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Abstract

Unpaired image-to-image translation refers to learning inter-image-domain map-
ping without corresponding image pairs. Existing methods learn deterministic
mappings without explicitly modelling the robustness to outliers or predictive
uncertainty, leading to performance degradation when encountering unseen per-
turbations at test time. To address this, we propose a novel probabilistic method
based on Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC),
which models the per-pixel residual by generalized Gaussian distribution, ca-
pable of modelling heavy-tailed distributions. We compare our model with a
wide variety of state-of-the-art methods on various challenging tasks including
unpaired image translation of natural images, using standard datasets, spanning
autonomous driving, maps, facades, and also in medical imaging domain consist-
ing of MRI. Experimental results demonstrate that our method exhibits stronger
robustness towards unseen perturbations in test data. Code is released here: https:
//github.com/ExplainableML/UncertaintyAwareCycleConsistency.

1 Introduction

Translating an image from a distribution, i.e. source domain, to an image in another distribution, i.e.
target domain, with a distribution shift is an ill-posed problem as a unique deterministic one-to-one
mapping may not exist between the two domains. Furthermore, since the correspondence between
inter-domain samples may be missing, their joint-distribution needs to be inferred from a set of
marginal distributions. However, as infinitely many joint distributions can be decomposed into a fixed
set of marginal distributions [1, 2, 3], the problem is ill-posed in the absence of additional constraints.

Deep learning-based methods tackle the image-to-image translation task by learning inter-domain
mappings in a paired or unpaired manner. Paired image translation methods [4, 5, 6, 7, 8, 9] exploit
the inter-domain correspondence by penalizing the per-pixel residual (using l1 or l2 norm) between
the output and corresponding ground-truth sample. Unpaired image translation approaches [1, 10, 11,
12, 13, 14] often use adversarial networks with an additional constraint on the image or feature space
imposing structure on the underlying joint distribution of the images from the different domains.

Both paired and unpaired image translation approaches often learn a deterministic mapping between
the domains where every pixel in the input domain is mapped to a fixed pixel value in the output
domain. However, such a deterministic formulation can lead to mode collapse while at the same time
not being able to quantify the model predictive uncertainty important for critical applications, e.g.,
medical image analysis. It is desirable to test the performance of the model on unseen perturbed input
at test-time, to improve their applicability in the real world. While robustness to outliers is a focus in
some domains [15, 16, 17, 18], it has not attracted as much attention in unpaired translation.

To address these limitations, we propose an unpaired (unsupervised) probabilistic image-to-image
translation method trained without inter-domain correspondence in an end-to-end manner. The
probabilistic nature of this method provides uncertainty estimates for the predictions. Moreover,
modelling the residuals between the predictions and the ground-truth with heavy-tailed distributions
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makes our model robust to outliers and various unseen data. Accordingly, we compare various
state-of-the-art models and our model in their capacity to handle samples from similar distribution as
training-dataset as well as perturbed samples, in the context of unpaired translation.

Our contributions are as follows. (i) We propose anunpairedprobabilistic image-to-image translation
framework based on Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC). Our
framework models the residuals between the predictions and the ground-truths with heavy-tailed
distributions improving robustness to outliers. Probabilistic nature of UGAC also provides uncertainty
estimates for the predictions. (ii) We evaluate UGAC on multiple challenging datasets: natural images
consisting Cityscapes [19], Google aerial maps and photos [4], CMP Facade [20] and medical images
consisting of MRI from IXI [21]. We compare our model to seven state-of-the-art image-to-image
translation methods [12, 22, 1, 11, 10, 23]. Our results demonstrate that while UGAC performs
competitively when tested on unperturbed images, it improves state-of-the-art methods substantially
when tested on unseen perturbations, establishing its robustness. (iii) We show that our estimated
uncertainty scores correlate with the model predictive errors (i.e., residual between model prediction
and the ground-truth) suggesting that it acts as a good proxy for the model's reliability at test time.

