
515

MICROELECTRONIC IMPLEMENTATIONS OF CONNECTIONIST
NEURAL NETWORKS

Stuart Mackie, Hans P. Graf, Daniel B. Schwartz, and John S. Denker

AT&T Bell Labs, Holmdel, NJ 07733

Abstract

In this paper we discuss why special purpose chips are needed for useful
implementations of connectionist neural networks in such applications as pattern
recognition and classification. Three chip designs are described: a hybrid
digital/analog programmable connection matrix, an analog connection matrix with
adjustable connection strengths, and a digital pipe lined best-match chip. The common
feature of the designs is the distribution of arithmetic processing power amongst the
data storage to minimize data movement.

... 0
Q)Q)
,c"C

E~
::::S,....

ZO

1
1

RAMs

••••• /..... Distributed

/ '. '. co mputati on
chips

/
''iiit:::::::;:::::, ••• • • • • ..

Conventional
CPUs

10 3 10 6 10 9
Node Complexity

(No. of Transistors)

Figure 1. A schematic graph of addressable node complexity and size for conventional
computer chips. Memories can contain millions of very simple nodes each
with a very few transistors but with no processing power. CPU chips are
essentially one very complex node. Neural network chips are in the
distributed computation region where chips contain many simple fixed
instruction processors local to data storage. (After Reece and Treleaven 1)

© American Institute of Physics 1988

516

Introduction

It is clear that conventional computers lag far behind organic computers when it
comes to dealing with very large data rates in problems such as computer vision and
speech recognition. Why is this? The reason is that the brain performs a huge number
of operations in parallel whereas in a conventional computer there is a very fast
processor that can perform a variety of instructions very quickly, but operates on only
two pieces of data at a time.

The rest of the many megabytes of RAM is idle during any instruction cycle. The
duty cycle of the processor is close to 100%, but that of the stored data is very close to
zero. If we wish to make better use of the data, we have to distribute processing
power amongst the stored data, in a similar fashion to the brain. Figure 1 illustrates
where distributed computation chips lie in comparison to conventional computer chips
as regard number and complexity of addressable nodes per chip.

In order for a distributed strategy to work, each processing element must be small
in order to accommodate many on a chip, and communication must be local and hard­
wired. Whereas the processing element in a conventional computer may be able to
execute many hundred different operations, in our scheme the processor is hard-wired
to perform just one. This operation should be tailored to some particular application.
In neural network and pattern recognition algorithms, the dot products of an input
vector with a series of stored vectors (referred to as features or memories) is often
required. The general calculation is:

Sum of Products v . F(i) = L v. f..
. J IJ
J

where V is the input vector and F(i) is one of the stored feature vectors. Two
variations of this are of particular interest. In feature extraction, we wish to find all the
features for which the dot product with the input vector is greater than some threshold
T, in which case we say that such features are present in the input vector.

Feature Extraction v . F(i) = L v. f..
. J IJ
J

In pattern classification we wish to find the stored vector that has the largest dot
product with the input vector, and we say that the the input is a member of the class
represented by that feature, or simply that that stored vector is closest to input vector.

Classification max(V. F(i) = LV. f..
. J IJ
J

The chips described here are each designed to perform one or more of the above
functions with an input vector and a number of feature vectors in parallel. The overall
strategy may be summed up as follows: we recognize that in typical pattern recognition
applications, the feature vectors need to be changed infrequently compared to the input

517

vectors, and the calculation that is perfonned is fixed and low-precision, we therefore
distribute simple fixed-instruction processors throughout the data storage area, thus
minimizing the data movement and optimizing the use of silicon. Our ideal is to have
every transistor on the chip doing something useful during every instruction cycle.

Analog Sum-or-Products

U sing an idea slightly reminiscent of synapses and neurons from the brain, in two
of the chips we store elements of features as connections from input wires on which the
elements of the input vectors appear as voltages to summing wires where a sum-of­
products is perfonned. The voltage resulting from the current summing is applied to
the input of an amplifier whose output is then read to determine the result of the
calculation. A schematic arrangement is shown in Figure 2 with the vertical inputs
connected to the horizontal summing wires through resistors chosen such that the
conductance is proportional to the magnitude of the feature element. When both
positive and negative values are required, inverted input lines are also necessary.
Resistor matrices have been fabricated using amorphous silicon connections and metal
linewidths. These were programmed during fabrication by electron beam lithography
to store names using the distributed feedback method described by Hopfield2,3. This
work is described more fully elsewhere.4,5 Hard-wired resistor matrices are very
compact, but also very inflexible. In many applications it is desirable to be able to
reprogram the matrix without having to fabricate a new chip. For this reason, a series
of programmable chips has been designed.

