
794

A 'Neural' Network that Learns to Play Backgammon

G. Tesauro

Center for Complex Systems Research, University of Illinois
at Urbana-Champaign, 508 S. Sixth St., Champaign, IL 61820

T. J. Sejnowski

Biophysics Dept., Johns Hopkins University, Baltimore, MD 21218

ABSTRACT

We describe a class of connectionist networks that have learned to play back­
gammon at an intermediate-to-advanced level. TIle networks were trained by a
supervised learning procedure on a large set of sample positions evaluated by a
human expert. In actual match play against humans and conventional computer
programs, the networks demonstrate substantial ability to generalize on the basis of
expert knowledge. Our study touches on some of the most important issues in net­
work learning theory, including the development of efficient coding schemes and
training procedures, scaling, generalization, the use of real-valued inputs and out­
puts, and techniques for escaping from local minima. Practical applications in
games and other domains are also discussed.

INTRODUCTION

A potentially quite useful testing ground for studying issues of knowledge representation and
learning in networks can be found in the domain of game playing. Board games such as chess, go,
backgammon, and Othello entail considerable sophistication and complexity at the advanced level,
and mastery of expert concepts and strategies often takes years of intense study and practice for
humans. However, the complexities in board games are embedded in relatively "clean" structured
tasks with well-defined rules of play, and well-defined criteria for success and failure. This makes
them amenable to automated play, and in fact most of these games have been exten')ively studied
with conventional computer science techniques. Thus, direct comparisons of the results of network
learning can be made with more conventional approaches.

In this paper, we describe an application of network learning to the game of backgammon.
Backgammon is a difficult board game which appears to be well-suited to neural networks, because
the way in which moves are selected is primarily on the basis of pattern-recognition or "judgemen­
tal" reasoning, as opposed to explicit "look-ahead," or tree-search computations. This is due to
the probabilistic dice rolls in backgammon, which greatly expand the branching factor at each ply in
the search (to over 400 in typical positions).

Our learning procedure is a supervised one 1 that requires a database of positions and moves
that have been evaluated by an expert "teacher." In contrast, in an unsupervised procedure2-4

learning would be based on the consequences of a given move (e.g. , whether it led to a won or lost
position), and explicit teacher instructions would not be required. However, unsupervised learning
procedures thus far have been much less efficient at reaching high levels of performance than super­
vised learning procedures. In part, this advantage of supervised learning can be traced to the higher

© American Institute of Physics 1988

795

quantity and quality of information available from the teacher.

Studying a problem of the scale and complexity of backgammon leads one to confront impor­
tant general issues in network learning. Amongst the most important are scaling and generalization.
Most of the problems that have been examined with connectionist learning algorithms are relatively
small scale and it is not known how well they will perform on much larger problems. Generalization
is a key issue in learning to play backgammon since it is estimated that there are 1020 possible board
positions, which is far in excess of the number of examples that can be provided during training. In
this respect our study is the most severe test of generalization in any connectionist network to date.

We have also identified in this study a novel set of special techniques for training the network
which were necessary to achieve good performance. A training set based on naturally occurring or
random examples was not sufficient to bring the network to an advanced level of performance.
Intelligent data-base design was necessary. Performance also improved when noise was added to
the training procedure under some circumstances. Perhaps the most important factor in the success
of the network was the method of encoding the input information. The best perfonnance was
achieved when the raw input infonnation was encoded in a conceptually significant way, and a cer­
tain number of pre-computed features were added to the raw infonnation. These lessons may also
be useful when connectionist learning algorithms are applied to other difficult large-scale problems.

NElWORK AND DATA BASE SET-UP

Our network is trained to select moves (i.e. to produce a real-valued score for any given
move), rather than to generate them. This avoids the difficulties of having to teach the network the
concept of move legality. Instead, we envision our network operating in tandem with a pre­
processor which would take the board position and roll as input, and produce all legal moves as out­
put. The network would be trained to score each move, and the system would choose the move with
the highest network score. Furthermore, the network is trained to produce relative scores for each
move, rather than an absolute evaluation of each final position. This approach would have greater
sensitivity in distinguishing between close alternatives, and corresponds more closely to the way
humans actually evaluate moves.

The current data base contains a totaJ of 3202 board positions, taken from various sources5•

For each position there is a dice roll and a set of legal moves of that roll from that pOSition. The
moves receive commentary from a human expert in the form of a relative score in the range [-
100,+100), with +100 representing the best possible move and -100 representing the worst possible
move. One of us (G.T.) is a strong backgammon player, and played the role of human expert in
entering these scores. Most of the moves in the data base were not scored, because it is not feasible
for a human expert to comment on all possible moves. (The handling of these unscored lines of
data in the training procedure will be discussed in the following section.)

