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PHASE TRANSITIONS IN NEURAL NETWORKS 

Joshua Chover 
University of Wisconsin, Madison, WI 53706 

ABSTRACT 

Various simulat.ions of cort.ical subnetworks have evidenced 
something like phase transitions with respect to key parameters. 
We demonstrate that. such transi t.ions must. indeed exist. in analogous 
infinite array models. For related finite array models classical 
phase transi t .ions (which describe steady-state behavior) may not. 
exist., but. there can be distinct. quali tative changes in 
("metastable") transient behavior as key system parameters pass 
through crit.ical values . 

INTRODUCTION 

Suppose that one st.imulates a neural network - actual or 
simulated - and in some manner records the subsequent firing 
activity of cells. Suppose further that. one repeats the experiment. 
for different. values of some parameter (p) of the system: and that 
one finds a "cri t .ical value" (p) of the parameter, such that. 

c 
(say) for values p > p the act.ivity tends to be much higher than 

c 
it. is for values p < p. Then, by analogy with statist.ical 

c 
mechanics (where, e.g., p may be temperature, with criUcal 
values for boiling and freezing) one can say that. the neural 
network undergoes a "phase transition" at. p. Intracellular phase 

c 
transi t.ions, parametrized by membrane potential, are well mown. 
Here we consider intercellular phase transi t.ions. These have been 
evidenced in several detailed cort.ical simulations: e.g., of the 

1 2 piriform cortex and of the hippocampus In the piriform case, 
the parameter p represented the frequency of high amplitude 
spontaneous EPSPs received by a typical pyramidal cell; in the 
hippocampal case, the parameter was the ratio of inhibitory to 
excitatory cells in the system. 

By what. mechanisms could approach to, and retreat. from, a 
cri t.ical value of some parameter be brought about.? An intriguing 
conjecture is that. neuromodulators can play such a role in certain 

3 networks; temporarily raising or depressing synaptic efficacies 
What. possible interesting consequences could approach to 
criticality have for system performance. Good effects could be 
these: for a network with plasticity, heightened firing response 
to a stimulus can mean faster changes in synaptic efficacies, which 
would bring about. faster memory storage. More and longer activi ty 
could also mean faster access to memory. A bad effect. of 
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near-criticality - depending on other parameters - can be wild, 
epileptiform activity. 
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Phase transitions as they might. relate to neural networks have 
4 been studied by many authors Here, for clarity, we look at. a 

particular category of network models - abstracted from the 
piriform cortex set.ting referred to above - and show the following: 

a) For "elementary" reasons, phase transition would have to 
exist if there were infinitely many cells; and the near-subcrit.ical 
state involves prolonged cellular firing activity in response to an 
ini t.ial stimulation. 

b) Such prolonged firing activity takes place for analogous 
large finite cellular arrays - as evidenced also by computer 
simulat.ions. 

What. we shall be examining is space-time patterns which 
describe the mid-term transient. activity of (Markovian) systems 
that. tend to silence (with high probability) in the long run. 
(There is no reference to energy functions, nor to long-run stable 
firing rates - as such rates would be zero in most. of our cases.) 

In the following models time will proceed in discrete steps. 
(In the more complicated set.tings these will be short. in comparison 
to other time constants, so that. the effect of quant.ization becomes 
smaller.) The parameter p will be the probability that at. any 
given t.ime a given cell will experience a certain amount. of 
exci tatory "spontaneous firing" input.: by itself this amount. will 
be insufficient. to cause the cell to fire, but. in conjunction wi th 
sufficiently many exci tatory inputs from other cells it. can assist. 
in reaching firing threshold. (Other related parameters such as 
average firing threshold value and average efficacy value give 
similar results.) In all the models there is a refractory period 
after a cell fires, during which it cannot fire again; and there 
may be local (shunt. type) inhibition by a firing cell on near 
neighbors as well as on itself - but. there is no long-distance 
inhibi tion. We look first. at. limi ting cases where there are 
infini tely many cells and - classically - phase transi tion appears 
in a sharp form. 

A "SIMPLE" MODEL 

We consider an infinite linear array of similar cells which 
obey the following rules, pictured in Fig. lA: 

(i) If cell k fires at. time n, then it. must. be silent. 
at. t .ime n+l; 

(11) if cell k is silent. at. time n but. both of its 
neighbors k-l and k+l do fire at. time n, then cell k fires 
at. t .ime n+l; 

(iii) if cell k is silent at time n and just one of its 
neighbors (k-l or k+ I) fires at. time n, then ce 11 k wi 11 
fire at t .ime n+l with probability p and not. fire with 
probability l-p, independently of similar decisions at. other 
cells and at. other times. 
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Fig. 1. "Simple model". A: firing rules; cells are represented 
horizontally, time proceeds downwards: filled squares 
denote firing. B: sample development. 

