A Proof of Lemma[2.2]and Main Theorem [1.1]

Proof [Lemma Clearly, iroot (1), §r00t(u) satisfies the constraint for the StablePCP,

with 6 = §(u). And by optimality of imot( ), Sroot( ) for the vPCP problem, we get
VLS st |D— L S|r <0(u),

IZIls + STt = [ Zroot (1)1 + AllScoot (1)]1- (A1)
This shows the optimality of imot (1), §root (p) for the StablePCP, problem with § = §(u). B

Lemma A.1 (Adapted from Theorem 2 in [1]) Under the same conditions as Theorem[2.1} with

probability at least 1 — ¢/n 'Y, for any Zo with || Zo||r > 8, the solution X = (L, S) to the
StablePCP.. problem[1.5|with A\ = 1//n satisfies

IX — Xollr < V720n1m2 + 2 - | Zo||r.

The proof of this lemma is essentially the same as the proof of Theorem [2.1]in [T]]. The main
differences are: we need to replace every occurrence of ¢ with || Zy || », and now since (Lo, So)
is not a feasible solution, we need to change the bound of the objective to HL||* + )\HS I <
1L+ Zoll+ + AlIS[l < [IL]l« + vn2l[Zoll 7 + AllS ]

Proof [Theorem Define SE =L Ly and 5/; -5 So. By the optimality of i, S and
triangle inequality,

(I Loll+ + AllSoll1) = (I LI+ + AlIS|1)
> u(|D — L~ 8||r — || Zolr)
= (oL + dsllr — 2[Zol|F). (A.2)

Treating the dual certificate in Lemma [2.3|as an approximate subgradient for the norm || - ||.
and || - 1,

(IZ]l+ — || Loll+) + ACIS]1 — 1Soll)
> (80, UV* + W) + (55, A(sign(So) + F))
:<52+55,UV*+W—)\P;H> <5L—5S,P92H> (A.3)

@1 62
Next, we bound 01, O in (A.3)).

01> |6 + 8sllr - [UV* + W — \PoH /2|5

> |8, + 85| r - (V7 + na/d + N|PoH||r/2)
> —[67 + 857 - (\/T/10+ 1/520)y/n2 /2
> —0. 85,quZ + (/S;HF

where the second inequality follows from triangle mequah and properties of W from
Lemma 2.3 The third inequality follows from the condition r < ng/10. For ©,, by the
dual construction,

02 > ~(\|PoHl|r/2) - (18217 + 18sr) = (18] + 1 85]lr) /(520v/2n1).
Combining (A.2)) and (A.3]) with the bounds on ©; and ©,

1 _ _ P
—(||& ) 211 Z, > 0.15||6 ) . A4
520\/—(” LllF + |6sll7) + 2|| Zo||r > 0.15(|61, + 05| F (A4)

From Lemma . L, S ) is also the solution to the StablePCP. problem parameterized by
§= ||5L + 65— Zollp- 6 < || Zo||F, Lemmaglves the bound that

182, 85)||r < 27v/mina|| Zol| -



If 6 > || Zo|| , from Theorem together with the trivial inequality that v/320n1ny + 4 <
264/n1n2/2,

182, 85) |l < 26v/ning/2- |18, + 85 — Zo| - (A5)
Combining and (A.5), we get

_ _ DU 1 - _
10LllF + 10s]lF < 26y/nan2(||0L +dsllF+ [ ZollF) < §(||5LHF+ 9sllF) +373y/ninz| Zo|| -
which proves the claim that

I1X — Xollr < [18L]lr + 105l + < 560y/nm1mz]| Zo| -

B Stopping Criteria in Algorithm

The function helper () containing the stopping criteria and updates for p, adapted from [2],
is presented in Algorithm

Algorithm 1 Function helper (): update p and check convergence

InPUt: D7 L17 L2a L,2a Sla ‘527 Séa Z; }/1» 1/-27 1/3 S Rn1><n27p7 €abs; €rel-
Output: p,,ifConverge.

