






The Jacobian of Fθ clearly has a block-diagonal structure:

J[Fθ](x1, x2) =

(
J[fθ](x1) 0

0 J[fθ](x2)

)
. (19)

This structure implies that relevant computations such as vjps, jvps, and determinants parallelize
over the batch:

(v1, v2)>J[Fθ](x1, x2) =
(
v>1 J[fθ](x1), v>2 J[fθ](x2)

)
(20)

J[Fθ](x1, x2)

(
ε1
ε2

)
=

(
J[fθ](x1)ε1
J[fθ](x2)ε2

)
detJ[Fθ]

>(x1, x2)J[Fθ](x1, x2) = detJ[fθ]
>(x1)J[fθ](x1) detJ[fθ]

>(x2)J[fθ](x2).

In contrast, when using batch normalization, the resulting computation FBNθ (x1, x2) does not have a
block-diagonal Jacobian, and thus this parallelism over the batch breaks down, in other words:

(v1, v2)>J
[
F

(BN)
θ

]
(x1, x2) 6=

(
v>1 J[fθ](x1), v>2 J[fθ](x2)

)
(21)

J
[
FBNθ

]
(x1, x2)

(
ε1
ε2

)
6=
(
J[fθ](x1)ε1
J[fθ](x2)ε2

)
detJ

[
FBNθ

]>
(x1, x2)J

[
FBNθ

]
(x1, x2) 6= detJ[fθ]

>(x1)J[fθ](x1) detJ[fθ]
>(x2)J[fθ](x2),

where the above 6= signs should be interpreted as “not generally equal to” rather than always not
equal to, as equalities could hold coincidentally in rare cases.

In square flow implementations, AD is never used to obtain any of these quantities, and the Jacobian
log determinants are explicitly computed for each element in the batch. In other words, this batch
dependence is ignored in square flows, both in the log determinant computation, and when back-
propagating through it. Elaborating on this point, AD is only used to backpropagate (with respect
to θ) over this explicit computation. If AD was used on FBNθ to construct the matrices and we
then computed the corresponding log determinants, the results would not match with the explicitly
computed log determinants: The latter would be equivalent to using batch normalization with a
stop_gradient operation with respect to (x1, x2) but not with respect to θ, while the former would
use no stop_gradient whatsoever. Unfortunately, this partial stop_gradient operation only with
respect to inputs but not parameters is not available in commonly used AD libraries. While our
custom implementation of jvps can be easily “hard-coded” to have this behaviour, doing so for vjps
would require significant modifications to PyTorch. We note that this is not a fundamental limitation
and that these modifications could be done to obtain vjps that behave as expected with a low-level
re-implementation of batch normalization, but these fall outside of the scope of our paper. Thus, in
the interest of performing computations in a manner that remains consistent with what is commonly
done for square flows and that allows fair comparisons of our exact and stochastic methods, we avoid
using batch normalization.

F FID and FID-like Scores

For a given dataset {x1, . . . , xn} ⊂ RD and a set of samples generated by a model {x(g)1 , . . . , x
(g)
m } ⊂

RD, along with a statistic T : RD → Rr, the empirical means and covariances are given by:

µ̂ :=
1

n

n∑
i=1

T (xi), Σ̂ :=
1

n− 1

n∑
i=1

(T (xi)− µ̂) (T (xi)− µ̂)
> (22)

µ̂(g) :=
1

m

m∑
i=1

T
(
x
(g)
i

)
, Σ̂(g) :=

1

m− 1

m∑
i=1

(
T
(
x
(g)
i

)
− µ̂(g)

)(
T
(
x
(g)
i

)
− µ̂(g)

)>
. (23)

The FID score takes T as the last hidden layer of a pre-trained inception network, and evaluates
generated sample quality by comparing generated moments against data moments. This comparison
is done with the squared Wasserstein-2 distance between Gaussians with corresponding moments,
which is given by: ∣∣∣∣∣∣µ̂− µ̂(g)

∣∣∣∣∣∣2
2

+ tr

(
Σ̂ + Σ̂(g) − 2

(
Σ̂Σ̂(g)

)1/2)
, (24)

18









(a) LW = T, β = 1000, η = 10−3 (b) LW = T, β = 100, η = 10−4 (c) LW = F, β = 10000, η = 10−3

(d) LW = T, β = 10000, η = 10−3 (e) LW = T, β = 100, η = 10−3 (f) LW = F, β = 100, η = 10−4

(g) LW = F, β = 100, η = 10−3 (h) LW = F, β = 1000, η = 10−3 (i) LW = T, β = 10000, η = 10−4

(j) LW = F, β = 1000, η = 10−4 (k) LW = T, β = 1000, η = 10−4 (l) LW = F, β = 10000, η = 10−4

Figure 4: Runs of RNFs-TS, swept over the hyperparameter combinations {Likelihood Warmup ∈
{True, False}} × {β ∈ {100, 1000, 10000}} × {η ∈ {10−3, 10−4}}

22