Thus, effecUvely, signal propagat ion speed here is one cell 
per uni t . time, and a cell's firing threshold value is 2 (EPSP 
units). If we sUmulate ~ cell to fire at time n::O, will its 
influence necessarily die out or can it. go on forever? (See 
Fig. lB.) For an answer we note that. in this simple case the 
firing paUern (if any) at. Ume n must. be an alternat.ing stretch 
of firing/silent. cells of some length, call it. L. Moreover, 

n 
2 

L I = L +2 with probability p (when there are sponteneous n+ n 
firing assists on both ends of the stretch), or Ln+l = Ln-2 with 

probability 
stretch), or 

2 
(l-p) (when there is no assist at. either. end of the 

Ln+l = Ln with probability 2p(l-p) (when there is 

an assist. at. just. one end of the stretch). 
Start.ing wi th any fini te al ternating stretch La, the 

successive values L consUtute a "random walk" among the 
n 

nonnegat.ive integers. Intui t.ion and simple analysis5 lead to the 

same conclusion: if the probability for L to decrease «1_p)2) 
n 
2 is greater than that. for it. to increase (p) - i.e. if the average 

step taken by the random walk is negative - then ul t .imately L 
n 

will reach a and the firing response dies out. COntrariwise, if 
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2 2 P ) (l-p) then the L can drift. to even higher values wi th 
n 

positive probability. In Fig. 2A we sketch the probability for 
ultimate die-out as a function of p: and in Fig. 2B, the average 
time until die out. Figs. 2A and B show a classic example of phase 
transition (p = 1/2) for this infinite array. 
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Fig. 2. Critical behavior. A: probability of ultimate die out. (or 
of reaching other traps. in finite array case). 
B: average time until die-out (or for reaching other 
traps). Solid curves refer to an infinite array; dashed, 
to finite arrays. 

MORE mMPLEX MODELS 

For an infinite linear array of cells, as sketched in Fig. 3 . 
we describe now a much more general (and hopefully more realistic) 
set of rules: 

(i') A cell cannot fire, nor receive excitatory inputs. at. 
time n if it has fired at any time during the preceding ~ Hme 

units (refraction and feedback inhibition). 
(11 .) Each cell x has a local "inhibitory neighborhood" 

consisting of a number (j) of cells to its immediate right. and 
left.. The given cell x cannot. fire or receive excitatory inputs 
at Hme n if any other cell y in its inhibi tory neighborhood 
has fired at. any t .ime between t. and t+mI uni ts preceding n, 

where t . is the t .ime it. would take for a message to travel from y 
to x at. a speed of VI cells per unit time. (This rule 

represents local shunt~type inhibition.) 
(iii') Each cell x has an "excitatory neighborhood" 

consisting of a number (e) of cells to the immediate right. and left 
of its inhibitory neighborhood. If a cell y in that. neighborhood 
fires at a certain time. that firing causes a unit impulse to 
travel to cell x at a speed of vE cells per uni t . time. The 

impulse is received at. x subject to rules (i') and (11'). 
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(iv') All cells share a "firing threshold" value 9 and an 
"integraUon Ume constant." s (s < 9). In addition each cell. at. 
each t.ime n and independent ly of other times and other cells. can 
receive a random amount. X of "spontaneous excitatory input.". 

n 
The variable Xn can have a general distribution: however. for 

simplicity we suppose here that. it. assumes only one of two values: 
b or O. with probabilities p and 1-p respecUvely. (We 
suppose that. b <. e. so that. the spontaneous "assist." itself is 
insufficient. for firing.) The above quant.i ties enter into the 
following firing rule: a cell will fire at. time n if it. is not. 
prevented by rules (i') and (ii') and if the total number of inputs 
from other cells. received during the integration "window" last.ing 
between t.imes n-s+1 and n inclusive. plus the assist. X , 

n 
equals or exceeds the threshold 9. 

(The propagat.ion speeds vI and VE and the neighborhoods 

are here given left.-right. syrrmetry merely for ease in exposi tion.) 
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Fig. 3. Message travel in complex model: see text. rules 
(i')-(iv'). 

Wi 11 such a mode 1 d i sp lay phase trans i t i on a t. some cr i t .i cal 
value of the spontaneous firing frequency p? The dependence of 
responses upon the ini t.ial condi tions and upon the various 
parameters is intricate and wi 11 affect. the answer. We briefly 
discuss here conditions under which the answer is again yes. 