2 Related Work

Image-to-image translation. Image-to-image translation is often formulated as per-pixel deter-
ministic regression between two image domains of [24, 25, 26]. In [4], this is done in apaired
manner using conditional adversarial networks, while in [10, 1, 12, 22, 11] this is done in anunpaired
manner by enforcing additional constraints on the joint distribution of the images from separate
domains. Both CycleGAN [10] and UNIT [1] learn bi-directional mappings, whereas other recent
methods [12, 22, 11] learn uni-directional mappings.

Quanti�cation of uncertainty in the predictions made by the unpaired image-to-image translation
models largely remains unexplored. Our proposed method operates at the intersection of uncertainty
estimation and unsupervised translation. Critical applications such as medical image-to-image
translation [27, 28, 29, 30, 31, 32] is an excellent testbed for our model as con�dence in the network's
predictions is desirable [33, 34] especially under the in�uence of missing imaging modalities.

Uncertainty estimation. Among two broad categories of uncertainties that can be associated with
a model's prediction,epistemicuncertainty in the model parameters is learned with �nite data
whereasaleatoric uncertainty captures the noise/uncertainty inherent in the data [35, 36]. For
image-to-image translation, various uncertainties can be estimated using Bayesian deep learning
techniques [36, 37, 38, 39, 40]. In critical areas like medical imaging, the errors in the predictions
deter the adoption of such frameworks in clinical contexts. Uncertainty estimates for the predictions
would allow subsequent revision by clinicians [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51].

Existing methods model the per-pixelheteroscedasticityas Gaussian distribution for regression
tasks [36]. This is not optimal in the presence of outliers that often tend to follow heavy-tailed distri-
butions [52, 53]. Therefore, we enhance the above setup by modelling per-pixel heteroscedasticity
as generalized Gaussian distribution, which can model a wide variety of distributions, including
Gaussian, Laplace, and heavier-tailed distribution.

3 Uncertainty-aware Generalized Adaptive Cycle-consistency (UGAC)

We present the formulation of the unpaired image-to-image translation problem. We discuss the short-
comings of the existing solution involving the cycle consistency loss called CycleGAN [10]. Finally,
we present our novel probabilistic framework (UGAC) that overcomes the described shortcomings.

3.1 Preliminaries

Formulation. Let there be two image domainsA andB . Let the set of images from domainA andB
be de�ned by (i)SA := f a1; a2:::an g; whereai � P A 8i and (ii) SB := f b1; b2:::bm g; wherebi �
PB 8i , respectively. The elementsai andbi represent thei th image from domainA andB respec-
tively, and are drawn from an underlyingunknownprobability distributionPA andPB respectively.
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Figure 1: Our UGAC framework with the cycle between two generators. For translating from
A to B (A ! B ), the inputai is mapped to generalized Gaussian distribution parameterized by
f b̂i ; �̂ b

i ; �̂ b
i g. The backward cycle (A ! B ! A) reconstructs the image distribution parameterized

by f �ai ; �� a
i ; �� a

i g. UGAC usesL �� objective function in Eq. 8 and adversarial losses in Eq. 10 and 11.

Let each image haveK pixels, anduik represent thekth pixel of a particular imageui . We are
interested in learning a mapping from domainA to B (A ! B ) andB to A (B ! A) in an unpaired
manner so that the correspondence between the samples fromPA andPB is not required at the
learning stage. In other words, we want to learn the underlying joint distributionPAB from the given
marginal distributionsPA andPB . This work utilizes CycleGANs that leverage the cycle consistency
to learn mappings from both directions (A ! B andB ! A), but often we are only interested in one
direction and the second direction is the auxiliary mapping that aids in learning process. We de�ne
the mappingA ! B as primary andB ! A as auxiliary.

