
442

Abstract:

How Neural Nets Work
Alan Lapedes
Robert Farber

Theoretical Division
Los Alamos National Laboratory

Los Alamos, NM 87545

There is presently great interest in the abilities of neural networks to mimic
"qualitative reasoning" by manipulating neural incodings of symbols. Less work
has been performed on using neural networks to process floating point numbers
and it is sometimes stated that neural networks are somehow inherently inaccu
rate and therefore best suited for "fuzzy" qualitative reasoning. Nevertheless,
the potential speed of massively parallel operations make neural net "number
crunching" an interesting topic to explore. In this paper we discuss some of our
work in which we demonstrate that for certain applications neural networks can
achieve significantly higher numerical accuracy than more conventional tech
niques. In particular, prediction of future values of a chaotic time series can
be performed with exceptionally high accuracy. We analyze how a neural net
is able to do this , and in the process show that a large class of functions from
Rn. ~ Rffl may be accurately approximated by a backpropagation neural net
with just two "hidden" layers. The network uses this functional approximation
to perform either interpolation (signal processing applications) or extrapolation
(symbol processing applicationsJ. Neural nets therefore use quite familiar meth
ods to perform. their tasks. The geometrical viewpoint advocated here seems to
be a useful approach to analyzing neural network operation and relates neural
networks to well studied topics in functional approximation.
1. Introduction

Although a great deal of interest has been displayed in neural network's
capabilities to perform a kind of qualitative reasoning, relatively little work has
been done on the ability of neural networks to process floating point numbers
in a massively parallel fashion. Clearly, this is an important ability. In this
paper we discuss some of our work in this area and show the relation between
numerical, and symbolic processing. We will concentrate on the the subject of
accurate prediction in a time series. Accurate prediction has applications in
many areas of signal processing. It is also a useful, and fascinating ability, when
dealing with natural, physical systems. Given some .data from the past history
of a system, can one accurately predict what it will do in the future?

Many conventional signal processing tests, such as correlation function anal
ysis, cannot distinguish deterministic chaotic behavior from from stochastic
noise. Particularly difficult systems to predict are those that are nonlinear and
chaotic. Chaos has a technical definition based on nonlinear, dynamical systems
theory, but intuitivly means that the system is deterministic but "random," in
a rather similar manner to deterministic, pseudo random number generators
used on conventional computers. Examples of chaotic systems in nature include
turbulence in fluids (D. Ruelle, 1971; H. Swinney, 1978), chemical reactions (K.
Tomita, 1979), lasers (H. Haken, 1975), plasma physics (D. Russel, 1980) to
name but a few. Typically, chaotic systems also display the full range of non
linear behavior (fixed points, limit cycles etc.) when parameters are varied, and
therefore provide a good testbed in which to investigate techniques of nonlinear
signal processing. Clearly, if one can uncover the underlying, deterministic al
gorithm from a chaotic time series, then one may be able to predict the future
time series quite accurately,

© American Institute of Physics 1988

443

In this paper we review and extend our work (Lapedes and Farber ,1987)
on predicting the behavior of a particular dynamical system, the Glass-Mackey
equation. We feel that the method will be fairly general, and use the Glass
Mackey equation solely for illustrative purposes. The Glass-Mackey equation
has a strange attractor with fractal dimension controlled by a constant param
eter appearing in the differential equation. We present results on a neural net
work's ability to predict this system at two values of this parameter, one value
corresponding to the onset of chaos, and the other value deeply in the chaotic
regime. We also present the results of more conventional predictive methods and
show that a neural net is able to achieve significantly better numerical accuracy.
This particular system was chosen because of D. Farmer's and J. Sidorowich's
(D. Farmer, J . Sidorowich, 1987) use of it in developing a new, non-neural net
method for predicting chaos. The accuracy of this non-neural net method, and
the neural net method, are roughly equivalent, with various advantages or dis
advantages accruing to one method or the other depending on one's point of
view. We are happy to acknowledge many valuable discussions with Farmer and
Sidorowich that has led to further improvements in each method.