(1) For a given configuration of parameters and a given 
ini Ual stimulation (of a stretch of cont.iguous cells) we compare 
the development. of the model's firing response first. to that. of an 
auxil iary "more act.ive" system: Suppose that. L now denotes the 

n 
distance at. t.ime n between the left:- and right.-most cells which 
are either firing or in refractory mode. Because no cell can fire 
wi thout. influence from others and because such influence travels at. 
a given speed, there is a maximal amount. (D) whereby L 1 can 

n+ 
exceed L. 

n There is also a maximum probability Q(p) - which 
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depends on the spontaneous firing parameter p - that. L 1 ~ L n+ n 
(whatever n). 'We can compare L with a random walk "A" n n 
defined so that. An+l = An+D with probability Q(p) and 

An+l = An-1 with probability l-Q(p). At each transition, An is 

more likely to increase than L. Hence L is more likely to die 
n n 

ou t . than A In the many cases where Q(p) tends to zero as p 
n 

does, the average step size of A (viz., DQ(p)+(-I)(I-Q(b») 
n 

wi 11 become negat.ive for p below a "cri tical" value p. Thus, 
a 

as in the "simple" model above, the probability of ultimate die-out 
for the A, hence also for the L of the complex model, will be 

n n 
1 when 0 ~ p < p . 

a 
(2) There will be a phase transition for the complex model if 

its probability of die out. - given the same parameters and initial 
stimulation is in (1) - becomes less than 1 for some p values 
with p < p < 1. Comparison of the complex process with a simpler a 
"less act.ive" process is difficul t . in general. However, there are 
parameter configurat.ions which ul timately can channel all or part. 
of the firing activity into a (space-t.ime) sublat.t .ice analgous to 
that. in Fig. 1. Fig. 4 illustrates such a case. For p 
sufficiently large there is posi tive probabili ty that. the act.ivity 
will not. die out, just as in the "simple" model. 

Fig. 4. Activity on a sublattice. (Parameter values: j=2, e=6, 
MR=2, M1=I, VR=V1=I, 9=3, s=2, and b=I.) Rectangular 

areas indicate refract.ionlinhibi tion: diagonal lines, 
excitatory influence. 
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LARGE FINITE ARRAYS 

Consider now a large finite array of N cells, again as 
sketched in Fig. 3 ; and operating according to rules similar to 
(i')-(iv') above, with suitable modifications near the edges. 
Appropriately encoded, its activity can be described by a (huge) 
Markov transit.ion matrix, and - depending on the initial 

st.imulation - must. tend5 to one of a set. of steady-state 
distribut.ions over firing patterns. For example, (a) if N is 
odd and the rules are those for Fig. I, then extinct.ion is the 
unique steady state, for any p (1 (since the L form a random 

n 
walk with "reflecUng" upper barrier). But, «(3) if N is even 
and the cells are arranged in a ring, then, for any P with 
o < p < 1. both ext.inction and an alternate flip-flop firing 
pat.tern of period 2 are "traps" for the system - wi th relative long 
run probabilities determined by the initial state. See the dashed 
line in Fig. 2A for the extinction probability in the «(3) case, 
and in Fig. 2B for the expected time until hitting a trap in the 

1 (a) case (P(2) and the {(3) case. 

What quali tat.ive properties related to phase transi tion and 
critical p values carryover from the infinite to the finite 
array case? The (a) example above shows that long term activity 
may now be the same for all 0 ( p (1 but. that parameter 
intervals can exist. whose key feature is a particularly large 
expected t .ime before the system hi ts a trap. (Again. the cri tical 
region can depend upon the ini tial st.imulation.) Prior to being 
trapped the system spends its time among many states in a kind of 
"metastable" equilibrium. (We have some preliminary theoretical 
results on this conditional equilibrium and on its relation to the 
infinite array case. See also Ref. 6 concerning time scales for 
which certain corresponding infinite and finite stochastic automata 
systems display similar behavior . ) 

Simulat.ion of models satisfying rules (i' )-( iv') does indeed 
display large changes in length of firing activity corresponding to 
parameter changes near a critical value. See Fig. 5 for a typical 
example: As a function of p, the expected time until the system 
is trapped (for the given parameters) rises approximately linearly 
in the interval .05<p( .12, wi th most. runs resul ting in extinction 
- as is the case in Fig. 5A at. time n=115 (for p=.10). But. for 
p).15 a relatively rigid patterning sets in which leads with high 
probability to very long runs or to traps other than extinction -
as is the case in Fig. 5B (p=.20) where the run is arbitrarity 
truncated at. n=525. (The patterning is highly influenced by the 
large size of the excitatory neighborhoods.) 
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Fig. 5. Space t .ime firing patterns for one configuration of basic 
parameters. (There are 200 cells; j=2, e=178, MR=10, 

M1=9, VR=V1=7, 9=25, s=2, and b=12; 50 are stimulated 

init.ially.) A: p=.10. B: p=.20. 

mNa..USION 

Mechanisms such as neuromodulators, which can (temporarily) 
bring spontaneous firing levels - or synapt.ic efficacies, or 
average firing thresholds, or other similar parameters - to 
near-critical values, can thereby induce large amplification of 
response act.ivi ty to selected stimul i" The repertoire of such 
responses is an important. aspect- of the system's function. 
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