Cycle consistency.Learning a joint distribution from the marginal distributions is an ill-posed
problem with in�nitely many solutions [3]. CycleGAN [10] enforces an additional structure on the
joint distribution using a set of primary networks (forming a GAN) and a set of auxiliary networks. The
primary networks are represented byfGA (�; � G

A ); DA (�; � D
A )g, whereGA represents a generator and

DA represents a discriminator. The auxiliary networks are represented byfGB (�; � G
B ); DB (�; � D

B )g.
While the primary networks learn the mappingA ! B , the auxiliary networks learnB ! A (see
Figure 1). Let the output of the generatorGA translating samples from domainA (sayai ) to domain
B be called̂bi . Similarly, for the generatorGB translating samples from domainB (saybi ) to domain
A be called̂ai , i.e., b̂i = GA (ai ; � G

A ) andâi = GB (bi ; � G
B ). To simplify the notation, we will omit

writing parameters of the networks in the equation. The cycle consistency constraint [10] re-translates
the above predictions (b̂i ; âi ) to get back the reconstruction in the original domain (�ai ,�bi ), where,
�ai = GB (b̂i ) and�bi = GA (âi ); and attempts to make reconstructed images (�ai ; �bi ) similar to original
input (ai ; bi ) by penalizing the residuals withL 1 norm between the reconstructions and the original
input images, giving the cycle consistencyL cyc(�ai ; �bi ; ai ; bi ) = L 1(�ai ; ai ) + L 1(�bi ; bi ):

Limitations of cycle consistency.The underlying assumption when penalizing with theL 1 norm
is that the residual atevery pixelbetween the reconstruction and the input followzero-mean and
�xed-variance Laplacedistribution, i.e.,�aij = aij + � a

ij and�bij = bij + � b
ij with,

� a
ij ; � b

ij � Laplace(� ; 0;
�

p
2

) �
1

p
2� 2

e�
p

2 j � � 0 j
� ; (1)

where� 2 represents the �xed-variance of the distribution,aij represents thej th pixel in imageai ,
and� a

ij represents the noise in thej th pixel for the estimated image�aij . This assumption on the
residuals between the reconstruction and the input enforces the likelihood (i.e.,L (� jX ) = P(X j �) ,
where� := � G

A [ � G
B [ � D

A [ � D
B andX := SA [ SB ) to follow a factored Laplacedistribution:

L (� jX ) /
YYY

ijpq

e�
p

2 j �a ij � a ij j

� e�
p

2 j �bpq � bpq j
� ; (2)

where minimizing the negative-log-likelihood yieldsL cyc with the following limitations. The resid-
uals in the presence of outliers may not follow the Laplace distribution but instead a heavy-tailed
distribution, whereas the i.i.d assumption leads to �xed variance distributions for the residuals that do
not allow modelling ofheteroscedasticityto aid in uncertainty estimation.
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3.2 Building Uncertainty-aware Cycle Consistency

Figure 2: Probability density func-
tion (pdf) for generalized Gaussian
distribution. Different scale (� ) and
shape (� ) parameters lead to differ-
ent tail behaviour.(�; � ) = (1 ; 2)
represents Gaussian distribution.

We propose to alleviate the mentioned issues by modelling
the underlying per-pixel residual distribution as independent
butnon-identicallydistributedzero-mean generalized Gaussian
distribution(GGD) (Figure 2), i.e., with no �xed shape (� > 0)
and scale (� > 0) parameters. Instead, all the shape and scale
parameters of the distributions are predicted from the networks
and formulated as follows:

� a
ij ; � b

ij � GGD (� ; 0; �� ij ; �� ij ) �
�� ij

2�� ij �( 1
�� ij

)
e

�
�

j � � 0 j
�� ij

� �� ij

:

(3)

For each� ij , the parameters of the distributionf �� ij ; �� ij g may
not be the same as parameters for other� ik s; therefore, they are
non-identically distributed allowing modelling with heavier tail
distributions. The likelihood for our proposed model is,