We also show that a neural net never needs more than two hidden layers to
solve most problems. This statement arises from a more general argument that
a neural net can approximate functions from Rn. -+ Rm with only two hidden
layers, and that the accuracy of the approximation is controlled by the number
of neurons in each layer. The argument assumes that the global minimum to the
backpropagation minimization problem may be found, or that a local minima
very close in value to the global minimum may be found. This seems to be
the case in the examples we considered, and in many examples considered by
other researchers, but is never guaranteed. The conclusion of an upper bound
of two hidden layers is related to a similar conclusion of R. Lipman (R. Lipman,
1987) who has previously analyzed the number of hidden layers needed to form
arbitrary decision regions for symbolic processing problems. Related issues are
discussed by J. Denker (J. Denker et.al. 1987) It is easy to extend the argument
to draw similar conclusions about an upper bound of two hidden layers for
symbol processing and to place signal processing, and symbol processing in a
common theoretical framework.
2. Backpropagation

Backpropagation is a learning algorithm for neural networks that seeks to
find weights, T ij, such that given an input pattern from a training set of pairs
of Input/Output patterns, the network will produce the Output of the training
set given the Input. Having learned this mapping between I and 0 for the
training set, one then applies a new, previously unseen Input, and takes the
Output as the "conclusion" drawn by the neural net based on having learned
fundamental relationships between Input and Output from the training set. A
popular configuration for backpropagation is a totally feedforward net (Figure
1) where Input feeds up through "hidden layers" to an Output layer.

444

OUTPUT

Figure 1.
A feedforward neural
net. Arrows schemat
ically indicate full
feedforward connect
ivity

Each neuron forms a weighted sum of the inputs from previous layers to
which it is connected, adds a threshold value, and produces a nonlinear function
of this sum as its output value. This output value serves as input to the future
layers to which the neuron is connected, and the process is repeated. Ultimately
a value is produced for the outputs of the neurons in the Output layer. Thus,
each neuron performs:

(1)

where Tii are continuous valued, positive or negative weights, 9. is a constant,
and g(x) is a nonlinear function that is often chosen to be of a sigmoidal form.
For example, one may choose

1
g(z) = 2" (1 + tanhz) (2)

where tanh is the hyperbolic tangent, although the exact formula of the sigmoid
is irrelevant to the results.
If t!") are the target output values for the pth Input pattern then ones trains
the network by minimizing

E = L L (t~P) - o!P)) 2 (3)
p i

where t~p) is the target output values (taken from the training set) and O~pl
is the output of the network when the pth Input pattern of the training set is
presented on the Input layer. i indexes the number of neurons in the Output
layer.

An iterative procedure is used to minimize S. For example, the commonly
used steepest descents procedure is implemented by changing Tii and S, by AT'i
and AS, where

aE
~T. .. = --'E

'1 aT. ..
'1

445

(4a)

(4b)

This implies that ~E < 0 and hence E will decrease to a local minimum.
Use o~ the chain .rule and definition of some intermediate quantities allows the
followmg expressIons for ~Tij to be obtained (Rumelhart, 1987):

~Tij = L E6lp)o~.p)
p

where

if i is labeling a neuron in the Output layer; and

6Jp) = O!p) (1 - o~p») LTi j 6;p)
j

(Sa)

(Sb)

(6)

(7)

if i labels a neuron in the hidden layers. Therefore one computes 6Jp) for the

Output layer first, then uses Eqn. (7) to computer 6ip) for the hidden layers,
and finally uses Eqn. (S) to make an adjustment to the weights. We remark that
the steepest descents procedure in common use is extremely slow in simulation,
and that a better minimization procedure, such as the classic conjugate gradient
procedure (W. Press, 1986), can offer quite significant speedups. Many appli
cations use bit representations (0,1) for symbols, and attempt to have a neural
net learn fundamental relationships between the symbols. This procedure has
been successfully used in converting text to speech (T. Sejnowski, 1986) and in
determining whether a given fragment of DNA codes for a protein or not (A.
Lapedes, R. Farber, 1987).

There is no fundamental reason, however, to use integer's as values for Input
and Output. If the Inputs and Outputs are instead a collection of floating point
numbers, then the network, after training, yields a specific continuous function
in n variables (for n inputs) involving g(x) (Le. hyperbolic tanh's) that provides
a type of nonlinear, least mean square interpolant formula for the discrete set
of data points in the training set. Use of this formula a = 1(11, 1", ... 1'1)
when given a new input not in the training set, is then either interpolation or
extrapolation.

