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ABSTRACT 
We have used analog VLSI technology to model a class of small os­
cillating biological neural circuits known as central pattern gener­
ators (CPG). These circuits generate rhythmic patterns of activity 
which drive locomotor behaviour in the animal. We have designed, 
fabricated, and tested a model neuron circuit which relies on many 
of the same mechanisms as a biological central pattern generator 
neuron, such as delays and internal feedback. We show that this 
neuron can be used to build several small circuits based on known 
biological CPG circuits, and that these circuits produce patterns of 
output which are very similar to the observed biological patterns. 

To date, researchers in applied neural networks have tended to focus on mam­
malian systems as the primary source of potentially useful biological information. 
However, invertebrate systems may represent a source of ideas in many ways more 
appropriate, given current levels of engineering sophistication in building neural-like 
systems, and given the state of biological understanding of mammalian circuits. In­
vertebrate systems are based on orders of magnitude smaller numbers of neurons 
than are mammalian systems. The networks we will consider here, for example, 
are composed of about a dozen neurons, which is well within the demonstrated 
capabilities of current hardware fabrication techniques. Furthermore, since much 
more detailed structural information is available about these systems than for most 
systems in higher animals, insights can be guided by real information rather than by 
guesswork. Finally, even though they are constructed of small numbers of neurons, 
these networks have numerous interesting and potentially even useful properties. 

CENTRAL PATTERN GENERATORS 
Of all the invertebrate neural networks currently being investigated by neurobi­
ologists, the class of networks known as central pattern generators (CPGs) may 
be especially worthy of attention. A CPG is responsible for generating oscillatory 
neural activity that governs specific patterns of motor output, and can generate 
its pattern of activity when isolated from its normal neuronal inputs. This prop-
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erty, which greatly facilitates experiments, has enabled biologists to describe several 
CPGs in detail at the cellular and synaptic level. These networks have been found 
in all animals, but have been extensively studied in invertebrates [Selverston, 1985]. 

We chose to model several small CPG networks using analog VLSI technology. Our 
model differs from most computer simulation models of biological networks [Wilson 
and Bower, in press] in that we did not attempt to model the details of the individual 
ionic currents, nor did we attempt to model each known connection in the networks. 
Rather, our aim was to determine the basic functionality of a set of CPG networks 
by modeling them as the minimum set of connections required to reproduce output 
qualitatively similar to that produced by the real network under certain conditions. 

MODELING CPG NEURONS 

The basic building block for our model is a general purpose CPG neuron circuit. 
This circuit, shown in Figure 1, is our model for a typical neuron found in central 
pattern generators, and contains some of the essential elements of real biological 
neurons. Like real neurons, this model integrates current and uses positive feedback 
to output a train of pulses, or action potentials, whose frequency depends on the 
magnitude of the current input. The part of the circuit which generates these pulses 
is shown in Figure 2a [Mead, 19891. 

The second element in the CPG neuron circuit is the synapse. In Figure 1, each pair 
of transistors functions as a synapse. The p-well transistors are. excitatory synapses, 
whereas the n-well transistors are inhibitory synapses. One of the transistors in the 
pair sets the strength of the synapse, while the other transistor is the input of the 
synapse. Each CPG neuron has four different synapses. 

The third element of our model CPG neuron involves temporal delays. Delays are 
an essential element in the function of CPGs, and biology has evolved many different 
mechanisms to introduce delays into neural networks. The membrane capacitance 
of the cell body, different rates of chemical reactions, and axonal transmission are 
just a few of the mechanisms which have time constants associated with them. In 
our model we have included synaptic delay as the principle source of delay in the 
network. This is modeled as an RC delay, implemented by the follower-integrator 
circuit shown in Figure 2b [Mead, 19891. The time constant of the delay is a function 
of the conductance of the amplifier, set by the bias G. A multiple time constant 
delay line is formed by cascading several of these elements. Our neuron circuit uses 
a delay line with three time constants. The synapses which are before the delay 
element are slow synapses, whereas the undelayed synapses are fa.st synapses. 