L (� jX ) =
YYY

ijpq

G( �� a
ij ; �� a

ij ; �aij ; aij )G( �� b
pq; �� b

pq; �bpq; bpq); (4)

where (�� a
ij ) represents thej th pixel of domainA's shape parameter� a

i (similarly for others).
G( �� u

ij ; �� u
ij ; �uij ; uij ) is the pixel-likelihood atj th pixel of imageui (that can represent images

of both domainA andB ) formulated as,

G( �� u
ij ; �� u

ij ; �uij ; uij ) = GGD (uij ; �uij ; �� u
ij ; �� u

ij ); (5)

The negative-log-likelihood is given by,

� ln L (� jX ) = �
XXX

ijpq

2

4ln
�� a

ij

2�� a
ij �( 1

�� a
ij

)
e

�
�

j �a ij � a ij j

�� a
ij

� �� a
ij

+ ln
�� b

pq

2�� b
pq �( 1

�� b
pq

)
e

�
�

j �bpq � bpq j

�� b
pq

� �� b
pq

3

5

(6)
minimizing the negative-log-likelihood yields a new cycle consistency loss, which we call as the
uncertainty-aware generalized adaptive cycle consistency lossL ucyc, givenA = f �ai ; �� a

i ; �� a
i ; ai g and

B = f �bi ; �� b
i ; �� b

i ; bi g,

L ucyc(A ; B ) = L �� (A ) + L �� (B ); (7)

whereL �� (A ) = L �� (�ai ; �� a
i ; �� a

i ; ai ) is the new objective function corresponding to domainA,

L �� (�ai ; �� a
i ; �� a

i ; ai ) =
1
K

XXX

j

 
j�aij � aij j

�� a
ij

! �� a
ij

� log
�� a

ij

�� a
ij

+ log �(
1
�� a

ij
); (8)

where(�ai ; �bi ) are the reconstructions for(ai ; bi ) and(�� a
i ; �� a

i ); ( �� b
i ; �� b

i ) are scale and shape parameters
for the reconstruction(�ai ; �bi ), respectively.

TheL 1 norm-based cycle consistency (L cyc) is a special case ofL ucyc with ( �� a
ij ; �� a

ij ; �� b
ij ; �� b

ij ) =
(1; 1; 1; 1)8i; j . To utilizeL ucyc, one must have the� maps and the� maps for the reconstructions of
the inputs. To obtain the reconstructed image,� (scale map), and� (shape map), we modify the head
of the generators (the last few convolutional layers) and split them into three heads, connected to a
common backbone. Therefore, for inputsai andbi to the generatorGA andGB , the outputs are:

(b̂i ; �̂ b
i ; �̂ b

i ) = GA (ai ) and(�ai ; �� a
i ; �� a

i ) = GB (b̂i )

(âi ; �̂ a
i ; �̂ a

i ) = GB (bi ) and(�bi ; �� b
i ; �� b

i ) = GA (âi ); (9)

The estimates are plugged into Eq.(7) and the networks are trained to estimate all the parameters of
the GGD modelling domainA andB , i.e. (�aij ; �� a

ij ; �� a
ij ) and (�bij ; �� b

ij ; �� b
ij ) 8ij .
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Furthermore, we apply adversarial losses [10] to the mapping functions, (i)GA : A ! B and
(ii) GB : B ! A, using the discriminatorsDA andDB . The discriminators are inspired from
patchGANs [4, 10] that classify whether 70x70 overlapping patches are real or not. The adversarial
loss for the generators (L G

adv [10]) is,

L G
adv = L 2(DA (b̂i ); 1) + L 2(DB (âi ); 1): (10)

The loss for discriminators (L D
adv [10]) is,

L D
adv = L 2(DA (bi ); 1) + L 2(DA (b̂i ); 0) + L 2(DB (ai ); 1) + L 2(DB (âi ); 0): (11)

To train the networks we update the generator and discriminator sequentially at every step [10, 4, 54].
The generators and discriminators are trained to minimizeL G andL D as follows:

L G = � 1L ucyc + � 2L G
adv andL D = L D

adv: (12)