An important result of our study is that in order to achieve the best perfonnance, the data base
of examples must be intelligently designed, rather than haphazardly accumulated. If one simply
accumulates positions which occur in actual game play, for example, one will find that certain prin­
ciples of play will appear over and over again in these positions, while other important principles
may be used only rarely. This causes problems for the network, as it tends to "overlearn" the com­
monly used principles, and not learn at aJl the rarely used principles. Hence it is necessary to have
both an intelligent selection mechanism to reduce the number of over-represented situations, and an
intelligent design mechanism to enhance the number of examples which illustrate under-represented
situations. This process is described in more detail elsewhere5.

We use a detenninistic, feed-forward network with an input layer, an output layer, and either
one or two layers of hidden units, with full connectivity between adjacent layers. (We have tried a
number of experiments with restricted receptive fields, and generally have not found them to be use­
ful.) Since the desired output of the network is a single real value, only one output unit is required.

796

TIle coding of the input patterns is probably the most difficult and most important design
issue. In its current configuration the input layer contains 459 input units. A location-based
representation scheme is used, in which a certain number of input units are assigned to each of the
26 locations (24 basic plus White and Black bar) on the board. TIle input is inverted if necessary so
that the network always sees a problem in which White is to play.

An example of the coding scheme used until very recently is shown in Fig. I. This is essen­
tially a unary encoding of the number of men at each board location, with a few exceptions as indi­
cated in the diagram. This representation scheme worked fairly well, but had one peculiar problem
in that after training, the network tended to prefer piling large numbers of men on certain points, in
particular White's 5 point (the 20 point in the 1-24 numbering scheme). Fig. 2 illustrates an example
of this peculiar behavior. In this position White is to play 5-1. Most humans would play 4-5,4-9 in
this position; however, the network chose the move 4-9,19-20. This is actually a bad move, because
it reduces White's chances of making further points in his inner board. The fault lies not with the
data base used to train the network, but rather with the representation scheme used. In Fig. I a,
notice that unit 12 is turned on whenever the final position is a point, and the number of men is dif­
ferent from the initial position. For the 20 point in particular, this unit will develop strong excitatory
weights due to cases in which the initial position is not a point (i.e., the move makes the point). The
20 point is such a valuable point to make that the excitation produced by turning unit 12 on might
overwhelm the inhibition produced by the poor distribution of builders.

(0)
~-5 -4 -3 ~-2 -I
o 0 000
I 2 3 4 5

I ~2 3 4 ~5 o • 0 0 0
6 7 8 9 10

o I ~2 3 4 ~5 o 0 • • 0 0
II 12 13 14 15 16

(b)
~-5 -4 -3 5-2 -I o DOD 0

I 234 5

I ~2 3 4 >5 o • DOn
678910

o It I~ ~2t 2~ 3 4 ~5 o 000 0 .00
II 12 13 14 15 16 17 18

Figure 1-- Two schemes used to encode the raw position infonnation in the network's input.
illustrated in each case is the encoding of two White men p~sent befo~ the move, and three
White men p~Jent after the move. (a) An essentiaUy unary coding of the number of men at a
particular board location. Units 1-10 encode the initial position, units 11-16 encode the final
position if the~ has been a change from the initial position. Units are tumed on in the cases
indicated on top of each unit, e.g., unit 1 is turned on if the~ are 5 or more Black men p~sent,
etc .. (b) A superior coding scheme with more units u~ed to characterize the type of transition
from initial to final position. An up arrow indicates an increase in the number of men. a down
arrow indicates a decrease. Units 11-15 have conceptual interpretations: l1="dearing."
12="slotting," 13="b~aking," 14="making," 15="stripping" a point.

12 11 10 9 8 7 6 5 4 321

DO

13 14 15 16 17 18 19 20 21 22 23 24

Figure 2-- A sample position illustrating a defect of the coding scheme in Fig. 1a. White is to
play 5-1. With coding scheme (1a). the network prefers 4-9. 19-20. With coding scheme (lb).
the network prefers 4-9. 4-5. The graphic display was generated on a Sun Microsystems
workstation using the Garnmontool program.