We fabricated the circuit shown in Figure 1 using CMOS, VLSI technology. Several 
of these circuits were put on each chip, with all of the inputs and controls going 
out to pads, so that these cells could be externally connected to form the network 
of interest. 
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Figure 1. The CPG neuron circuit. 
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Figure 2. (a). The neuron spike-generating circuit. (b). The follower-integrater 
circuit. Each delay box 0 contains a delay line formed by three follower-integrater 
circuits. 

The Endogenous Bursting Neuron 

One type of cell which has been found to play an important role in many oscilla­
tory circuits is the endogenous bursting neuron. This type of cell has an intrinsic 
oscillatory membrane potential, enabling it to produce bursts of action potentials 
at rhythmic intervals. These cells have been shown to act both as external "pace­
makers" which set the rhythm for the CPG, or as an integral part of a central 
pattern generator. Figure 3a shows the output from a biological endogenous burst­
ing neuron. Figure 3b demonstrates how we can configure our CPG neuron to be 
an endogenous bursting neuron. The delay element in the cell must have three time 
constants in order for this circuit to oscillate stably. Note that in the circuit, the 
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cell has internal negative feedback. Since real neurons don't actually make synaptic 
connections onto themselves, this connection should be thought of as representing 
an internal molecular or ionic mechanism which results in feedback within the cell. 
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Figure 3. (a). The output from the AB cell in the lobster stomatogastric ganglion 
CPG [Eisen and Marder, 1982]. This cell is known to burst endogenously. (b). 
The CPG neuron circuit configured as an endogenous bursting neuron and (c) the 
output from this circuit. 

Postinhibitory Rebound 

A neuron configured to be an endogenous burster also exhibits another property 
common to many neurons, including many CPG neurons. This property, illustrated 
in Figures 4a and 4b, is known as postinhibitory rebound (PIR). Neurons with this 
property display increased excitation for a certain period of time following the 
release of an inhibitory influence. This property is a useful one for central pattern 
generator neurons to have, because it enables patterns of oscillations to be reset 
following the release of inhibition. 
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Figure 4. (a) The output of a ganglion cell of the mudpuppy retina exhibiting 
postinhibitory rebound [Miller and Dacheux, 19761. The bar under the trace indi­
cates the duration of the inhibition. (b) To exhibit PIR in the CPG neuron circuit, 
we inhibit ,the cell with the square pulse shown in (c). When the inhibition is 
released, the circuit outputs a brief burst of pulses. 

MODELING CENTRAL PATTERN GENERATORS 

The Lobster Stomatogastric Ganglion 

The stomatogastric ganglion is a CPG which controls the movement of the teeth 
in the lobster's stomach. This network is relatively complex, and we have only 
modeled the relationships between two of the neurons in the CPG (the PD and LP 
cells) which have a kind of interaction found in many CPGs known as reciprocal 
inhibition (Figure Sa). In this case, each cell inhibits the other, which produces a 
pattern of output in which the cells fire alternatively (Figure Sb). Note that in the 
absence of external input, a mechanism such as postinhibitory rebound must exist 
in order for a cell to begin firing again once it has been released from inhibition. 
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Figure 5. (a) Output from the PD and LP cells in the lobster stomatogastric 
ganglion [Miller and Selverston, 1985]. (c) and (d) demonstrate reciprocal inhibition 
with two CPG neuron circuits. 