Input lines

Feature 4 -t-----tI----4t---t---f--.---1

Feature 3 -+--4II--I--'--+---+--4~ o
c: -"'C
c:

Feature 2 ~--+-""'-+--4---1~--I -(I)
Feature 1

Figure 2. A schematic arrangement for calculating parallel sum-of-products with a
resistor matrix. Features are stored as connections along summing wires and
the input elements are applied as voltages on the input wires. The voltage
generated by the current summing is thresholded by the amplifer whose
output is read out at the end of the calculation. Feedback connections may be

518

made to give mutual inhibition and allow only one feature amplifier to tum
on, or allow the matrix to be used as a distributed feedback memory.

Programmable Connection Matrix

Figure 3 is a schematic diagram of a programmable connection using the contents of
two RAM cells to control current sinking or sourcing into the summing wire. The
switches are pass transistors and the 'resistors' are transistors with gates connected to
their drains. Current is sourced or sunk if the appropriate RAM cell contains a '1' and
the input Vi is high thus closing both switches in the path. Feature elements can
therefore take on values (a,O,-b) where the values of a and b are determined by the
conductivities of the n- and p-transistors obtained during processing. A matrix with
2916 such connections allowing full interconnection of the inputs and outputs of 54
amplifiers was designed and fabricated in 2.5Jlm CMOS (Figure 4). Each connection
is about 100x100Jlm, the chip is 7x7mm and contains about 75,000 transistors. When

loaded with 49 49-bit features (7x7 kernel), and presented with a 49-bit input vector,
the chip performs 49 dot products in parallel in under 1Jls. This is equivalent to 2.4
billion bit operations/sec. The flexibility of the design allows the chip to be operated in
several modes. The chip was programmed as a distributed feedback memory
(associative memory), but this did not work well because the current sinking capability
of the n-type transistors was 6 times that of the p-types. An associative memory was
implemented by using a 'grandmother cell' representation, where the memories were
stored along the input lines of amplifiers, as for feature extraction, but mutually
inhibitory connections were also made that allowed only one output to tum on. With
10 stored vectors each 40 bits long, the best match was found in 50-600ns, depending
on the data. The circuit can also be programmed to recognize sequences of vectors and
to do error correction when vectors were omitted or wrong vectors were inserted into
the sequences. The details of operation of the chip are described more fully
elsewhere6. This chip has been interfaced to a UNIX minicomputer and is in everyday
use as an accelerator for feature extraction in optical character recognition of hand­
written numerals. The chip speeds up this time consuming calculation by a factor of
more than 1000. The use of the chip enables experiments to be done which would be
too time consuming to simulate.

Experience with this device has led to the design of four new chips, which are
currently being tested. These have no feedback capability and are intended exclusively
for feature extraction. The designs each incorporate new features which are being
tested separately, but all are based on a connection matrix which stores 46 vectors each
96 bits long. The chip will perform a full parallel calculation in lOOns.

519

VDD

~ , Vj

~ Excitatory

Output(!) <:]
Inhibitory

V·

Ivss
J

Figure 3. Schematic diagram of a programmable connection. A current sourcing or
sinking connection is made if a RAM cell contains a '1' and the input Vi is
high. The currents are summed on the input wire of the amplifier.

®1 Pads § Row Decoders
r:--3 Connections
ITII1 Amplifie rs

Figure 4. Programmable connection matrix chip. The chip contains 75,000 transistors
in 7x7mm, and was fabricated using 2.5Jlm design rules.