Closed-form solution for aleatoric uncertainty. Although predicting parameters of the output
image distribution allows to sample multiple images for the same input and compute the uncertainty,
modelling the distribution as GGD gives us the uncertainty (� aleatoric) without sampling from the

distribution as a closed form solution exists,� 2
aleatoric=

� 2 �( 3
� )

�( 1
� ) . Epistemic uncertainty (� epistemic) is

calculated by multiple forward passes (T = 50 times) with dropouts activated for the same input and
computing the variance across the outputs (ût ), i.e.,� 2

epistemic= (
P

t (ût �
P

t
û t
T )2)=T. We de�ne

the total uncertainty (� ) as� 2 = � 2
aleatoric+ � 2

epistemic.

4 Experiments

In this section, we �rst describe our experimental setup and implementation details.We compare
our model to a wide variety of state-of-the-art methods quantitatively and qualitatively. Finally we
provide an ablation analysis to study the rationale of our model formulation.

4.1 Experimental Setup

Tasks. We study the robustness of unpaired image-to-image translation methods, where different
methods are �rst trained oncleanimages and then evaluated onperturbedimages Thecleanimages
are referred as noise-level 0 (NL0); while theperturbedimages withincreasingnoise are referred
as NL1, NL2, and NL3. We test three types of perturbation including Gaussian, Uniform, and
Impulse. From NL0 to NL3, the standard deviation of the additive Gaussian noise is gradually
increased. Similarly, for additive uniform noise, different levels are obtained by gradually increase the
upper-bound of the uniform sampling interval [55] and for impulse noise we gradually increase the
probability of pixel-value replacement [56]. Details of constructing various NLs are in supplementary.

Datasets. We evaluate on four standard datasets used for image-to-image translation: (i)
Cityscapes[19] contains street scene images with segmentation maps, including 2,975 training
and 500 validation and test images; (ii)Google maps[4] contains 1,096 training and test images
scraped from Google maps with aerial photographs and maps; (iii)CMP Facade[20] contains 400
images from the CMP Facade Database including architectural facades labels and photos. (iv)IXI [21]
is a medical imaging dataset with 15,000/5,000/10,000 training/test/validation images, including T1
MRI and T2 MRI. More preprocessing details for all the datasets are in supplementary.

Translation quality metrics. Following [23], we evaluate the translation quality of the generated
segmentation maps and images, for the datasets with segmentation maps (e.g., Cityscapes). First, to
evaluate the generated segmentation maps, we compute the Intersection over union (IoU.SEGM) and
mean class-wise accuracy (Acc.SEGM) between the generated segmentation maps and the ground-
truth segmentation maps. Second, to evaluate the generated images, we �rst feed the generated
imagesX tr to a pre-trained pix2pix model [4] (denoted asp2p, which is trained to translate images
to segmentation maps) to obtain the segmentation mapsp2p(X tr ). Then, we feed the original images
X org to the same pix2pix model to obtain another segmentation mapsp2p(X org ), and compute the
IoU between two outputsp2p(X tr ) andp2p(X org ) (IoU.P2P).
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Figure 3: Evaluation of different methods on Cityscapes with Gaussian perturbation under varying
noise levels. NL0 denotes clean images without noise, NL1, NL2, NL3 are unseen noise levels.
ACC.Segm, IoU.Segm, IoU.P2P are three metrics for evaluating translation quality. Higher is better.

P Methods
Cityscapes Maps Facade IXI

AMSE (std)# ASSIM (std)" AMSE (std)# ASSIM (std)" AMSE (std)# ASSIM (std)" AMSE (std)# ASSIM (std)"

G
au

ss
ia

n gcGAN [22] 107.83 (10.8) 0.62 (0.09)117.21 (10.6) 0.43 (0.07)138.21 (11.5) 0.41 (0.05) 108.32 (8.7) 0.67 (0.12)
CUT [11] 108.34 (8.7) 0.51 (0.12) 119.32 (8.9) 0.51 (0.11) 123.22 (17.6) 0.58 (0.09) 87.12 (10.4) 0.64 (0.07)

