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ABSTRACT 

The study of distributed memory systems has produced a 
number of models which work well in limited domains. 
However, until recently, the application of such systems to real­
world problems has been difficult because of storage limitations, 
and their inherent architectural (and for serial simulation, 
computational) complexity. Recent development of memories 
with unrestricted storage capacity and economical feedforward 
architectures has opened the way to the application of such 
systems to complex pattern recognition problems. However, 
such problems are sometimes underspecified by the features 
which describe the environment, and thus a significant portion 
of the pattern environment is often non-separable. We will 
review current work on high density memory systems and their 
network implementations. We will discuss a general learning 
algorithm for such high density memories and review its 
application to separable point sets. Finally, we will introduce an 
extension of this method for learning the probability 
distributions of non-separable point sets. 

INTRODUcnON 

Information storage in distributed content addressable 
memories has long been the topic of intense study. Early 
research focused on the development of correlation matrix 
memories 1, 2, 3, 4. Workers in the field found that memories of 
this sort allowed storage of a number of distinct memories no 
larger than the number of dimensions of the input space. 
Further storage beyond this number caused the system to give 
an incorrect output for a memorized input. 
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Recent work on distributed memory systems has focused on 
single layer, recurrent networks. Hopfield 5, 6 introduced a 
method for the analysis of settling of activity in recurrent 
networks. This method defined the network as a dynamical 
system for which a global function called the 'energy' (actually a 
Liapunov function for the autonomous system describing the 
state of the network) could be defined. Hopfield showed that 
flow in state space is always toward the fixed points of the 
dynamical system if the matrix of recurrent connections satisfies 
certain conditions. With this property, Hopfield was able to 
define the fixed points as the sites of memories of network 
acti vity. 

Like its forerunners, the Hopfield network is limited in 
storage capacity. Empirical study of the system found that for 
randomly chosen memories, storage capacity was limited to m ~ 

O.lSN, where m is the number of memories that could be 
accurately recalled, and N is the dimensionality of the network 
(this has since been improved to m ~ N, 7, 8). The degradation of 
memory recall with increased storage density is directly related 
to the proliferation in the state space of unwanted local minima 
which serve as basins of flow. 

UNRESTRICIEn STORAGE DENSITY MEMORIES 

Bachman et al. 9 have studied another relaxation system 
similar in some respects to the Hopfield network. However, in 
contrast to Hopfield, they have focused on defining a dynamical 
system in which the locations of the minima are explicitly 
known. 

In particular, they have chosen a system with a Liapunov 
function given by 

E = -IlL ~ Qj I Il- Xj I - L, 
J 

(1) 

where E is the total 'energy' of the network, Il (0) is a vector 
describing the initial network activity caused by a test pattern, 
and Xj' the site of the jth memory, for m memories in RN. L is a 
parameter related to the network size. Then 1l(0) relaxes to Il(T) 
= Xj for some memory j according to 
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(2) 

This system is isomorphic to the classical electrostatic potential 
between a positive (unit) test charge, and negative charges Qj at 
the sites Xj (for a 3-dimensional input space, and L = 1). The N­
dimensional Coulomb energy function then defines exactly m 
basins of attraction to the fixed points located at the charge sites 
Xj. It can been shown that convergence to the closest distinct 
memory is guaranteed, independent of the number of stored 
memories m, for proper choice of Nand L 9, to. 

Equation 1 shows that each cell receives feedback from the 
network in the form of a scalar 

~ Q-I Jl- x-I- L J J J • 
(3) 

Importantly, this quantity is the same for all cells; it is as if a 
single virtual cell was computing the distance in activity space 
between the current state and stored states. The result of the 
computation is then broadcast to all of the cells in the network. 
A 2-layer feedforward network implementing such a system has 
been described elsewhere 10. 

The connectivity for this architecture is of order m·N, where 
m is the number of stored memories and N is the dimensionality 
of layer 1. This is significant since the addition of a new 
memory m' = m + 1 will change the connectivity by the addition 
of N + 1 connections, whereas in the Hopfield network, addition 
of a new memory requires the addition of 2N + 1 connections. 

