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Abstract

We develop and demonstrate automatic image description methods using a large
captioned photo collection. One contribution is our technique for the automatic
collection of this new dataset — performing a huge number of Flickr queries and
then filtering the noisy results down to 1 million images with associated visually
relevant captions. Such a collection allows us to approach the extremely chal-
lenging problem of description generation using relatively simple non-parametric
methods and produces surprisingly effective results. We also develop methods in-
corporating many state of the art, but fairly noisy, estimates of image content to
produce even more pleasing results. Finally we introduce a new objective perfor-
mance measure for image captioning.

1 Introduction

Producing a relevant and accurate caption for an arbitrary image is an extremely challenging prob-
lem, perhaps nearly as difficult as the underlying general image understanding task. However, there
are already many images with relevant associated descriptive text available in the noisy vastness of
the web. The key is to find the right images and make use of them in the right way! In this paper,
we present a method to effectively skim the top of the image understanding problem to caption pho-
tographs by collecting and utilizing the large body of images on the internet with associated visually
descriptive text. We follow in the footsteps of past work on internet vision that has demonstrated
that big data can often make big problems — e.g. image localization [13], retrieving photos with
specific content [27], or image parsing [26] — much more bite size and amenable to very simple non-
parametric matching methods. In our case, with a large captioned photo collection we can create an
image description surprisingly well even with basic global image representations for retrieval and
caption transfer. In addition, we show that it is possible to make use of large numbers of state of the
art, but fairly noisy estimates of image content to produce more pleasing and relevant results.

People communicate through language, whether written or spoken. They often use this language to
describe the visual world around them. Studying collections of existing natural image descriptions
and how to compose descriptions for novel queries will help advance progress toward more com-
plex human recognition goals, such as how to tell the story behind an image. These goals include
determining what content people judge to be most important in images and what factors they use
to construct natural language to describe imagery. For example, when given a picture like that on
the top row, middle column of figure 1, the user describes the girl, the dog, and their location, but
selectively chooses not to describe the surrounding foliage and hut.

This link between visual importance and descriptions leads naturally to the problem of text sum-
marization in natural language processing (NLP). In text summarization, the goal is to select or
generate a summary for a document. Some of the most common and effective methods proposed for
summarization rely on extractive summarization [25, 22, 28, 19, 23]. where the most important or
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Figure 1: SBU Captioned Photo Dataset: Photographs with user-associated captions from our
web-scale captioned photo collection. We collect a large number of photos from Flickr and filter
them to produce a data collection containing over 1 million well captioned pictures.

relevant sentence (or sentences) is selected from a document to serve as the document’s summary.
Often a variety of features related to document content [23], surface [25], events [19] or feature com-
binations [28] are used in the selection process to produce sentences that reflect the most significant
concepts in the document.

In our photo captioning problem, we would like to generate a caption for a query picture that summa-
rizes the salient image content. We do this by considering a large relevant document set constructed
from related image captions and then use extractive methods to select the best caption(s) for the
image. In this way we implicitly make use of human judgments of content importance during de-
scription generation, by directly transferring human made annotations from one image to another.

This paper presents two extractive approaches for image description generation. The first uses global
image representations to select relevant captions (Sec 3). The second incorporates features derived
from noisy estimates of image content (Sec 5). Of course, the first requirement for any extractive
method is a document from which to extract. Therefore, to enable our approach we build a web-
scale collection of images with associated descriptions (ie captions) to serve as our document for
relevant caption extraction. A key factor to making such a collection effective is to filter it so that
descriptions are likely to refer to visual content. Some small collections of captioned images have
been created by hand in the past. The UTUC Pascal Sentence data set! contains 1k images each of
which is associated with 5 human generated descriptions. The ImageClef? image retrieval challenge
contains 10k images with associated human descriptions. However neither of these collections is
large enough to facilitate reasonable image based matching necessary for our goals, as demonstrated
by our experiments on captioning with varying collection size (Sec 3). In addition this is the first —
to our knowledge — attempt to mine the internet for general captioned images on a web scale!