520

Adaptive Connection Matrix

Many problems require analog depth in the connection strengths, and this is
especially important if the chip is to be used for learning, where small adjustments are
required during training. Typical approaches which use transistors sized in powers of
two to give conductance variability take up an area equivalent to the same number of
minimum sized transistors as the dynamic range, which is expensive in area and
enables only a few connections to be put on a chip. We have designed a fully analog
connection based on a DRAM structure that can be fabricated using conventional
CMOS technology. A schematic of a connection and a connection matrix is shown in
Figure 5. The connection strength is represented by the difference in voltages stored
on two MOS capacitors. The capacitors are 33Jlm on edge and lose about 1 % of their
charge in five minutes at room temperature. The leakage rate can be reduced by three
orders of magnitude by cooling the the capacitors to -50°C and by five orders of
magnitude by cooling to -100°C. The output is a current proportional to the product of
the input voltage and the connection strength. The output currents are summed on a
wire and are sent off chip to external amplifiers. The connection strengths can be
adjusted using transferring charge between the capacitors through a chain of transistors.
The connections strengths may be of either polarity and it is expected that the
connections will have about 7 bits of analog depth. A chip has been designed in
1.25Jlm CMOS containing 1104 connections in an array with 46 inputs and 24 outputs.

Weight update and decay
by shifting charge

.1 ..L 1.. 02 '-1'--,

Input

w (l (01-02)
Output=w*lnput

:or:

Input

... -
1" ..

.4111. 'r" , .

.. '"
......
...... -.... -... -

!
Output through external amplifiers

Figure 5. Analog connection. The connection strength is represented by the difference
in voltages stored on two capacitors. The output is a current proprtional to
the product of the input voltage and the connection strength.

Each connection is 70x240Jlm. The design has been sent to foundry, and testing is
expected to start in April 1988. The chip has been designed to perform a network
calculation in <30ns, i.e., the chip will perform at a rate of 33 billion multiplies/sec. It
can be used simply as a fast analog convolver for feature extraction, or as a learning

521

engine in a gradient descent algorithm using external logic for connection strength
adjustment. Because the inputs and outputs are true analog, larger networks may be
formed by tiling chips, and layered networks may be made by cascading through
amplifiers acting as hidden units.

Digital Classifier Chip

The third design is a digital implementation of a classifier whose architecture is not
a connectionist matrix. It is nearing completion of the design stage, and will be
fabricated using 1.25Jlm CMOS. It calculates the largest five V·P(i) using an all­
digital pipeline of identical processors, each attached to one stored word. Each
processor is also internally pipelined to the extent that no stage contains more than two
gate delays. This is important, since the throughput of the processor is limited by the
speed of the slowest stage. Each processor calculates the Hamming distance (number
of difference bits) between an input word and its stored word, and then compares that
distance with each of the smallest 5 values previously found for that input word. An
updated list of 5 best matches is then passed to the next processor in the pipeline. At
the end of the pipeline the best 5 matches overall are output.

Data Best match list

(1) Features stored in pipeline pipeline

r ing shift register
~ ~

Tag register
~ ~ +

:{ it :i:: it {{ :::::: Ii :::::;::: :::.

f:: Jr }/ ::{ it :r :::::: :mIfl
::t:t if::::: t::}; {}} [,

II:::::I:::::::; ::I:::::::I::;::::::::{;::::::I:;::::: I[HI tm. : ~L!. ~\ .. _-... -t!~[1

/ Pf -- ,
(2) Input and feature
are compared
bit-serially

(3) Accumulator (4) Comparator inserts
dumps distance new match and tag into
into comparison list when better than
register at end old match
of input word

Pig. 6 Schematic of one of the 50 processors in the digital classifier chip. The
Hamming distance of the input vector to the feature vector is calculated, and
if better than one of the five best matches found so far, is inserted into the
match list together with the tag and passed onto the next processor. At the
end of the pipeline the best five matches overall are output