797

In conceptual tenns, humans would say that unit 12 participates in the representation of two
different concepts: the concept of making a point, and the concept of changing the number of men
occupying a made point. These two concepts are unrelated, and there is no point in representing
them with a common input unit. A superior representation scheme in which these concepts are
separated is shown in Fig. 1 b: In this representation unit 13 is turned on only for moves which
make the point. Other moves which change the number of men on an already-made point do not
activate unit 13, and thus do not receive any undeserved excitation. With this representation
scheme the network no longer tends to pile large numbers of men on certain points, and its overall
perfonnance is significantly better.

In addition to this representation of the raw board position, we also utilize a number of input
units to represent certain "pre-computed" features of the raw input. The principal goal of this
study has been to investigate network learning, rather than simply to obtain high perfonnance, and
thus we have resisted the temptation of including sophisticated hand-crafted features in the input
encoding. However, we have found that a few simple features are needed in practice to obtain
minimal standards of competent play. With only' 'raw" board infonnation, the order of the desired
computation (as defined by Minsky and Papert6) is probably quite high, and the number of examples
needed to learn such a difficult computation might be intractably large. By giving the network
"hints" in the fonn of pre-computed features, this reduces the order of the computation, and thus
might make more of the problem learnable in a tractable number of examples.

798

TRAINING AND TESTING PROCEDURES

To train the network, we have used the standard "back-propagation" learning algorithm 7-9

for modifying the connections in a multilayer feed-forward network. (A detailed discussion of
learning parameters, etc., is provided elsewheres.) However, our procedure differs from the stan­
dard procedure due to the necessity of dealing with the large number of uncommented moves in the
data base. One solution would be simply to avoid presenting these moves to the network. However,
this would limit the variety of input patterns presented to the network in training, and certain types
of inputs probably would be eliminated completely. TIle alternative procedure which we have
adopted is to skip the uncommented moves most of the time (75% for ordinary rolls and 92% for
double rolls), and the remainder of the time present the pattern to the network and generate a ran­
dom teacher signal with a slight negative bias. This makes sense, because if a move has not received
comment by the human expert, it is more likely to be a bad move than a good move. The random
teacher signal is chosen uniformly from the interval [-65,+35].

We have used the following four measures to assess the network's performance after it has
been trained: (i) performance on the training data, (ii) perfonnance on a set of test data (1000 posi­
tions) which was not used to train the network, (iii) perfonnance in actual game play against a con­
ventional computer program (the program Gammontool of Sun Microsystems Inc.), and (iv) perfor­
mance in game play against a human expert (G.T.). In the first two measures, we define the perfor­
mance as the fraction of positions in which the network picks the correct move, i.e., those positions
for which the move scored highest by the network agrees with the choice of the human expert. In
the latter two measures, the perfonnance is defined simply as the fraction of games won, without
considering the complications of counting gammons or backgammons.

QUANTITATIVE RESULTS

A summary of our numerical results as measured by perfonnance on the training set and
against Gammontool is presented in Table 1. The best network that we have produced so far
appears to defeat Gammontool nearly 60% of the time. Using this as a benchmark, we find that the
most serious decrease in performance occurs by removing aU pre-computed features from the input
coding. This produces a network which wins at most about 41 % of the time. 'The next most impor­
tant effect is the removal of noise from the training procedure; this results in a network which wins
45% of the time. Next in importance is the presence of hidden units; a network without hidden units
wins about 50% of the games against Gammontool. In contrast, effects such as varying the exact
number of hidden units, the number of layers, or the size of the training set, results in only a few
(1-3) percentage point decrease in the number of games won.

Also included in Table 1 is the result of an interesting experiment in which we removed our
usual set of pre-computed features and substituted instead the individual tenns of the Gammontool
evaluation function. We found that the resulting network, after being trained on our expert training
set, was able to defeat the Gammontool program by a small margin of 54 to 46 percent. 'The purpose
of this experiment was to provide evidence of the usefulness of network learning as an adjunct to
standard AI techniques for hand-crafting evaluation functions. Given a set of features to be used in
an evaluation function which have been designed, for example; by interviewing a human expert, the
problem remains as to how to "tune" these features, i.e., the relative weightings to associate to
each feature, and at an advanced level, the context in which each feature is relevant. Little is known
in general about how to approach this problem, and often the human programmer must resort to
painstaking trial-and-error tuning by hand. We claim that network learning is a powerful, generaJ­
purpose, automated method of approaching this problem, and has the potentiaJ to produce a tuning
which is superior to those produced by humans, given a data base of sufficiently high quality, and a
suitable scheme for encoding the features. The result of our experiment provides evidence to sup­
port this claim, although it is not firmly established since we do not have highly accurate statistics,
and we do not know how much human effort went into the tuning of the Gammontool evaluation

799

function. More conclusive evidence would be provided if the experiment were repeated with a more
sophisticated program such as Berliner's BKO lO, and similar results were obtained.