In summary, our contributions are:

e A large novel data set containing images from the web with associated captions written by
people, filtered so that the descriptions are likely to refer to visual content.

e A description generation method that utilizes global image representations to retrieve and
transfer captions from our data set to a query image.

e A description generation method that utilizes both global representations and direct esti-
mates of image content (objects, actions, stuff, attributes, and scenes) to produce relevant
image descriptions.

1.1 Related Work

Studying the association between words with pictures has been explored in a variety of tasks, in-
cluding: labeling faces in news photographs with associated captions [2], finding a correspondence
between keywords and image regions [1, 6], or for moving beyond objects to mid-level recognition
elements such as attribute [16, 8, 17, 12].

Image description generation in particular has been studied in a few recent papers [9, 11, 15, 30].
Kulkarni et al [15] generate descriptions from scratch based on detected object, attribute, and prepo-
sitional relationships. This results in descriptions for images that are usually closely related to image
content, but that are also often quite verbose and non-humanlike. Yao et al [30] look at the problem

"http://vision.cs.uiuc.edu/pascal-sentences/
“http://www.imageclef.org/2011
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Figure 2: System flow: 1) Input query image, 2) Candidate matched images retrieved from our web-
scale captioned collection using global image representations, 3) High level information is extracted
about image content including objects, attributes, actions, people, stuff, scenes, and tfidf weighting,
4) Images are re-ranked by combining all content estimates, 5) Top 4 resulting captions.

of generating text using various hierarchical knowledge ontologies and with a human in the loop
for image parsing (except in specialized circumstances). Feng and Lapata [11] generate captions
for images using extractive and abstractive generation methods, but assume relevant documents are
provided as input, whereas our generation method requires only an image as input.

A recent approach from Farhadi et al [9] is the most relevant to ours. In this work the authors
produce image descriptions via a retrieval method, by translating both images and text descriptions
to a shared meaning space represented by a single < object, action, scene > tuple. A description
for a query image is produced by retrieving whole image descriptions via this meaning space from
a set of image descriptions (the UIUC Pascal Sentence data set). This results in descriptions that are
very human — since they were written by humans — but which may not be relevant to the specific
image content. This limited relevancy often occurs because of problems of sparsity, both in the data
collection — 1000 images is too few to guarantee similar image matches — and in the representation
— only a few categories for 3 types of image content are considered.

In contrast, we attack the caption generation problem for much more general images (images found
via thousands of Flickr queries compared to 1000 images from Pascal) and a larger set of object
categories (89 vs 20). In addition to extending the object category list considered, we also include
a wider variety of image content aspects, including: non-part based stuff categories, attributes of
objects, person specific action models, and a larger number of common scene classes. We also
generate our descriptions via an extractive method with access to much larger and more general set
of captioned photographs from the web (1 million vs 1 thousand).

2 Overview & Data Collection

Our captioning system proceeds as follows (see fig 2 for illustration): 1) a query image is input to
the captioning system, 2) Candidate match images are retrieved from our web-scale collection of
captioned photographs using global image descriptors, 3) High level information related to image
content, e.g. objects, scenes, etc, is extracted, 4) Images in the match set are re-ranked based on
image content, 5) The best caption(s) is returned for the query. Captions can also be generated after
step 2 from descriptions associated with top globally matched images.

In the rest of the paper, we describe collecting a web-scale data set of captioned images from the
internet (Sec 2.1), caption generation using a global representation (Sec 3), content estimation for
various content types (Sec 4), and finally present an extension to our generation method that incor-
porates content estimates (Sec 5).