Cy.GAN [10] 121.32 (10.3) 0.31 (0.13) 107.32 (7.5) 0.61 (0.13) 134.23 (15.3) 0.45 (0.07) 98.14 (9.1) 0.70 (0.09)
nCy.GAN [23] 107.76 (11.2) 0.60 (0.08) 96.14 (9.3) 0.68 (0.05) 109.32 (10.4) 0.68 (0.06) 88.36 (8.2) 0.77 (0.09)
UGAC (ours) 80.19(10.4) 0.78(0.09) 72.32(8.4) 0.82(0.07) 95.37(9.3) 0.77(0.04) 68.38(9.8) 0.87(0.11)

U
ni

fo
rm

gcGAN [22] 96.76 (18.2) 0.66 (0.03) 104.83 (11.7) 0.49 (0.09)129.54 (15.1) 0.47 (0.09) 91.45 (13.3) 0.71 (0.08)
CUT [11] 98.45 (9.8) 0.59 (0.09) 108.21 (7.5) 0.53 (0.14) 114.45 (21.9) 0.55 (0.12) 75.31 (8.3) 0.78 (0.15)

Cy.GAN [10] 111.17 (15.4) 0.35 (0.08) 91.47 (10.8) 0.70 (0.10) 158.57 (25.2) 0.39 (0.16) 85.24 (9.5) 0.72 (0.05)
nCy.GAN [23] 97.89 (12.1) 0.64 (0.04) 75.97 (10.7) 0.78 (0.16) 106.79 (18.7) 0.69 (0.14) 70.89 (8.8) 0.81 (0.09)
UGAC (ours) 63.77(8.5) 0.83(0.07) 51.24(6.6) 0.88(0.11) 92.77(13.2) 0.78(0.07) 43.54(6.2) 0.89(0.05)

Im
pu

ls
e

gcGAN [22] 105.64 (17.3) 0.60 (0.07)116.55 (15.8) 0.45 (0.11)134.56 (10.7) 0.40 (0.11)121.31 (17.4) 0.66 (0.13)
CUT [11] 90.56 (11.6) 0.52 (0.11) 97.21 (7.8) 0.65 (0.09) 118.89 (15.9) 0.52 (0.07) 98.66 (9.7) 0.69 (0.09)

Cy.GAN [10] 122.48 (19.6) 0.30 (0.12) 112.38 (9.8) 0.62 (0.13) 174.65 (19.2) 0.33 (0.14)106.16 (14.8) 0.67 (0.12)
nCy.GAN [23] 95.78 (10.6) 0.61 (0.05) 90.17 (13.2) 0.77 (0.08) 119.89 (12.8) 0.57 (0.09)96.91 (10.57) 0.73 (0.06)
UGAC (ours) 78.85(6.9) 0.80(0.10) 66.58(10.4) 0.86(0.05) 103.83(9.4) 0.72(0.09) 70.54(10.4) 0.85(0.07)

Table 1: Evaluating methods on four datasets under Gaussian, Uniform and Impulse perturbations,
evaluated withAMSE(lower better) andASSIM(higher better) across varying noise levels. “P” =
perturbation. We show results with best performing four methods (other three are in supplementary).

Metrics for model robustness. We de�ne two metrics similar to [23] to test model robustness
towards noisy inputs. (i)AMSEis the area under the curve measuring the MSE between the outputs of
the noisy input and the clean input under different levels of noise, i.e.,AMSE=

R� max

� min
(MSE(GA (ai +

� ); GA (ai ))) d� , where� is the noise level,GA denotes the generator that maps domain sampleai
(from domainA) to domainB . (ii) ASSIMis the area under the curve measuring the SSIM [57]
between the outputs of the noisy input and the clean input under different levels of noise, i.e.,
ASSIM=

R� max

� min
(SSIM(GA (ai + � ); GA (ai ))d� . These two metrics show how much the output

deviates when fed with the corrupted input from the output corresponding to clean input, averaged
over multiple corruption/noise levels. Computational details are in supplementary.

