 
complexity of the network as defined by the nmnber of connections and number of 
hidden units. A simple but inefficient way of doing this is to include a weight decay tenn 
in the usual delta updating rule causing all weights to decay on each learning step (where 
W = Wjj throughout): 

(3) 

Solving this difference equation shows that for P < 1.0 weights are decaying 
exponentially over steps towards zero. 

" . aE 
w" = a 1: P"'" (--)j + P" Wo (4) 

;=1 Ow 

This approach introduces the decay tenn in the derivative itself causing error tenns to 
also decrease over learning steps which may not be desirable. 

BIAS 

The sort of weight decay just discussed can also be derived from genezal consideration of 
"costs" on weights. For example it is possible to consider E with a bias tenn which in the 
simple decay case is quadratic with weight value (Le. w2). 

We now combine this bias with E producing an objective function that includes both the 
error term and this bias function: 

O=E+B (5) 

where. we now want to minimize 

ao = aE + aB (6) 
o~·· ow·· ow·· 'I 'I 'I 

In the quadratic case the updating rule becomes. 

aE 
W,,+1 = a (- :\.... - 2w,,) + w" (7) 

ClW;J 

Solving this difference equation derives the updating rule from equation 4. 

" . oE 
w" = a I:(1-2a)""'(- Ow ); + (l-2a)"wo (8) 

lal ij 

In this case. however without introduction of other parameters. a is both the learning rate 

2. MOlt tX the wort discussed here has not been previously publilhed but nonetheless has entered into general 
use in many cormectionisl models and wu recently summarized on the COlIMctionist Bw/~tin Board by 
John Kruschke. 
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and related to the decay tenn and must be strictly < ~ for weight decay. 

Unifonn weight decay has a disadvantage in that large weights are decaying at the same 
rate as small weights. It is possible to design biases that influence weights only when 
they are relatively small or even in a particular range of values. For example. Rumelhart 
has entertained a number of biases. one fonn in particular that we will also explore is 
based on a rectangular hyperbolic function. 

w1 

B:: (1+w2) (9) 

It is infonnative to examine the derivative associated with this function in order to 

understand its effect on the weight updates. 

dB 2w 
- dwij ::- (1+w2)1 

(10) 

This derivative is plotted in Figure 2 (indicated as Rumelhart) and is non-monotonic 
showing a strong differential effect on small weights (+ or -) pushing them towards zero. 
while near zero and large weight values are not significantly affected. 

BIAS PER UNIT 

It is possible to consider bias on each hidden unit weight group. This has the potentially 
desirable effect of isolating weight changes to hidden unit weight groups and could 
effectively eliminate hidden units. Consequently. the hidden units are directly 
determining the bias. In order to do this. first define 

w·::~lw··1 
I If..I 'I' (11) 

j 

where i is the ith hidden unit. 

Hyperbolic Bias 

Now consider a function similar to Rumelhart's but this time with Wi, the ith hidden 
group as the variable. 

W· 
B- ' 

- 1 +AWi· 

The new gradient includes the term from the bias which is. 

aB Asgn(wij) 

- dWij = (1 +Wi)2 

Exponential Bias 

A similar kind of bias would be to consider the negative exponential: 

(12) 

(13) 
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(14) 

This bias is similar to the hyperbolic bias tenn as above but involves the exponential 
which potentially produce more unifonn and gradual rate changes towards zero, 

dB sgn(wij) 
--= (15) 

dWij ( e ~Wi) . 

The behavior of these two biases (hyperbolic, exponential) are shown as function of 
weight magnitudes in Figure 2. Notice that the exponential bias term is more similar in 
slope change to RumelharCs (even though his is non-monotonic) than the hyperbolic as 
weight magnitude to a hidden unit increases. 
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Figure 2: Bias function behavior of Rumelharfs, Hyperbolic and Exponential 

Obviously there are many more kinds of bias that one can consider. These two were 
chosen in order to provide a systematic test of varying biases and exploring their 
differential effectiveness in minimizing network complexity. 

SOME COMPARISONS 

Parity 

These biased Back-propagation methods were applied to several counting problems and 
to a speech (digit) recognition problem. In the following graphs for example, we show 
the results of 100 runs of XOR and 4-bit parity at 11 =.1 (learning rate) and ex=.8 
(moving average) starting with 10 hidden units. The parameter A. was optimized for the 
bias runs. 
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Figure 3: Exclusive OR runs for standard, hyperbolic and exponential biasing 

Shown are runs for the standard case without biases, the hyperbolic bias and the 
exponential bias. Once a solution was reached all hidden Wlits were tested individually 
by removing each of them one at a time from the network and then testing on the training 
set Any hidden unit which was unnecessary was removed for data analysis. Only the 
number of these "functional units" are reported in the histograms. Notice the number of 
hidden units decrease with bias runs. An analysis of variance (statistical test) verified 
this improvement for both the hyperbolic and exponential over the standard. Also note 
that the exponential is significandy better than the hyperbolic. This is also confinned for 
the 4-bit parity case as shown in Figure 4. 
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Figure 4: four-bit parity runs for standard. hyperbolic and exponential biasing 
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Speech Recognition 

Samples of 10 spoken digits (0-9) each were collected (same speaker throughout--DJ. 
BUlT kindly supplied data). Samples were then preprocessed using FFTs retaining the 
first 12 Cepstral coefficients. To avoid ceiling effects only two tokens each of the 10 
digits were used for training ("0", "0","1","1", .... "9",.,9., .. ) each network. Eight such 2 
token samples were used for replications. Another set of 50 spoken digits (5 samples of 
each of the 10 digits) were collected for transfer. All runs were matched across methods 
for number ofleaming sweeps «300),11=.05, a=.2, and A=.01 which were optimized for 
the exponential bias. Shown in the following table is the results of the 8 replications for 
the standard and the exponential bias. 

doll COIII&I'IiIlecl{up 1 
IIIIIDIe 1'rInIrer , HIdden Units TrlDafer 'HWcnUnill 

rl 5K II 64~ 10 
r2 6K 11 76~ 13 
r3 62~ 18 64" 14 
1'4 6A 14 74" 14 
d 62~ 16 56 .. 11 
16 c569& 19 68 .. 14 
t7 58" 18 54" 11 
IS sa" 18 64 .. 9 

17%.56 65~ 12.%.71 

Table 1: Eight replications with transfer for standard and exponential bias. 

In this case there appears to both an improvement in the average number of hidden units 
(functional ones) and transfer. A typical correlation of the improved transfer and reduced 
hidden unit usage for a single replication is plotted in the next graph. 
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Figure 5: Transfer as a function of hidden unit usage for a single replication 

We note that introduction of biases decrease the probability of convergence relative to 
the standard case (as many as 75% of the parity runs did not converge within criteria 
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number of sweeps.) Since the search problem is made more difficult by introducing 
biases it now becomes even more important to explore methods for improving 
convergence similar for example. to simulated annealing (Kirkpatrick. Gelatt & Vecchi. 
1983) 

CONCLUSIONS 

Minimal networks were defined and two types of bias were compared in a simple 
counting problem and a speech recognition problem. In the counting problems under 
biasing conditions the number hidden units tended to decrease towards the minimum 
required for the problem although with a concomitant decrease in convergence rate. In 
the speech problem also under biasing conditions the number of hidden units tended to 
decrease as the transfer rate tended to improve. 
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