2.1 Building a Web-Scale Captioned Collection

One key contribution of our paper is a novel web-scale database of photographs with associated
descriptive text. To enable effective captioning of novel images, this database must be good in two
ways: 1) It must be large so that image based matches to a query are reasonably similar, 2) The
captions associated with the data base photographs must be visually relevant so that transferring
captions between pictures is useful. To achieve the first requirement we query Flickr using a huge
number of pairs of query terms (objects, attributes, actions, stuff, and scenes). This produces a very
large, but noisy initial set of photographs with associated text. To achieve our second requirement
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Figure 3: Size Matters: Example matches to a query image for varying data set sizes.

we filter this set of photos so that the descriptions attached to a picture are relevant and visually
descriptive. To encourage visual descriptiveness in our collection, we select only those images
with descriptions of satisfactory length based on observed lengths in visual descriptions. We also
enforce that retained descriptions contain at least 2 words belonging to our term lists and at least one

prepositional word, e.g. “on”, “under” which often indicate visible spatial relationships.

This results in a final collection of over 1 million images with associated text descriptions — the
SBU Captioned Photo Dataset. These text descriptions generally function in a similar manner to
image captions, and usually directly refer to some aspects of the visual image content (see fig 1 for
examples). Hereafter, we will refer to this web based collection of captioned images as C.

Query Set: We randomly sample 500 images from our collection for evaluation of our generation
methods (exs are shown in fig 1). As is usually the case with web photos, the photos in this set
display a wide range of difficulty for visual recognition algorithms and captioning, from images that
depict scenes (e.g. beaches), to images with a relatively simple depictions (e.g. a horse in a field),
to images with much more complex depictions (e.g. a boy handing out food to a group of people).

3 Global Description Generation

Internet vision papers have demonstrated that if your data set is large enough, some very challenging
problems can be attacked with very simple matching methods [13, 27, 26]. In this spirit, we harness
the power of web photo collections in a non-parametric approach. Given a query image, I,, our goal
is to generate a relevant description. We achieve this by computing the global similarity of a query
image to our large web-collection of captioned images, C'. We find the closest matching image (or
images) and simply transfer over the description from the matching image to the query image. We
also collect the 100 most similar images to a query — our matched set of images I,,, € M — for use
in our our content based description generation method (Sec 5).

For image comparison we utilize two image descriptors. The first descriptor is the well known
gist feature, a global image descriptor related to perceptual dimensions — naturalness, roughness,
ruggedness etc — of scenes. The second descriptor is also a global image descriptor, computed by
resizing the image into a “tiny image”, essentially a thumbnail of size 32x32. This helps us match
not only scene structure, but also the overall color of images. To find visually relevant images we
compute the similarity of the query image to images in C' using a sum of gist similarity and tiny
image color similarity (equally weighted).

Results — Size Matters! Our global caption generation method is illustrated in the first 2 panes
and the first 2 resulting captions of Fig 2. This simple method often performs surprisingly well.
As reflected in past work [13, 27] image retrieval from small collections often produces spurious
matches. This can be seen in Fig 3 where increasing data set size has a significant effect on the
quality of retrieved global matches. Quantitative results also reflect this (see Table 1).

4 Image Content Estimation

Given an initial matched set of images I,,, € M based on global descriptor similarity, we would like
to re-rank the selected captions by incorporating estimates of image content. For a query image, I,
and images in its matched set we extract and compare 5 kinds of image content:

e Objects (e.g. cats or hats), with shape, attributes, and actions — sec 4.1

e Stuff (e.g. grass or water) — sec 4.2



e People (e.g. man), with actions — sec 4.3
e Scenes (e.g. pasture or kitchen) — sec 4.4
o TFIDF weights (text or detector based) — sec 4.5

Each type of content is used to compute the similarity between matched images (and captions) and
the query image. We then rank the matched images (and captions) according to each content measure
and combine their results into an overall relevancy ranking (Sec 5).