522

The data paths on chip are one bit wide and all calculations are bit serial. This
means that the processing elements and the data paths are compact and maximizes the
number of stored words per chip. The layout of a single processor is shown in
Fig. 6. The features are stored as 128-bit words in 8 16-bit ring shift registers and
associated with each feature is a 14-bit tag or name string that is stored in a static
register. The input vector passes through the chip and is compared bit-by-bit to each
stored vector, whose shift registers are cycled in tum. The total number of bits
difference is summed in an accumulator. After a vector has passed through a processor,
the total Hamming distance is loaded into the comparison register together with the tag.
At this time, the match list for the input vector arrives at the comparator. It is an
ordered list of the 5 lowest Hamming distances found in the pipeline so far, together
with associated tag strings. The distance just calculated is compared bit-serially with
each of the values in the list in turn. If the current distance is smaller than one of the
ones in the list, the output streams of the comparator are switched, having the effect of
inserting the current match and tag into the list and deleting the previous fifth best
match. After the last processor in the pipeline, the list stream contains the best five
distances overall, together with the tags of the stored vectors that generated them. The
data stream and the list stream are loaded into 16-bit wide registers ready for output.
The design enables chips to be connected together to extend the pipeline if more than 50
stored vectors are required. The throughput is constant, irrespective of the number of
chips connected together; only the latency increases as the number of chips increases.

The chip has been designed to operate with an on-chip clock frequency of at least
l00MHz. This high speed is possible because stage sizes are very small and data paths
have been kept short. The computational efficiency is not as high as in the analog chips
because each processor only deals with one bit of stored data at a time. However, the
overall throughput is high because of the high clock speed. Assuming a clock
frequency of l00MHz, the chip will produce a list of 5 best distances with tag strings
every 1.3Jls, with a latency of about 2.5Jls. Even if a thousand chips containing
50,000 stored vectors were pipelined together, the latency would be 2.5ms, low
enough for most real time applications. The chip is expected to perform 5 billion bit
operation/sec.

While it is important to have high clock frequencies on the chip, it is also important
to have them much lower off the chip, since frequencies above 50MHz are hard to deal
on circuit boards. The 16-bit wide communication paths onto and off the chip ensure
that this is not a problem here.

Conclusion

The two approaches discussed here, analog and digital, represent opposites in
computational approach. In one, a single global computation is performed for each
match, in the other many local calculations are done. Both the approaches have their
advantages and it remains to be seen which type of circuit will be more efficient in
applications, and how closely an electronic implementation of a neural network should
resemble the highly interconnected nature of a biolOgical network.

These designs represent some of the first distributed computation chips. They are
characterized by having simple processors distributed amongst data storage. The
operation performed by the processor is tailored to the application. It is interesting to
note some of the reasons why these designs can now be made: minimum linewidths on

523

circuits are now small enough that enough processors can be put on one chip to make
these designs of a useful size, sophisticated design tools are now available that enable a
single person to design and simulate a complete circuit in a matter of months, and
fabrication costs are low enough that highly speculative circuits can be made without
requiring future volume production to offset prototype costs.

We expect a flurry of similar designs in the coming years, with circuits becoming
more and more optimized for particular applications. However, it should be noted that
the impressive speed gain achieved by putting an algorithm into custom silicon can only
be done once. Further gains in speed will be closely tied to mainstream technological
advances in such areas as transistor size reduction and wafer-scale integration. It
remains to be seen what influence these kinds of custom circuits will have in useful
technology since at present their functions cannot even be simulated in reasonable time.
What can be achieved with these circuits is very limited when compared with a three
dimensional, highly complex biological system, but is a vast improvement over
conventional computer architectures.

The authors gratefully acknowledge the contributions made by L.D. Jackel, and
R.E. Howard

References

1 M. Reece and P.C. Treleaven, "Parallel Architectures for Neural Computers", Neural
Computers, R. Eckmiller and C. v.d. Malsburg, eds (Springer-Verlag, Heidelberg,
1988)

2 J.I. Hopfield, Proc. Nat. Acad. Sci. 79.2554 (1982).

3 J.S. Denker, Physica 22D, 216 (1986).

4 R.E. Howard, D.B. Schwartz, J.S. Denker, R.W. Epworth, H.P. Graf, W .E.
Hubbard, L.D. Jackel, B.L. Straughn, and D.M. Tennant, IEEE Trans. Electron
Devices ED-34, 1553, (1987)

5 H.P. Oraf and P. deVegvar, "A CMOS Implementation of a Neural Network
Model", in "Advanced Research in VLSI", Proceedings of the 1987 Stanford
Conference, P. Losleben (ed.), (MIT Press 1987).

6 H.P. Oraf and P. deVegvar, "A CMOS Associative Memory Chip Based on Neural
Networks", Tech. Digest, 1987 IEEE International Solid-State Circuits Conference.