Implementation details. In our framework, the generator is a cascaded U-Net that progressively
improves the intermediate features to yield high-quality output [30], we use a patch discriminator [4].
All the networks were trained using Adam optimizer [58] with a mini-batch size of 2. The initial
learning rate was set to2e� 4 and cosine annealing was used to decay the learning rate over 1000
epochs. The hyper-parameters,(� 1; � 2) (Eq. (12)) were set to(10; 2). For numerical stability, the
proposed network produces1

� instead of� . The positivity constraint on the output (for predicted�; � )
is enforced by applying the ReLU at the end of the output layers in the network. The architecture
details and the training scheme are in supplementary.

4.2 Comparing with the State of the Art

Compared methods.We compare our model to seven state-of-the-art methods for unpaired image-
to-image translation, including (1) distanceGAN [59] (disGAN): a uni-directional method to map
different domains by maintaining a distance metric between samples of the domains. (2) geometry
consistent GAN [22] (gcGAN): a uni-directional method that imposes pairwise distance and geometric
constraints. (3) UNIT [1]: a bi-directional method that matches the latent representations of the two
domain. (4) CUT [11]: a uni-directional method that uses contrastive learning to match the patches in
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Figure 4: Qualitative results on Cityscapes, Google Maps, CMP Facade, and IXI. Outputs of clean
image (at NL0) and perturbed image (at NL3) are shown.(a) input, (1)–(7)outputs from compared
methods, and(8) output from UGAC,(b) ground-truth images. Outputs of UGAC are much closer to
groundtruth images (better in quality) than the other methods in the presence of noise perturbations.

the same locations in both domains. (5) CycleGAN [10] (Cy.GAN): a bi-directional method that uses
cycle consistency loss. (6) guess CycleGAN [23]: a variant of CycleGAN that uses an additional
guess discriminator that “guesses" at random which of the image is fake in the collection of input
and reconstruction images. (7) adversarial noise CycleGAN [23] (nCy.GAN): another variant of
CycleGAN that introduces noise in the cycle consistency loss. Note that both guess CycleGAN [23]
and adversarial noise CycleGAN [23] improve the model robustness to noise.

Quantitative evaluation. As described in Section 4.1, we trained the models using thecleanimages
(NL0) and evaluated them at varying noise levels (NL0, NL1, NL2, NL3), results are detailed next.

Figure 3 shows the quantitative results onCityscapesdataset with Gaussian perturbation. When in-
creasing the noise levels, we observe that the performance of compared methods degrade signi�cantly,
while our method remains more robust to noise – e.g., the meanIoU.SEGMvalues are changed from
around 0.24 to 0.2 for our model but degrades from around 0.24 to 0.05 for the baseline Cy.GAN.
Similarly, our model outperforms two strong competitors (gCy.GAN, nCy.GAN) that are built to
defend noise perturbation on higher noise levels. Similar trends are observed for other datasets (in
supplementary). This indicates that our model offers better translation quality at higher noise levels.

To evaluate model robustness, we tested different methods using the metricsAMSEandASSIMto
quantify the overall image quality under increasing noise levels as de�ned in Section 4.1. Table
1 shows the performance of all the models on different datasets for three types of perturbations,
i.e., Gaussian, Uniform, and Impulse. We can see that the proposed UGAC model performs better
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than other methods. For instance, when adding Gaussian noise, UGAC obtains a much better
ASSIMof 0.78/0.82/0.77/0.87 vs. 0.60/0.68/0.68/0.77 yielded by the best competitor nCy.GAN on
Cityscapes/Maps/Facade/IXI. When adding Uniform noise or Impulse noise, we can also �nd that
our model outperforms the other methods by substantial margins. Overall, the better performance of
UGAC on different datasets suggests its stronger robustness towards various types of perturbations.