# Calculate residuals
Tprimal < |[(L1 — L2, 81 — 82, Z + Ly + S5 — D)||p
Fawal < p - ||(Ls — Ly, Sy — Sh, Ly + Sy — Ly — S|
# Calculate thresholds
eprimal < €rel maX{”(le 517 Z)||F7 ||(L27 527 L2 + SQ)HF7 ||D||F} + €absV 3”1”2
edual — 6relll(yvh YVZ; Y?))HF + €abs V 3”1”2
# Update p
P+ <P
if T'primal > 10 - rqual then
p+ < 2p
else if rgua > 10 - primal then
p+ 4 p/2
end if
# Check convergence
ifConverge < False
if Tprimal < Hprimal and rqual < faual then
ifConverge < True
end if
return p, ifConverge

C Experiments and Settings
C.1 Experiments with Different Distributions of Noise for Section [4.1]

We test our vPCP and StablePCP,on simulation experiments with different noise distri-
butions. All the setup and parameters are the same as in Section except that now,
instead of adding Gaussian noise which follows N (0, 02), we add (scaled) Poisson noise,

ag

l - Poisson(Ap) where we choose A\p € {1, 3, 5}'|with scale | = ——Z—, and Uniform noise
/Ap+A2
PTAp

Uni form(—+/30,+/3c). We choose (Ap,!) and the range of the Uniform distribution in this
way such that E[(Z);;] = o*. Results are presented in Figures|1{and

!Since a Poisson variable with parameter Ap equals 0 with probability e =7, our choices of Ap give
Zy's which are approximately 36.79%, 4.98%, and 0.67% sparse.
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Figure 1: StablePCP,, vs v/PCP : effect of varying o for different noise distributions

(a) Gaussian  (b) Poisson Ap = 1(c) Poisson Ap = 3(d) Poisson Ap =5
Figure 2: StablePCP,, vs v/PCP : effect of varying n for different noise distributions

C.2 Additional Results for Section [4.2]

(e) Uniform

We run the experiments on a laptop with 2.3 GHz Dual-Core Intel Core i5, and we set the
maximal iteration number of our ADMM to be 5000. For experiments that don’t converge in
5000 steps, the number of iterations is represented as 5000+

For the hall dataset, we present the relative error for L, S, the running time, and the number
of iteration in Table[lland Table

Table 1: +/PCP : Hall dataset

Table 2: StablePCP,,: Hall dataset

o ‘ “ﬁL;‘OﬂF ‘ HﬁsfnogF ‘ TiME (x10% s) ‘ ITER o H HIﬂLj‘“OlﬂF ”‘isj‘O}!F ‘ Time (x10°% s) ‘ Iter
0 0.0019 0.0266 0.6894 1688 0 0.0019 0.0266 1.7340 4423
30 0.0445 0.7403 0.5381 1293 30 0.0443 0.7495 1.8936 4918
60 0.0737 1.3525 0.9470 2425 60 0.0740 1.3494 1.3006 3362
90 0.0968 1.9288 1.4040 3258 90 0.0974 1.8922 1.8050 4563
120 0.1200 2.5067 1.6230 4113 120 0.1214 2.4349 1.9886 5000+

In Figure 3|and 4} we present more results for frame 1, 20 for varying o for this hall dataset.

We also apply our algorithms to the dataset lights. Wresent the relative error for L, S,

the running time, and the number of iteration in Table [and Table 4

Table 3: v/PCP : Lights dataset

Table 4: StablePCP,,: Lights dataset

o ‘ “ﬁL(ﬁ‘OﬁF ‘ H‘T}SZFJF ‘ TiME (x10% s) ‘ ITER o H HIﬂLj‘“OJF ‘ HiSoSI?EF ‘ Time (x10°% s) ‘ ITER
0 0.0013 0.1052 0.7100 1605 0 0.0013 0.1052 2.2069 5000+
30 0.0520 2.9707 0.5120 1155 30 0.0527 2.7920 1.4677 3377
60 0.0938 5.8908 1.7101 3880 60 0.0951 5.5085 1.2136 2804
90 0.1323 8.7761 2.1983 5000+ 90 0.1342 8.2023 1.6699 3886
120 0.1689 11.5848 2.5344 5000+ 120 0.1710 10.8930 2.0856 4902

In Figure[5|and [6] we present more results for frame 1, 20 for varying o for this lights dataset.

In Figure we present the RMS error. Again, we see that the error is linear in the noise

level o.

C.3 Additional Experiments Using Face Dataset

In addition to the video dataset in the previous section, we also test vVPCP and StablePCP,,
on datasets of face images. It has been pointed out in [3]] that under distant illumination,
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images of a convex Lambertian object lie near a low dimensional linear subspace called
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Figure 5: lights: recovered L, S for frame 1
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Figure 6: lights: recovered L, S for frame 20

the harmonic plane. However, real images of faces are often corrupted by shadows and
specularities, which can have large magnitudes but are sparse in the spatial domain. This
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Figure 7: StablePCP,vs vPCP : real datasets

fits well into our low-rank and sparse model [’} and our goal is to remove these shadows and
specularities from the noisy and corrupted observation.