Since the Output values, when assumed to be floating point numbers may
have a dynamic range great than 10,1\, one may modify the g(x) on the Output
layer to be a linear function, instead of sigmoidal, so as to encompass the larger
dynamic range. Dynamic range of the Input values is not so critical, however we
have found that numerical problems may be avoided by scaling the Inputs (and

446

also the Outputs) to [0,1], training the network, and then rescaling the Ti;, (J,
to encompass the original dynamic range. The point is that scale changes in
I and 0 may, for feedforward networks, always be absorbed in the T ijJ (J, and
vice versa. We use this procedure (backpropagation, conjugate gradient, linear
outputs and scaling) in the following section to predict points in a chaotic time
series.
3. Prediction

Let us consider situations in Nature where a system is described by nonlin
ear differential equations. This is faily generic. We choose a particular nonlinear
equation that has an infinite dimensional phase space, so that it is similar to
other infinite dimensional systems such as partial differential equations. A differ
ential equation with an infinite dimensional phase space (i.e. an infinite number
of values are necessary to describe the initial condition) is a delay, differential
equation. We choose to consider the time series generated by the Glass-Mackey
equation:

X= az(t - 1') b t
1 + Z 10 (t _ 1') - Z ()

(8)

This is a nonlinear differential, delay equation with an initial condition specified
by an initial function defined over a strip of width l' (hence the infinite di
mensional phase space i.e. initial functions, not initial constants are required).
Choosing this function to be a constant function, and a = .2, b = .1, and l' = 17
yields a time series, x(t), (obtained by integrating Eqn. (8)), that is chaotic with
a fractal attractor of dimension 2.1. Increasing l' to 30 yields more complicated
evolution and a fractal dimension of 3.5. The time series for 500 time steps for
1'=30 (time in units of 1') is plotted in Figure 2. The nonlinear evolution of the
system collapses the infinite dimensional phase space down to a low (approxi
mately 2 or 3 dimensional) fractal, attracting set. Similar chaotic systems are
not uncommon in Nature.

Figure 2. Example time series at tau ~ 30.

447

The goal is to take a set of values of xO at discrete times in some time
window containing times less than t, and use the values to accurately predict
x(t + P), where P is some prediction time step into the future. One may fix
P, collect statistics on accuracy for many prediction times t (by sliding the
window along the time series), and then increase P and again collect statistics
on accuracy. This one may observe how an average index of accuracy changes as
P is increased. In terms of Figure 2 we will select various prediction time steps,
P, that correspond to attempting to predict within a "bump," to predicting
a couple of "bumps" ahead. The fundamental nature of chaos dictates that
prediction accuracy will decrease as P is increased. This is due to inescapable
inaccuracies of finite precision in specifying the x(t) at discrete times in the past
that are used for predicting the future. Thus, all predictive methods will degrade
as P is increased - the question is "How rapidly does the error increase with
P?" We will demonstrate that the neural net method can be orders of magnitude
more accurate than conventional methods at large prediction time steps, P.

Our goal is to use backpropagation, and a neural net, to construct a function

O(t + P) = f (11(t), 12(t - A) ... lm(t - mA)) (9)

where O(t + P) is the output of a single neuron in the Output layer, and 11 ~ 1m
are input neurons that take on values z(t), z(t - A) ... z(t - rnA), where A is
a time delay. O(t + P) takes on the value x(t + P). We chose the network
configuation of Figure 1.

We construct a training set by selecting a set of input values:

(10)

1m = x(tp - rnA)

with associated output values 0 = x(tp + P), for a collection of discrete times
that are labelled by tp. Typically we used 500 I/O pairs in the training set
so that p ranged from 1~ 500. Thus we have a collection of 500 sets of
{lip), l~p), ... , 1::); O(p)} to use in training the neural net. This procedure of
using delayed sampled values of x{t) can be implemented by using tapped de
lay lines, just as is normally done in linear signal processing applications, (B.
Widrow, 1985). Our prediction procedure is a straightforward nonlinear exten
sion of the linear Widrow Hoff algorithm. After training is completed, prediction
is performed on a new set of times, t p, not in the training set i.e. for p = 500.