Qualitative results. Figure 4 visualizes the generated output images for Cityscapes, Google Maps,
CMP Facade, and IXI datasets where all the models are trained with clean images and tested
with either clean images or perturbed images. The test-time perturbation is of type Gaussian and
corresponds to noise-level NL2. We see that, while all the methods generate samples of high quality
when tested on unperturbed clean input; whereas when tested with perturbed inputs, we observe
results with artifacts but the artifacts are imperceptible in our UCAC method.

The results on Cityscapes dataset (with the primary direction, translating from segmentation maps to
real photo) demonstrate that with perturbed input, methods such as disGAN, gcGAN, UNIT generate
images with high frequency artifacts (col.1 to 3), whereas methods such as CUT, Cy.GAN, gCy.GAN
and nCy.GAN (col.4 to 7) generate images with low frequency artefacts. Both kinds of artefact lead
to degradation of the visual quality of the output. Our method (col.8) generates output images that
still preserve all the high frequency details and are visually appealing, even with perturbed input.
Similar trends are observed for other datasets including Maps (with primary translation from maps to
photo) and Facade (with primary translation from segmentation maps to real photo).

For the IXI dataset (with primary translation from T1 to T2 MRI scans), we observe that the other
models fail to reconstruct medically relevant structures like trigeminal-nerve (in the centre) present in
the input T1 MRI scans. Moreover, high-frequency details throughout the white and grey matter in
the brain are missing. In contrast, our method gracefully reconstructs many of the high-frequency
details. More qualitative results are in supplementary, with similar trends as in Figure 4. It shows that
our model is capable of generating images of good quality at higher noise levels.

4.3 Analyzing the Model Uncertainty

Evaluating the generalized adaptive norm.We study the performance of our method by mod-
elling the per-pixel residuals in three ways on IXI dataset. First, i.i.d Gaussian distribution, i.e.,

Figure 5: Adaptive(�; � )= pred
vs. �xed (�; � )=(1 ; 1) and
(�; � )=(1 ; 2) norm.

(� ij ; � ij ) is manually set to(1; 2)8i; j , which is equivalent to
using �xed l2 norm at every pixel in cycle consistency loss
( L �� j � =1 ;� =2 ). visual quality when given perturbed input.
Second, i.i.d Laplace distribution, i.e.,(� ij ; � ij ) is manually
set to(1; 1)8i; j , which is equivalent to using �xedl1 norm at
every pixel in cycle consistency loss( L �� j � =1 ;� =1 ). Third,
independent but non-identically distributed generalized Gaus-
sian distribution (UGAC), which is equivalent to using spatially
varyinglq quasi-norms whereq is predicted by the network for
every pixel( L �� jpred).

Fig 5 shows the quantitative performance of these three vari-
ants across different noise levels for IXI datasets. We see that
spatially adaptive quasi-norms perform better than �xed norms,
even at higher noise levels (i.e., presence of outliers). Note
that our GGD based heteroscedastic model subsumes the Gaussian (� = 1 ; � = 2 ) and Laplacian
(� = 1 ; � = 1 ). Moreover, the heteroscedastic versions of Gaussian and Laplacian can be obtained
by �xing � , i.e., for Laplacian (� = 1 ) and for Gaussian (� = 2 ), and varying� . Modeling residuals
as GGD is more liberal than both homo/hetero-scedastic Gaussian/Laplacian distribution because it is
able to capture all the heavier/lighter-tailed distributions (along with all possible Gaussian/Laplacian
distributions) that are beyond the modeling capabilities of Gaussian/Laplacian alone.

Visualizing uncertainty maps. We visualize our uncertainty maps for the T1w MRI (domainA) to
T2w MRI (domainB ) translation task, on IXI dataset, with perturbations in the input (NL3).

Figure 6-(a) shows input axial slices (T1w at NL3). The perturbations have degraded the high-
frequency features (see green ROI). Figure 6-(b) shows the corresponding ground-truth axial slice
(T2w MRI). Figure 6-(c) shows that our method recovers high-frequency details. However, we
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