Network Training Perf. on Perf. va. Comments
sIZe cycles test set Ga.mmontool

(a) 459-24-24-1 20 .540 .59 ± .03
(b) 459-24-1 22 .542 .57 ± .05
(c) 459-24-1 24 .518 . 58 ± .05 1600 posn. D.B .
(d) 459-12-1 10 .538 .54 ± .05

(e) 410-24-12-1 16 .493 .54 ± .03 Gammontool features
(f) 459-1 22 .485 .50 ± .03 No hidden units
(g) 459-24-12-1 10 .499 .45 ± .03 No training noise
(h) 393-24-12-1 12 .488 .41 ± .02 No features

Table 1-- Summary of perfonnance statistics for various networks. (a) The best network we
have produced. containing two layers of hidden units. with 24 units in each layer. (b) A
network with only one layer of 24 hidden units. (c) A network with 24 hidden units in a single
layer, trained on a training set half the nonnal size. (d) A network with half the number of
hidden units as in (b). (e) A network with features from the Gammontool evaluation function
substituted for the nonnal features. (f) A network without hidden units. (g) A network trained
with no noise in the training procedure. (h) A network with only a raw board description as
input.

QUALITATIVE RESULTS

Analysis of the weights produced by training a network is an exceedingly difficult problem,
which we have only been able to approach qualitatively. In Fig. 3 we present a diagram showing the
connection strengths in a network with 651 input units and no hidden units. lbe figure shows the
weights from each input unit to the output unit. (For purposes of illustration, we have shown a cod­
ing scheme with more units than nonnal to explicitly represent the transition from initial to final
position.) Since the weights go directly to the output, the corresponding input units can be clearly
interpreted as having either an overall excitatory or inhibitory effect on the score produced by the
network.

A great deal of columnar structure is apparent in Fig. 3. This indicates that the network has
learned that a particular number of men at a given location, or a particular type of transition at a
given location, is either good or bad independent of the exact location on the board where it occurs.
Furthennore, we can see the importance of each of the pre-computed features in the input coding.
The most significant features seem to be the number of points made in the network's inner board,
and the total blot exposure.

800

features {

roll {

bar
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

ABC 0 E F G H I J K L M N 0 P Q R STU V W

Figure 3-- A Hinton diagram for a network with 651 input units and no hidden units. Small
squares indicate weights from a particular input unit to the output unit. White squares indicate
positive weights, and black squares indicate negative weights. Size of square indicates
magnitude of weight. rust 24 rows from bottom up indicate raw board infonnation. Letting
x=number of men before the move and y=number of men after the move, the interpretations of
columns are as follows: A: x<=-5; B: x=-4; C: x=-3; D: x<=-2; E: x=-I: F: x=l: G: x>=2; H:
x=3: I: x=4: J: x>=5: K: x<1 & y=l; L: x<2 & y>=2: M: x<3 & y=3: N: x<4 & y=4: 0: x<y &
y>=5: P: x=1 & y=O; Q: x>=2 & y=O; R: x>=2 & y=l: S: x>=3 & y=2: T: x>=4 & y=3: U:
x>=5 & y=4: V: x>y & y>=5: W: prob. of a White blot at thi~ location being hit (pre­
computed feature). The next row encodes number of men on White and Blnck bar~. The next
3 rows encode roll infonnation. Remaining rows encode various pre-computed feature~.

Much insight into the basis for the network's judgement of various moves has been gained by
actually playing games against it. In fact, one of the most revealing tests of what the network has
and has not learned came from a 20-game match played by G.T. against one of the latest generation
of networks with 48 hidden units. (A detailed description of the match is given in Ref. II.) The
surprising result of this match was that the network actually won, 11 games to 9. However, a

801

detailed analysis of the moves played by the network during the match indicates that the network
was extremely lucky to have won so many games, and could not reasonably be expected to continue
to do so well over a large number of games. Out of the 20 games played, there were 11 in which
the network did not make any serious mistakes. The network won 6 out of these 11 games, a result
which is quite reasonable. However, in 9 of the 20 games, the network made one or more serious
(i.e. potentially fatal) "blunders." The seriousness of these mistakes would be equivalently to drop­
ping a piece in chess. Such a mistake is nearly always fatal in chess against a good opponent; how­
ever in backgammon there are still chances due to the element of luck involved. In the 9 games in
which the network blundered, it did manage to survive and win 5 of the games due to the element of
luck. (We are assuming that the mistakes made by the human, if any, were only minor mistakes.) It
is highly unlikely that this sort of result would be repeated. A much more likely result would be that
the network would win only one or two of the games in which it made a serious error. This would
put the network's expected perfonnance against expert or near-expert humans at about the 35-40%
level. (This has also been confinned in play against other networks.)