An equilibrium feedforward network with similar properties 
has been under investigation for some time 11. This model does 
not employ a relaxation procedure, and thus was not originally 
framed in the language of Liapunov functions. However, it is 
possible to define a similar system if we identify the locations of 
the 'prototypes' of this model as· the locations in state space of 
potentials which satisfy the following conditions 

Ej = -Qj lRo for I j.t - Xj I < Aj (4) 

= 0 for I fl - Xj I > A]. 
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where Ro is a constant. 
This form of potential is often referred to as the 'square-well' 

potential. This potential may be viewed as a limit of the N­
dimensional Coulomb potential, in which the l/R (L = l) well is 
replaced with a square well (for which L » l). Equation 4 
describes an energy landscape which consists of plateaus of zero 
potential outside of wells with flat, zero slope basins. Since the 
landscape has only flat regions separated by discontinuous 
boundaries, the state of the network is always at equilibrium, 
and relaxation does not occur. For this reason, this system has 
been called an equilibrium model. This model, also referred to 
as the Restricted Coulomb Energy (RCE)14 model, shares the 
property of unrestricted storage density. 

LEARNING IN HIGH DENSITY MEMORIES 

A simple learning algorithm for the placement of the wells has 
been described in detail elsewhere 11, 12. 

Figurel: 3-layer feedforward network. Cell i 
computes the quantity IJl - xii and compares 
to internal threshold Ai. 
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Reilly et. al. have employed a three layer feedforward 
network (figure 1) which allows the generalization of a content 
addressable memory to a pattern classification memory. 
Because the locations of the minima are explicitly known in the 
equilibrium model, it is possible to dynamically program the 
energy function for an arbitrary energy landscape. This allows 
the construction of geographies of basins associated with the 
classes constituting the pattern environment. Rapid learning of 
complex, non-linear, disjoint, class regions is possible by this 
method 12, 13. 

LEARNING NON-SEPARABLE CLASS REGIONS 

Previous studies have focused on the acquisition of the 
geography and boundaries of non-linearly separable point sets. 
However, a method by which such high density models can 
acquire the probability distributions of non-separable sets has 
not been described. 

Non-separable sets are defined as point sets in the state 
space of a system which are labelled with multiple class 
affiliations. This can occur because the input space has not 
carried all of the features in the pattern environment, or because 
the pattern set itself is not separable. Points may be degenerate 
with respect to the explicit features of the space, however they 
may have different probability distributions within the 
environment. This structure in the environment is important 
information for the identification of patterns by such memories 
10 the presence of feature space degeneracies. 

We now describe one possible mechanism for the acquisition 
of the probability distribution of non-separable points. It is 
assumed that all points in some region R of the state space of the 
network are the site of events Jl (0, Ci ) which are examples of 
pattern classes C = {C1 , ... , CM }. A basin of attraction, xk( C i ), 

defined by equation 4, is placed at each site fl(O, Ci ) unless 

(5) 

that is, unless a memory at Xj (of the class Ci ) already contains 
fl(O, Ci )· The initial values of Qo and Ro at xk(Ci) are a constant for 
all sites Xj. Thus as events of the classes C1, ... , C M occur at a 
particular site in R, multiple wells are placed at this location. 
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If a well x/ C i) correctly covers an event Jl (0, Ci ), then the 
charge at that site (which defines the depth of the well) is 
incremented by a constant amount ~ Q o. In this manner, the 
region R is covered with wells of all classes {C1 , ... , CM }, with the 
depth of well XiCi) proportional to the frequency of occurence of 
Ci at Xj. 

The architecture of this network is exactly the same as that 
already described. As before, this network acquires a new cell 
for each well placed in the energy landscape. Thus we are able 
to describe the meaning of wells that overlap as the competition 
by multiple cells in layer 2 in firing for the pattern of activity in 
the input layer. 

APPLICATIONS 

This system has been applied to a problem in the area of risk 
assessment in mortgage lending. The input space consisted of 
feature detectors with continuous firing rates proportional to the 
values of 23 variables in the application for a mortgage. For this 
set of features, a significant portion of the space was non­
separable. 

Figures 2a and 2b illustrate the probability distributions of 
high and low risk applications for two of the features. It is clear 
that in this 2-dimensional subspace, the regions of high and low 
risk are non-separable but have different distributions. 

t-----------#llir----- Prob. = 1.0. 
1000 Patterns 

Prob. = 0.5 

0.0 Feature 1 1.0 

Figure 2a: Probability distribution for High 
and Low risk patterns for feature 1. 
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1-----1----\--------- Prob. = 1.0. 
t 000 Patterns 

Prob. = 0.5 

0.0 Feature 2 1.0 

Figure 2b: Probability distribution for High 
and Low risk patterns for feature 2. 