We have not yet specified what m or A should be, nor given any indication
why a formula like Eqn. (9) should work at all. An important theorem of Takens
(Takens, 1981) states that for flows evolving to compact attracting manifolds of
dimension d.A" that a functional relation like Eqn. (9) does exist, and that m
lies in the range d.A, < m + 1 < 2d.A, + 1. We therefore choose m = 4, for T = 30.
Takens provides no information on A and we chose A = 6 for both cases. We
found that a few different choices of m and A can affect accuracy by a factor of 2 -
a somewhat significant but not overwhelming sensitivity, in view of the fact that
neural nets tend to be orders of magnitude more accurate than other methods.
Takens theorem gives no information on the form of fO in Eqn. (9). It therefore

448

is necessary to show that neural nets provide a robust approximating procedure
for continuous fO, which we do in the following section. It is interesting to note
that attempts to predict future values of a time series using past values of x(t)
from a tapped delay line is a common procedUre in signal processing, and yet
there is little, if any, reference to results of nonlinear dynamical systems theory
showing why any such attempt is reasonable.

After trainin, the neural net as described above, we used it to predict 500
new values of x(tJ in the future and computed the average accuracy for these
points. The accuracy is defined to be the average root mean square error, divided
by a constant scale factor, which we took to be the standard deviation of the
data. It is necessary to remove the scale dependence of the data and dividing by
the standard deviation of the data provides a scale to use. Thus the resulting
"index of accuracy" is insensitive to the dynamic range of x(t).

As just described, if one wanted to use a neural net to continuously predict
x(t) values at, say, 6 time steps past the last observed value (i.e. wanted to
construct a net predicting x(t + 6)) then one would train one network, at P
= 6, to do this. If one wanted to always predict 12 time steps past the last
observed x(t) then a separate, P = 12, net would have to be trained. We, in
fact, trained separate networks for P ranging between 6 and 100 in steps of 6.
The index of accuracy for these networks (as obtained by computing the index
of accuracy in the prediction phase) is plotted as curve D in Figure 3. There
is however an alternate way to predict. If one wished to predict, say, x(t + 12)
using a P = 6 net, then one can iterate the P = 6 net. That is, one uses the
P = 6 net to predict the x(t +6) values, and then feeds x(t +6) back into the
input line to predict x(t + 12) using the predicted x(t + 6) value instead of
the observed x(t + 6) value. in fact, one can't use the observed x(t +6) value,
because it hasn't been observed yet - the rule of the game is to use only data
occurring at time t and before, to predict x(t + 12). This procedure corresponds
to iterating the map given by Eqn. (9) to perform prediction at multiples of P.
Of course, the delays, ~, must be chosen commensurate with P.

This iterative method of prediction has potential dangers. Because (in our
example of iterating the P = 6 map) the predicted x(t + 6) is always made
with some error, then this error is compounded in iteration, because predicted,
and not observed values, are used on the input lines. However, one may pre
dict more accurately for smaller P, so it may be the case that choosing a very
accurate small P prediction, and iterating, can ultimately achieve higher accu
racy at the larger P's of interest. This tUrns out to be true, and the iterated
net method is plotted as curve E in Figure 3. It is the best procedure to use.
Curves A,B,C are alternative methods (iterated polynomial, Widrow-Hoff, and
non-iterated polynomial respectively. More information on these conventional
methods is in (Lapedes and Farber, 1987)).

A C
1

1
I,

/'
~ , :

.8 !I:
" :J I / \f I

/ : .' . ,
I / I

I

I .. ,,: I

.6 I
I

~
I
I

~ I
~ I

= I - I
I

.4 ,
I

,
I ,

.2
I

o
o

4. Why It Works

B D

P1-~~ictlon ~~. P (T.U3~ 30)
Figure 3.