We find that the network does act as if it has picked up many of the global concepts and stra­
tegies of advanced play. The network has also learned many important tactical elements of play at
the advanced level. As for the specific kinds of mistakes made by the network, we find that they are
not at all random, senseless mistakes, but instead fall into clear, well-defined conceptual categories,
and furthennore, one can understand the reasons why these categories of mistakes are made. We do
not have space here to describe these in detail, and refer the reader instead to Ref. 5.

To summarize, qualitative analysis of the network's play indicates that it has learned many
important strategies and tactics of advanced backgammon. This gives the network very good overall
perfonnance in typical positions. However, the network's worst case perfonnance leaves a great
deal to be desired. The network is capable of making both serious, obvious, "blunders," as well
more subtle mistakes, in many different types of positions. Worst case perfonnance is important,
because the network must make long sequences of moves throughout the course of a game without
any serious mistakes in order to have a reasonable chance of winning against a skilled opponent.
The prospects for improving the network's worst case perfonnance appear to be mixed. It seems
quite likely that many of the current "blunders" can be fixed with a reasonable number of hand­
crafted examples added to the training set. However, many of the subtle mistakes are due to a lack
of very sophisticated knowledge, such as the notion of timing. It is difficult to imagine that this kind
of knowledge could be imparted to the network in only a few examples. Probably what is required is
either an intractably large number of examples, or a major overhaul in either the pre-computed
features or the training paradigm.

DISCUSSION

We have seen from both quantitative and qualitative measures that the network has learned a
great deal about the general principles of backgammon play, and has not simply memorized the
individual positions in the training set. Quantitatively, the measure of game perfonnace provides a
clear indication of the network's ability to generalize, because apart from the first couple of moves
at the start of each game, the network must operate entirely on generalization. Qualitatively, one can
see after playing several games against the network that there are certain characteristic kinds of
positions in which it does well, and other kinds of positions in which it systematically makes well­
defined types of mistakes. Due to the network's frequent "blunders," its overall level of play is
only intennediate level, although it probably is somewhat better than the average intennediate-Ievel
player. Against the intennediate-level program Gammontool, our best network wins almost 60% of
the games. However, against a human expert the network would only win about 35-40% of the time.
Thus while the network does not play at expert level, it is sufficiently good to give an expert a hard
time, and with luck in its favor can actually win a match to a small number of games.

Our simple supervised learning approach leaves out some very important sources of

802

infonnation which are readily available to humans. 1be network is never told that the underlying
topological structure of its input space really corresponds to a one-dimensional spatial structure; all
it knows is that the inputs form a 459-dimensional hypercube. It has no idea of the object of the
game, nor of the sense of temporal causality, i.e. the notion that its actions have consequences, and
how those consequences lead to the achievement of the objective. The teacher signal only says
whether a given move is good or bad, without giving any indication as to what the teacher's reasons
are for making such a judgement. Finally, the network is only capable of scoring single moves in
isolation, without any idea of what other moves are available. 1bese sources of knowledge are
essential to the ability of humans to play backgammon well, and it seems likely that some way of
incorporating them into the network learning paradigm will be necessary in order to achieve further
substantial improvements in performance.

111ere are a number of ways in which these additional sources of knowledge might be incor­
porated, and we shall be exploring some of them in future work. For example, knowledge of alter­
native moves could be introduced by defining a more sophisticated error signal which takes into
account not only the network and teacher scores for the current move, but also the network and
teacher scores for other moves from the same position. However, the more immediate plans involve
a continuation of the existing strategies of hand-crafting examples and coding scheme modifications
to eliminate the most serious errors in the network's play. If these errors can be eliminated, and we
are confident that this can be achieved, then the network would become substantially better than any
commercially available program, and would be a serious challenge for human experts. We would
expect 65% performance against Gammontool, and 45% performance against human experts.