Figure 3 depicts the probability distributions acquired by 
the system for this 2-dimensional subspace. In this image, 
circle radius is proportional to the degree of risk: Small circles 
are regions of low risk, and large circles are regions of high 
risk. 
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Figure 3: Probability distribition for Low and 
High risk. Small circles indicate low risk 
regIons and large circles indicate high risk 
regions. 
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Of particular interest is the clear clustering of high and low risk 
regions in the 2-d map. Note that the regions are in fact non­
linearly separable. 

DISCUSSION 

We have presented a simple method for the acquisition of 
probability distributions in non-separable point sets. This 
method generates an energy landscape of potential wells with 
depths that are proportional to the local probability density of 
the classes of patterns in the environment. These well depths 
set the probability of firing of class cells In a 3-layer 
feedforward network. 

Application of this method to a problem in risk assessment 
has shown that even completely non-separable subspaces may 
be modeled with surprising accuracy. This method improves 
pattern classification in such problems with little additional 
computational burden. 

This algorithm has been run in conjunction with the method 
described by Reilly et. al. II for separable regions. This combined 
system is able to generate non-linear decision surfaces between 
the separable zones, and approximate the probability 
distributions of the non-separable zones in a seemless manner. 
Further discussion of this system will appear in future reports. 

Current work is focused on the development of a more 
general method for modelling the scale of variations in the 
distributions. Sensitivity to this scale suggests that the 
transition from separable to non-separable regions is smooth 
and should not be handled with a 'hard' threshold. 

ACKNOWLEDGEMENTS 

We would like to thank Ed Collins and Sushmito Ghosh for their 
significant contributions to this work through the development 
of the mortgage risk assessment application. 

REFERENCES 

[1] Anderson, J .A.: A simple neural network generating an 
interactive memory. Math. Biosci. 14, 197-220 (1972). 



682 

[2] Cooper, L.N.: A possible organization of animal memory and 
learning. In: Proceedings of the Nobel Symposium on Collective 
Properties of Physical Systems, Lundquist, B., Lundquist, S. 
(eds.). (24), 252-264 London, New York: Academic Press 1973. 
[3] Kohonen, T.: Correlation matrix memories. IEEE Trans. 
Comput. 21, 353-359 (1972). 
[4] Kohonen, T.: Associative memory - a system-theoretical 
approach. Berlin, Heidelberg, New York: Springer 1977. 
[5] Hopfield, J.J.: Neural networks and physical systems with 
emergent collective computational abilities. Proc. Natl. Acad. Sci. 
USA 79, 2554-2558 (April 1982). 
[6] Hopfield, J.J.: Neurons with graded response have collective 
computational properties like those of two-state neurons. Proc. 
Natl. Acad. Sci. USA 81, 2088-3092 (May, 1984). 
[7] Hopfield, J.J., Feinstein, D.I., Palmer, R.G.: 'Unlearning' has a 
stabilizing effect in collective memories. Nature 304, 158-159 
(July 1983). 
[8] Potter, T.W.: Ph.D. Dissertation in advanced technology, 
S.U.N.Y. Binghampton, (unpublished). 
[9] Bachmann, C.M., Cooper, L.N., Dembo, A., Zeitouni, 0.: A 
relaxation model for memory with high density storage. to be 
published in Proc. Nati. Acad. Sci. USA. 
[10] Dembo, A., Zeitouni, 0.: ARO Technical Report, Brown 
University, Center for Neural Science, Pr0vidence, R.I., (1987), 
also submitted to Phys. Rev. A. 
[11] Reilly, D.L., Cooper, L.N., Elbaum, C.: A neural model for 
category learning. BioI. Cybern. 45, 35 -41 (1982). 
[12] Reilly, D.L., Scofield, C., Elbaum, C., Cooper, L.N.: Learning 
system architectures composed of multiple learning modules. to 
appear in Proc. First In1'1. Conf. on Neural Networks (1987). 
[13] Rimey, R., Gouin, P., Scofield, C., Reilly, D.L.: Real-time 3-D 
object classification using a learning system. Intelligent Robots 
and Computer Vision, Proc. SPIE 726 (1986). 
[14] Reilly, D.L., Scofield, C. L., Elbaum, C., Cooper, L.N: Neural 
Networks with low connectivity and unrestricted memory 
storage density. To be published. 