449

E

400

Consider writing out explicitly Eqn. (9) for a two hidden layer network
where the output is assumed to be a linear neuron. We consider Input connects
to Hidden Layer 1, Hidden Layer 1 to Hidden Layer 2, and Hidden Layer 2 to
Output, Therefore:

Recall that the output neurons a linear computing element so that only two gOs
occur in formula (11), due to the two nonlinear hidden layers. For ease in later
analysis, let us rewrite this formula as

where

Ot = L TtJcg (SU Mle + Ole) + Ot
Ie tH 2

(12a)

(12b)

450

The T's and (Ps are specific numbers specified by the training algorithm,
so that after training is finished one has a relatively complicated formula (12a,
12b) that expresses the Output value as a specific, known, function of the Input
values:

Ot == 1(117 12," .lm).

A functional relation of this form, when there is only one output, may be
viewed as surface in m + 1 dimensional space, in exactly the same manner
one interprets the formula z == f(x,y) as a two dimensional surface in three

' dimensional space. The general structure of fO as determined by Eqn. (12a,
12b) is in fact quite simple. From Eqn. (12b) we see that one first forms a sum
of gO functions (where gO is s sigmoidal function) and then from Eqn. (12a)
one (orms yet another sum involving gO functions. It may at first be thought
that this special, simple form of fO restricts the type of surface that may be
represented by Ot = f(Ii)' This initial tl.ought is wrong - the special form of
Eqn. (12) is actually a general representation for quite arbitrary surfaces.

To prove that Eqn. (12) is a reasonable representation for surfaces we
first point out that surfaces may be approximated by adding up a series of
"bumps" that are appropriately placed. An example of this occurs in familiar
Fourier analysis, where wave trains of suitable frequency and amplitude are
added together to approximate curves (or surfaces). Each half period of each
wave of fixed wavelength is a "bump," and one adds all the bumps together to
form the approximant. Let us noW see how Eqn. (12) may be interpreted as
adding together bumps of specified heights and positions. First consider SUMk
which is a sum of g() functions. In Figure (4) we plot an example of such a gO
function for the case of two inputs.

Figure 4. A sigmoidal surface.

451

The orientation of this sigmoidal surface is determined by T sit the position by
8;'1 and height by T"'i. Now consider another gO function that occurs in SUM",.
The 8;, of the second gO function is chosen to displace it from the first, the Tii
is chosen so that it has the same orientation as the first, and T "'i is chosen to
have opposite sign to the first. These two g() functions occur in SUM"" and
so to determine their contribution to SUM", we sum them together and plot the
result in Fi ure 5. The result is a ridged surface.

Figure 5. A ridge.

Since our goal is to obtain localized bumps we select another pair of gO functions
in SUMk, add them together to get a ridged surface perpendicular to the first
ridged surface, and then add the two perpendicular ridged surfaces together to
see the contribution to SUMk. The result is plotted in Figure (6).

Figure 6. A pseudo-bump .

452

We see that this almost worked, in so much as one obtains a local maxima by
this procedure. However there are also saddle-like configurations at the corners
which corrupt the bump we were trying to obtain. Note that one way to fix
this is to take g(SUMk + Ok) which will, if Ole is chosen appropriately, depress
the local minima and saddles to zero while simultaneously sending the central
maximum towards 1. The result is plotted in Figure (7) and is the sought after
b~~ __ ___

Figure 7. A bump.

Furthermore, note that the necessary gO function is supplied by Eqn. (12).
Therefore Eqn. (12) is a procedure to obtain localized bumps of arbitrary height
and position. For two inputs, the kth bump is obtained by using four gO func
tions from SUMk (two gO functions for each ridged surface and two ridged
surfaces per bump) and then taking gO of the result in Eqn. (12a). The height
of the kth bump is determined by T tJe in Eqn. (12a) and the k bumps are added
together by that equation as well. The general network architecture which cor
responds to the above procedure of adding two gO functions together to form a
ridge, two perpendicular ridges together to form a pseudo-bump, and the final
gO to form the final bump is represented in Figure (8). To obtain any number
ot bumps one adds more neurons to the hidden layers by repeatedly using the
connectivity of Figure (8) as a template (Le. four neurons per bump in Hidden
Layer 1, and one neuron per bump in HiClden Layer 2).

453

Figure 8. Connectivity needed
to obtain one bump. Add four
more neurons to Hidden layer
1, and one more neuron to
Hidden Layer 2, for each
additional bump.