Some of the results of our study have implications beyond backgammon to more general
classes of difficult problems. One of the limitations we have found is that substantial human effort
is required both in the design of the coding scheme and in the design of the training set. It is not
sufficient to use a simple coding scheme and random training patterns, and let the automated net­
work learning procedure take care of everything else. We expect this to be generally true when
connectionist learning is applied to difficult problem domains.

On the positive side, we foresee a potential for combining connectionist learning techniques
with conventional AI techniques for hand-crafting knowledge to make significant progress in the
development of intelligent systems. From the practical point of view, network learning can be
viewed as an "enhancer" of traditional techniques, which might produce systems with superior per­
fonnance. For this particular application, the obvious way to combine the two approaches is in the
use of pre-computed features in the input encoding. Any set of hand-crafted features used in a con­
ventional evaluation function could be encoded as discrete or continuous activity levels of input
units which represent the current board state along with the units representing the raw information.
Given a suitable encoding scheme for these features, and a training set of sufficient size and quality
(i.e., the scores in the training set should be better than those of the original evaluation function), it
seems possible that the resulting network could outperform the original evaluation function, as evi­
denced by our experiment with the Gammontool features.

Networlc learning might also hold promise as a means of achieving the long-sought goal of
automated feature discovery2. Our network certainly appears to have learned a great deal of
knowledge from the training set which goes far beyond the amount of knowledge that was explicitJy
encoded in the input features. Some of this knowledge (primarily the lowest level components) is
apparent from the weight diagram when there are no hidden units (Fig. 3). However, much of the
network's knowledge remains inaccessible. What is needed now is a mean'! of disentangling the
novel features discovered by the network from either the patterns of activity in the hidden units, or
from the massive number of connection strengths which characterize the network. This is one our
top priorities for future research, although techniques for such "reverse engineering" of parallel
networlcs are only beginning to be developedl2.

803

ACKNOWLEDGEMrnNTS

lhis work was inspired by a conference on "Evolution, Games and Learning" held at Los
Alamos National Laboratory, May 20-24, 1985. We thank Sun Microsystems Inc. for providing the
source code for their Gammontool program, Hans Berliner for providing some of the po!>itions used
in the data base, Subutai Ahmad for writing the weight display graphics package, Bill Bogstad for
assistance in programming the back-propagation simulator, and Bartlett Mel, Peter Frey, and Scott
Kirkpatrick for critical reviews of the manuscript. G.T. was supponed in part by the National
Center for Supercomputing Applications. TJ.S. was supponed by a NSF Presidential Young Inves­
tigator Award, and by grants from the Seaver Institute and the Lounsbury Foundation.

REFERENCES

1. D. E. Rumelart and J. L. McClelland, eds., Parallel Distributed Processing: Explorations in the
Microstructure o/Cognition, Vols. 1 and 2 (Cambridge: MIT Press, 1986).

2. A. L. Samuel, "Some studies in machine learning using the game of checkers." IBM J. Res.
Dev. 3, 210--229 (1959).

3. J. H. Holland, "Escaping brittleness: the possibilities of general-purpose learning algorithms
applied to parallel rule-based systems." In: R. S. Michalski et aI. (eds.), Machine learning: an
artificial ;ntelligence approach. Vol. II (Los Altos CA: Morgan-Kaufman, 1986).

4. R. S. Sutton, "Learning to predict by the methods of temporal differences," GTE Labs Tech.
Repon TR87-509.1 (1987).

5. G. Tesauro and T. J. Sejnowski, "A parallel network that learns to play backgammon." Univ. of
Illinois at Urbana-Champaign, Center for Complex Systems Research Technical Repon (1987).

6. M. Minsky and S. Papen, Perceptrons (Cambridge: MIT Press, 1969).

7. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back­
propagating errors." Nature 323,533--536 (1986).

8. Y. Le Cun, "A learning procedure for asymmetric network." Proceedings o/Cognitiva (Par;s)
85,599--604 (1985).

9. D. B. Parker, "Learning-logic." MIT Center for Computational Research in Economics and
Management Science Tech. Repon TR-47 (1985).

10. H. Berliner, "Backgammon computer program beats world champion." Artificial Intelligence
14,205--220 (1980).

11. G. Tesauro, "Neural network defeats creator in backgammon match." Univ. of llIinois at
Urbana-Champaign, Center for Complex Systems Research Technical Repon (1987).

12. C. R. Rosenberg, "Revealing the structure of NETtalk's internal representations." Proceedings
of the Ninth Annual Conference of the Cognitive Science Society (Hillsdale, NJ: Lawrence Erlbaum
Associates, 1987).