To be precise, the dataset we use is from Yale B face database [4]]. For each face, there are 65
images of resolution 192 x 168 under various illuminations, so we have n; = 192 x 168 =
32256 and ny = 65. Similar to the experiments on the video dataset, we assume that there is
no noise in these images, and add Z, with ¢ € {0, 10, 20, 30, 40}.

In Figures 8} B} [0} [1T} 12} and [I3} we present the recovered low rank and sparse matrices for
frame 1 and frame 20 using vPCP and StablePCP,,.

faC9+Z0 LI('Z())t ngc)»t Lé:;ble stable face+Z0 igggt §1ano)t iéfgble §s(:a?ble

c=0

c=40 0=30 0=20 o=10

Figure 9: yaleBO1: recovered L,S
for frame 1 for frame 20

In Table EH?} and El we show the relative error, running time and iteration for vPCP on
yaleB01, yaleB02, and yaleB03 datasets. In Table [} [8| and [I0] we show the relative error,
running time and iteration for StablePCP,on yaleB01, yaleB02, and yaleB03 datasets.

Table 5: +/PCP : yaleB01 Table 6: StablePCP,,: yaleB0O1
o | Migge | Wi | Toe () | o || Mpiple | Mile | Tas(s) |
0 0.0298 0.1934 255.6449 | 2054 0 0.0298 0.1934 602.0781 | 5000+
10 0.0481 0.3823 171.0386 | 1366 10 0.0461 0.3808 599.3534 | 5000+
20 0.0863 0.6117 184.6412 | 1480 20 0.0838 0.6441 594.2583 | 5000+
30 0.1250 0.8421 210.4474 | 1693 30 0.1225 0.8898 596.9568 | 5000+
40 0.1613 1.0692 493.5861 | 3953 40 0.1591 1.1276 602.5028 | 5000+

2 Although faces are not convex Lambertian objects and the harmonic plane may not apply here,
previous experiments in [3]] have shown the effectiveness of PCP in this task.
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for frame 1 for frame 20

Table 7: /PCP : yaleB02 Table 8: StablePCP,,: yaleB02

L-L 5-5 IL—Lol 15—Soll
o | Viakte | Meite | Tove(s) | e o | Vizile | Seite | Tove(s) | I
) 0.0261 0.1720 272.5150 | 2190 0 0.0261 0.1720 595.5254 | 5000+
10 0.0477 0.3657 167.7344 | 1352 10 0.0465 0.3697 595.0926 | 5000+
20 0.0873 0.5993 174.0215 | 1409 20 0.0843 0.6348 594.2518 | 5000+
30 0.1228 0.8311 407.7892 | 3289 30 0.1204 0.8808 599.8056 | 5000+
40 0.1545 1.0599 244.3114 | 1970 40 0.1528 1.1174 593.7441 | 5000+

C.4 Additional Results for Section [4.3]

We provide frame 30, 60, and 90 for the three videos in Figures[I4}[I5) and [T6}



Table 9: /PCP : yaleB03 Table 10: StablePCP.,: yaleB03

IL-Lollr IS=Sollr

o | Yigirie | Meiie | Tove(s) | e o | Mgl TSphe | Tve (s) | Inee

0 0.0336 0.2128 272.8555 | 2194 0 0.0336 0.2128 594.5691 | 5000+

10 0.0458 0.3823 175.4205 | 1417 10 0.0434 0.3687 594.4220 | 5000+

20 0.0780 0.5887 261.3707 | 1519 20 0.0760 0.6162 596.9680 | 5000+

30 0.1133 0.8008 221.5380 | 1751 30 0.1109 0.8440 839.4338 | 5000+

40 0.1469 1.0114 512.7160 | 4051 40 0.1449 1.0662 601.5731 | 5000+
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C.5 Additional Results for Section[4.4]

Results for frame 150 and 200 are presented in Figure[T7]

C.6 Settings and Additional Results for Section [4.5]
Table[TT|below lists the settings for this set of experiments.

Table 11: Parameters for Simulation: ps = 0.1, |(So) (i jyea| = 0.05

=L+8-D).

ni n2 PL o
{200,300, ...,1000} ny =mny 0.1 0.01
{300, ...,1000} 300 0.1 0.01
300 300 {0.05,0.1,...,0.5} 0.01
300 300 0.1 {0.005,0.01,...,0.05}
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Figure 17: OCT, a-e): frame 150, {j): frame 200 (Z = L + S — D).

We also provide heatmaps for the relative recovery error, i.e. the 10-average of ne1(pt) ==
(L (), S(1)) = (Lo, So)llr/lI(Lo, So)llr, in Figure

(a) varyn =ny =n» (b) vary n1 (c) vary pr (d) vary o
Figure 18: 7:c1 (1) under different varying parameters
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