One never needs more than two layers, or any other type of connectivity
than that already schematically specified by Figure (8). The accuracy of the
approximation depends on the number of bumps, whIch in turn is specified,
by the number of neurons per layer. This result is easily generalized to higher
dimensions (more than two Inputs) where one needs 2m hiddens in the first
hidden layer, and one hidden neuron in the second layer for each bump.

The argument given above also extends to the situation where one is pro-
cessing symbolic information with a neural net. In this situation, the Input
information is coded into bits (say Os and Is) and similarly for the Output. Or,
the Inputs may still be real valued numbers, in which case the binary output
is attempting to group the real valued Inputs into separate classes. To make
the Output values tend toward 0 and lone takes a third and final gO on the
output layer, i.e. each output neuron is represented by g(Ot) where Ot is given
in Eqn. (11) . Recall that up until now we have used hnear neurons on the
output layer. In typical backpropagation examples, one never actually achieves
a hard 0 or 1 on the output layers but achieves instead some value between 0.0
and 1.0. Then typically any value over 0.5 is called 1, and values under 0.5 are
called O. This "postprocessing" step is not really outside the framework of the
network formalism, because it may be performed by merely increasing the slope
of the sigmoidal function on the Output layer. Therefore the only effect of the
third and final gO function used on the Output layer in symbolic information
processing is to pass a hyperplane through the surface we have just been dis
cussing. This plane cuts the surface, forming "decision regions," in which high
values are called 1 and low values are called O. Thus we see that the heart of the
problem is to be able to form surfaces in a general manner, which is then cut
by a hyperplane into general decision regions. We are therefore able to conclude
that the network architecture consisting of just two hidden layers is sufficient for
learning any symbol processing training set. For Boolean symbol mappings one
need not use the second hidden layer to remove the saddles on the bump (c.f.
Fig. 6). The saddles are lower than the central maximum so one may choose
a threshold on the output layer to cut the bump at a point over the saddles to
yield the correct decision region. Whether this representation is a reasonable
one for subsequently achieving good prediction on a prediction set, as opposed
to "memorizing" a training set, is an issue that we address below.

454

We also note that use of Sigma IIi units (Rummelhart, 1986) or high order
correlation nets (Y.-C. Lee, 1987) is an attempt to construct a surface by a
general polynomial expansion, which is then cut by a hyperplane into decision
regions, as in the above. Therefore the essential element of all these neural net
learning algorithms are identical (Le. surface construction), only the particular
method of parameterizing the surface varies from one algorithm to another. This
geometrical viewpoint, which provides a unifying framework for many neural net
algorithms, may provide a useful framework in which to attempt construction
of new algorithms.

Adding together bumps to approximate surfaces is a reasonable procedure
to use when dealing with real valued inputs. It ties in to general approximation
theory (c.f. Fourier series, or better yet, B splines), and can be quite successful
as we have seen. Clearly some economy is gained by giving the neural net bumps
to start with, instead of having the neural net form its own bumps from sigmoids.
One way to do this would be to use multidimensional Gaussian functions with
adjustable parameters.

The situation is somewhat different when processing symbolic (binary val
ued) data. When input symbols are encoded into N bit bit-strings then one has
well defined input values in an N dimensional input space. As shown above, one
can learn the training set of input patterns by appropriately forming and placing
bump surfaces over this space. This is an effective method for memorizing the
training set, but a very poor method for obtaining correct predictions on new
input data. The point is that, in contrast to real valued inputs that come from,
say, a chaotic time series, the input points in symbolic processing problems are
widely separated and the bumps do not add together to form smooth surfaces.
Furthermore, each input bit string is a corner of an 2N vertex hypercube, and
there is no sense in which one corner of a hypercube is surrounded by the other
corners. Thus the commonly used input representation for symbolic processing
problems requires that the neural net extrapolate the surface to make a new
prediction for a new input pattern (i.e. new corner of the hypercube) and not
interpolate, as is commonly the case for real valued inputs. Extrapolation is
a farmore dangerous procedure than interpolation, and in view of the separated
bumps of the training set one might expect on the basis of this argument that
neural nets would fail dismally at symbol processing. This is not the case.