4.1 Objects

Detection & Actions: Object detection methods have improved significantly in the last few years,
demonstrating reasonable performance for a small number of object categories [7], or as a mid-level
representation for scene recognition [20]. Running detectors on general web images however, still
produces quite noisy results, usually in the form of a large number of false positive detections. As
the number of object detectors increases this becomes even more of an obstacle to content prediction.
However, we propose that if we have some prior knowledge about the content of an image, then we
can utilize even these imperfect detectors. In our web collection, C|, there are strong indicators of
content in the form of caption words — if an object is described in the text associated with an image
then it is likely to be depicted. Therefore, for the images, I,,, € M, in our matched set we run only
those detectors for objects (or stuff) that are mentioned in the associated caption. In addition, we
also include synonyms and hyponyms for better content coverage, e.g. “dalmatian” triggers “dog”
detector. This produces pleasingly accurate detection results. For a query image we can essentially
perform detection verification against the relatively clean matched image detections.

Specifically, we use mixture of multi-scale deformable part detectors [10] to detect a wide variety of
objects — 89 object categories selected to cover a reasonable range of common objects. These cat-
egories include the 20 Pascal categories, 49 of the most common object categories with reasonably
effective detectors from Object Bank [20], and 20 additional common object categories.

For the 8 animate object categories in our list (e.g. cat, cow, duck) we find that detection performance
can be improved significantly by training action specific detectors, for example “dog sitting” vs
“dog running”. This also aids similarity computation between a query and a matched image because
objects can be matched at an action level. Our object action detectors are trained using the standard
object detector with pose specific training data.

Representation: We represent and compare object detections using 2 kinds of features, shape and
appearance. To represent object shape we use a histogram of HoG [4] visual words, computed at
intervals of 8 pixels and quantized into 1000 visual words. These are accumulated into a spatial
pyramid histogram [18]. We also use an attribute representation to characterize object appearance.
We use the attribute list from our previous work [15] which cover 21 visual aspects describing color
(e.g. blue), texture (e.g. striped), material (e.g. wooden), general appearance (e.g. rusty), and
shape (e.g. rectangular). Training images for the attribute classifiers come from Flickr, Google, the
attribute dataset provided by Farhadi et al [8], and ImageNet [5]. An RBF kernel SVM is used to
learn a classifier for each attribute term. Then appearance characteristics are represented as a vector
of attribute responses to allow for generalization.

If we have detected an object category, ¢, in a query image window, O, and a matched image
window, O,,,, then we compute the probability of an object match as:

P(0;,0,) = & Pel0n0n)

where D,(Oy, O,,) is the Euclidean distance between the object (shape or attribute) vector in the
query detection window and the matched detection window.

4.2 Stuff

In addition to objects, people often describe the stuff present in images, e.g. “grass”. Because these
categories are more amorphous and do not display defined parts, we use a region based classification
method for detection. We train linear SVMs on the low level region features of [8] and histograms
of Geometric Context output probability maps [14] to recognize: sky, road, building, tree, water,
and grass stuff categories. While the low level features are useful for discriminating stuff by their
appearance, the scene layout maps introduce a soft preference for certain spatial locations dependent
on stuff type. Training images and bounding boxes are taken from ImageNet and evaluated at test
time on a coarsely sampled grid of overlapping square regions over whole images. Pixels in any
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Figure 4: Results: Some good captions selected by our system for query images.

region with a classification probability above a fixed threshold are treated as detections, and the max
probability for a region is used as the potential value.

If we have detected a stuff category, s, in a query image region, S, and a matched image region, Sy,,
then we compute the probability of a stuff match as:

P(Sy,Sm) = P(Sy =5)* P(Sy,, = 9)
where P(S, = s) is the SVM probability of the stuff region detection in the query image and
P(S,, = s) is the SVM probability of the stuff region detection in the matched image.