The Locust Flight CPG 

A CPG has been shown to play an important role in producing the motor pattern 
for flight in the locust [Robertson and Pearson, 19851. Two of the cells in the CPG, 
the 301 and 501 cells, fire bursts of action potentials as shown in Figure 6a. The 
301 cell is active when the wings of the locust are elevated, whereas the 501 cell is 
active when the wings are depressed. The phase relationship between the two cells 
is very similar to the reciprocal inhibition pattern just discussed, but the circuit 
that produces this pattern is quite different. The connections between these two 
cells are shown in Figure 6b. The 301 cell makes a delayed excitatory connection 
onto the 501 cell, and the 501 cell makes fast inhibitory contact with the 301 cell. 
Therefore, the 301 cell begins to fire, and after some delay, the 501 cell is activated. 
When the 501 cell begins to fire, it immediately shuts off the 301 cell. Since the 501 
cell is no longer receiving excitatory input, it will eventually stop firing, releasing 
the 301 cell from inhibition. The cycle then repeats. This same circuit has been 
reproduced with our model in Figures 6c and 6d. 
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Figure 6. (a) The 301 and 501 cells in the locust flight CPG [Robertson and 
Pearson, 19851. (b) Simultaneous intracellular recordings of 301 and 501 during 
flight. (c) The model circuit and (d) its output. 

The Tritonia Swim CPG 

One of the best studied central pattern generators is the CPG which controls the 
swimming in the small marine mollusc Tritonia. This CPG was studied in great 
detail by Peter Getting and his colleagues at the University of Iowa, and it is one 
of the few biological neural networks for which most of the connections and the 
synaptic parameters are known in detail. Tritonia swims by making alternating 
dorsal and ventral flexions. The dorsal and ventral motor neurons are innervated 
by the DSI and VSI cells, respectively. Shown in Figure 7a and 7b is a simplified 
schematic diagram for the network and the corresponding output. The DSI and VSI 
cells fire out of phase, which is consistent with the alternating nature of the animal's 
swimming motion. The basic circuit consists of reciprocal inhibition between DSI 
and VSI paralleled by delayed excitation via the C2 cell. The DSI and VSI cells 
fire out of phase, and the DSI and C2 cells fire in phase. Swimming is initiated by 
sensory stimuli which feed into DSI and cause it to begin to fire a burst of impulses. 
DSI inhibits VSI, and at the same time excites C2. C2 has excitatory synapses 
on VSIj however, the initial response of VSI neurons is delayed. VSI then fires, 
during which there is inhibition by VSI of C2 and DSI. During this period, VSI no 
longer receives excitatory input from C2, and hence the VSI firing rate declines; 
DSI is therefore released from inhibition, and is ready to fire again to initiate a 
new cycle. Figure 7c and 8 show the model circuit which is identical to the circuit 
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shown in Figure 7a, and the output from this circuit. Note that although the model 
output closely resembles the biological data, there are small differences in the phase 
relationships between the cells which can be accounted for by taking into account 
other connections and delays in the circuit not currently incorporated in our model. 
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Figure 1. (a) Simplified schematic diagram of the Tritonia CPG (which actually 
has 14 cells) and (b) output from the three types of cells in the circuit.(c) The 
model circuit. 
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Figure 8. Output from the circuit shown in Figure 7c. 

CONCLUSIONS 

One may ask why it is interesting to model these systems in analog VLSI, or, for 
that matter, why it is interesting to model invertebrate networks altogether. Analog 
VLSI is a very nice medium for this type of modeling, because in addition to being 
compact, it runs in real time, eliminating the need to wait hours to get the results of 
a simulation. In addition, the electronic circuits rely on the same physical principles 
as neural processes {including gain, delays, and feedback}, allowing us to exploit the 
inherent properties of the medium in which we work rather than having to explicitly 
model them as in a digital simulation. 

Like all models, we hope that this work will help us learn something about the 
systems we are studying. But in addition, although invertebrate neural networks are 
relatively simple and have small numbers of cells, the behaviours of these networks 
and animals can be fairly complex. At the same time, their small size allows us to 
understand how they are engineered in detail. Accordingly, modeling these networks 
allows us to study a well engineered system at the component level-a level of 
modeling not yet possible for more complex mammalian systems, for which detailed 
structural information is scarce. 
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