The solution to this apparent conundrum, of course, is that although it is
sufficient for a neural net to learn a symbol processing training set by forming
bumps it is not necessary for it to operate in this manner. The simplest exam
ple of this occurs in the XOR problem. One can implement the input/output
mapping for this problem by duplicating the hidden layer architecture of Figure
(8) appropiately for two bumps (i.e. 8 hid dens in layer 1, 2 hid dens in layer 2).
As discussed above, for Boolean mappings, one can even eliminate the second
hidden layer. However the architecture of Figure (9) will also suffice.

OUTPUT

Figure 9. Connectivity for XOR HIDDEN

INPUT

455

Plotting the output of this network, Figure(9), as a function of the two inputs
yields a ridge orientated to run between (0,1) and (1,0) Figure(lO). Thus a
neural net may learn a symbolic training set without using bumps, and a high
dimensional version of this process takes place in more complex symbol pro
cessing tasks.Ridge/ravine representations of the training data are considerably
more efficient than bumps (less hidden neurons and weights) and the extended
nature of the surface allows reasonable predictions i.e. extrapolations.

5. Conclusion.

Figure 10
XOR surface

(1, 1)

Neural nets, in contrast to popular misconception, are capable of quite
accurate number crunching, with an accuracy for the prediction problem we
considered that exceeds conventional methods by orders of magnitude. Neural
nets work by constructing surfaces in a high dimensional space, and their oper
ation when performing signal processing tasks on real valued inputs, is closely
related to standard methods of functional ,,-pproximation. One does not need
more than two hidden layers for processing real valued input data, and the ac
curacy of the approximation is controlled by the number of neurons per layer,
and not the number of layers. We emphasize that although two layers of hidden
neurons are sufficient they may not be efficient. Multilayer architectures may
provide very efficient networks (in the sense of number of neurons and number
of weights) that can perform accurately and with minimal cost.

Effective prediction for symbolic input data is achieved by a slightly differ
ent method than that used for real value inputs. Instead of forming localized
bumps (which would accurately represent the training data but would not pre
dict well on new inputs) the network can use ridge/ravine like surfaces (and
generalizations thereof) to efficiently represent the scattered input data. While
neural nets generally perform prediction by interpolation for real valued data,
they must perform extrapolation for symbolic data if the usual bit representa
tions are used. An outstanding problem is why do tanh representations seem to
extrapolate well in symbol processing problema? How do other functional bases
do? How does the representation for symbolic inputs affect the ability to extra~
olate? This geometrical viewpoint provides a unifyimt framework for examimr:

456

many neural net algorithms, for suggesting questions about neural net operation,
and for relating current neural net approaches to conventional methods.
Acknowledgment.

We thank Y. C. Lee, J. D. Farmer, and J. Sidorovich for a number of
valuable discussions.

References

C. Barnes, C. Burks, R. Farber, A. Lapedes, K. Sirotkin, "Pattern Recognition
by Neural Nets in Genetic Databases", manuscript in preparation

J. Denker et. al.," Automatic Learning, Rule Extraction,and Generalization",
ATT, Bell Laboratories preprint, 1987

D. Farmer, J.Sidorowich, Phys.Rev. Lett., 59(8), p. 845,1987

H. Haken, Phys. Lett. A53, p77 (1975)

A. Lapedes, R. Farber "Nonlinear Signal Processing Using Neural Networks:
Prediction and System Modelling", LA-UR87-2662,1987

Y.C. Lee, Physica 22D,(1986)

R. Lippman, IEEE ASAP magazine,p.4, 1987

D. Ruelle, F. Takens, Comm. Math. Phys. 20, p167 (1971)

D. Rummelhart, J. McClelland in "Parallel Distributed Processing" Vol. 1,
M.I.T. Press Cambridge, MA (1986)

D. Russel et al., Phys. Rev. Lett. 45, pU75 (1980)

T. Sejnowski et al., "Net Talk: A Parallel Network that Learns to Read Aloud,"
Johns Hopkins Univ. preprint (1986)

H. Swinney et al., Physics Today 31 (8), p41 (1978)

F. Takens, "Detecting Strange Attractor in Turbulence," Lecture Notes in Math
ematics, D. Rand, L. Young (editors), Springer Berlin, p366 (1981)

K. Tomita et aI., J. Stat. Phys. 21, p65 (1979)