4.3 People & Actions

People often take pictures of people, making “person” the most commonly depicted object category
in captioned images. We utilize effective recent work on pedestrian detectors to detect and represent
people in our images. In particular, we make use of detectors from Bourdev et al [3] which learn
poselets — parts that are tightly clustered in configuration and appearance space — from a large num-
ber of 2d annotated regions on person images in a max-margin framework. To represent activities,
we use follow on work from Maji et al [21] which classifies actions using a the poselet activation
vector. This has been shown to produce accurate activity classifiers for the 9 actions in the PASCAL
VOC 2010 static image action classification challenge [7]. We use the outputs of these 9 classifiers
as our action representation vector, to allow for generalization to other similar activities.

If we have detected a person, P, in a query image, and a person I, in a matched image, we compute
the probability that the people share the same action (pose) as:

P(Py, Pyy) = e~ Pr(ParP)

where D, (P,, P,,) is the Euclidean distance between the person action vector in the query detection
and the person action vector in the matched detection.

4.4 Scenes

The last commonly described kind of image content relates to the general scene where an image was
captured. This often occurs when examining captioned photographs of vacation snapshots or general
outdoor settings, e.g. “my dog at the beach”. To recognize scene types we train discriminative multi-
kernel classifiers using the large-scale SUN scene recognition data base and code [29]. We select
23 common scene categories for our representation, including indoor (e.g. kitchen) outdoor (e.g.
beach), manmade (e.g. highway), and natural (pasture) settings. Again here we represent the scene
descriptor as a vector of scene responses for generalization.

If a scene location, L,,, is mentioned in a matched image, then we compare the scene representation
between our matched image and our query image, L, as:

P(Ly Lyy) = ¢~ Do)

where D;(L,, L,,) is the Euclidean distance between the scene vector computed on the query image
and the scene vector computed on the matched image.
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Figure 5: Funny Results: Some particularly funny or poetic results.

4.5 TFIDF Measures

For a query image, I,, we wish to select the best caption from the matched set, I,,, € M. For all of
the content measures described so far, we have computed the similarity of the query image content
to the content of each matched image independently. We would also like to use information from
the entire matched set of images and associated captions to predict importance. To reflect this, we
calculate TFIDF on our matched sets. This is computed as usual as a product of term frequency (tf)
and inverse document frequency (idf). We calculate this weighting both in the standard sense for
matched caption document words and for detection category frequencies (to compensate for more
prolific object detectors).

nig D]
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We define our matched set of captions (images for detector based tfidf) to be our document, j and
compute the tfidf score where n; ; represents the frequency of term 7 in the matched set of captions
(number of detections for detector based tfidf). The inverse document frequency is computed as
the log of the number of documents |D| divided by the number of documents containing the term 4
(documents with detections of type ¢ for detector based tfidf).

tfidf =

5 Content Based Description Generation

For a query image, I, with global descriptor based matched images, I,,, € M, we want to re-
rank the matched images according to the similarity of their content to the query. We perform this
re-ranking individually for each of our content measures: object shape, object attributes, people
actions, stuff classification, and scene type (Sec 4). We then combine these individual rankings into
a final combined ranking in two ways. The first method trains a linear regression model of feature
ranks against BLEU scores. The second method divides our training set into two classes, positive
images consisting of the top 50% of the training set by BLEU score, and negative images from the
bottom 50%. A linear SVM is trained on this data with feature ranks as input. For both methods we
perform 5 fold cross validation with a split of 400 training images and 100 test images to get average
performance and standard deviation. For a novel query image, we return the captions from the top
ranked image(s) as our result.

For an example matched caption like “The little boy sat in the grass with a ball”, several types of
content will be used to score the goodness of the caption. This will be computed based on words
in the caption for which we have trained content models. For example, for the word “ball” both the
object shape and attributes will be used to compute the best similarity between a ball detection in the
query image and a ball detection in the matched image. For the word “boy” an action descriptor will
be used to compare the activity in which the boy is occupied between the query and the matched
image. For the word “grass” stuff classifications will be used to compare detections between the
query and the matched image. For each word in the caption tfidf overlap (sum of tfidf scores for
the caption) is also used as well as detector based tfidf for those words referring to objects. In the
event that multiple objects (or stuff, people or scenes) are mentioned in a matched image caption the



object (or stuff, people, or scene) based similarity measures will be a sum over the set of described
terms. For the case where a matched image caption contains a word, but there is no corresponding
detection in the query image, the similarity is not incorporated.

Results & Evaluation: Our content based captioning method often produces reasonable results (exs
are shown in Fig 4). Usually results describe the main subject of the photograph (e.g. “Street dog
in Lijiang”, “One monkey on the tree in the Ourika Valley Morocco”). Sometimes they describe
the depiction extremely well (e.g. “Strange cloud formation literally flowing through the sky like a
river...”, “Clock tower against the sky”). Sometimes we even produce good descriptions of attributes
(e.g. “Tree with red leaves in the field in autumn”). Other captions can be quite poetic (Fig 5) —a
picture of a derelict boat captioned “The water the boat was in”, a picture of monstrous tree roots
captioned “Walking the dog in the primeval forest”. Other times the results are quite funny. A
picture of a flimsy wooden structure says, ‘“The tower is the highest building in Hong Kong”. Once
in awhile they are spookily apropos. A picture of a boy in a black bandana is described as “Check
out the face on the kid in the black hat. He looks so enthused.” — and he doesn’t.

We also perform two quantitative evaluations. Several methods have been proposed to evaluate
captioning [15, 9], including direct user ratings of relevance and BLEU score [24]. User rating tends
to suffer from user variance as ratings are inherently subjective. The BLEU score on the other hand
provides a simple objective measure based on n-gram precision. As noted in past work [15], BLEU
is perhaps not an ideal measure due to large variance in human descriptions (human-human BLEU
scores hover around 0.5 [15]). Nevertheless, we report it for comparison.

Method [ BLEU ]
Global Matching (1k) 0.0774 +- 0.0059
Global Matching (10k) 0.0909 +- 0.0070
Global Matching (100k) 0.0917 +- 0.0101
Global Matching (1million) 0.1177 +- 0.0099
Global + Content Matching (linear regression) | 0.1215 +- 0.0071
Global + Content Matching (linear SVM) 0.1259 +- 0.0060

Table 1: Automatic Evaluation: BLEU score measured at 1

As can be seen in Table 1 data set size has a significant effect on BLEU score; more data provides
more similar and relevant matched images (and captions). Local content matching also improves
BLEU score somewhat over purely global matching.

In addition, we propose a new evaluation task where a user is presented with two photographs and
one caption. The user must assign the caption to the most relevant image (care is taken to remove
biases due to placement). For evaluation we use a query image and caption generated by our method.
The other image in the evaluation task is selected at random from the web-collection. This provides
an objective and useful measure to predict caption relevance. As a sanity check of our evaluation
measure we also evaluate how well a user can discriminate between the original ground truth image
that a caption was written about and a random image. We perform this evaluation on 100 images
from our web-collection using Amazon’s mechanical turk service, and find that users are able to
select the ground truth image 96% of the time. This demonstrates that the task is reasonable and that
descriptions from our collection tend to be fairly visually specific and relevant. Considering the top
retrieved caption produced by our final method — global plus local content matching with a linear
SVM classifier — we find that users are able to select the correct image 66.7% of the time. Because
the top caption is not always visually relevant to the query image even when the method is capturing
some information, we also perform an evaluation considering the top 4 captions produced by our
method. In this case, the best caption out of the top 4 is correctly selected 92.7% of the time. This
demonstrates the strength of our content based method to produce relevant captions for images.

6 Conclusion

We have described an effective caption generation method for general web images. This method
relies on collecting and filtering a large data set of images from the internet to produce a novel web-
scale captioned photo collection. We present two variations on our approach, one that uses only
global image descriptors to compose captions, and one that incorporates estimates of image content
for caption generation.
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