Supplementary Material

A Missing proofs

Proposition A.1. For any arbitrary non-negative real numbers a_1, \ldots, a_T, we have

$$\sum_{t=1}^{T} \frac{a_t}{1 + a_{1:t}} \leq \log(1 + a_{1:T}).$$

Proof. For any $a, b > 0$, we have

$$\frac{a}{b + a} = \int_{x=0}^{a} \frac{1}{b + x} dx \leq \int_{x=0}^{a} \frac{1}{b + x} dx = \log(b + a) - \log(b). \quad (8)$$

The proof now follows from induction. The base case of $t = 1$ follows directly from (8) with a set to a_1 and b set to 1. Assuming that the inequality holds for $T - 1$, let us consider the induction step.

$$\sum_{t=1}^{T} \frac{a_t}{1 + a_{1:t}} = \frac{a_T}{1 + a_{1:T}} + \sum_{t=1}^{T-1} \frac{a_t}{1 + a_{1:t}} \leq \frac{a_T}{1 + a_{1:T}} + \log(1 + a_{1:T-1}) \leq \log(1 + a_{1:T}),$$

where the last inequality again follows from (8) with a set to a_T and b set to $1 + a_{1:T-1}$. \hfill \square

Proposition A.2. Consider any $c \in \mathbb{R}^d$ and $r \geq 0$ and let $y = \arg\min_{\|x\| \leq 1} \frac{r}{2} \|x\|^2 + \langle c, x \rangle$. Then, if $\|c\| \geq r$, we have $y = \frac{c}{\|c\|}$.

Proof. Consider $f(x) = \frac{r}{2} \|x\|^2 + \langle c, x \rangle$. For any $\|x\| \leq 1$, we have the following.

$$f(x) \geq \frac{r}{2} \|x\|^2 - \|c\| \|x\| \geq \min_{\|z\| \leq 1} \left(\frac{r}{2} \|z\|^2 - \|c\| \|z\| \right),$$

since $\|c\| \geq r$, it is an easy exercise to verify that the RHS is minimized at $\|z\| = 1$ and thus

$$f(x) \geq \frac{r}{2} - \|c\|.$$

On the other hand, substituting $y = \frac{c}{\|c\|}$, we have $f(y) = \frac{r}{2} - \|c\|$ and the proposition follows. \hfill \square

Lemma A.3. Let c_1, \ldots, c_n be independent random unit vectors in \mathbb{R}^d (distributed uniformly on the sphere), for some parameters n, d, and let $Z = \sum_{i=1}^{n} c_i$ Then we have $\mathbb{E}[\|Z\|] \geq \Omega(\sqrt{n})$.

Proof. First, we note that since c_i are independent, we have

$$\mathbb{E}[\|Z\|^2] = \sum_{i=1}^{n} \|c_i\|^2 = n.$$

We also have

$$\mathbb{E}[(\|Z\|^2)^2] = \mathbb{E} \left[\sum_i \|c_i\|^2 + \sum_{i \neq j} \langle c_i, c_j \rangle \right]^2 \leq n^2 + \sum_{i \neq j} \mathbb{E}[\|c_i\|^2]^2 \leq 2n^2.$$

Thus by applying the Paley–Zygmund inequality to the random variable $\|Z\|^2$, we have $\mathbb{P}[\|Z\|^2 \geq n/4] = \Omega(1)$, and thus $\mathbb{P}[\|Z\| \geq \sqrt{n/2}] = \Omega(1)$. Thus the expected value is $\Omega(\sqrt{n})$. \hfill \square
B A sharper analysis of FTRL

Our goal in this section is to prove Theorem 3.1. As a first step, let us define $\psi_t(x) = \langle c_t, x \rangle + \frac{r_t}{2} \|x\|^2$, (with the understanding that $c_0 = 0$) so that by definition, we have

$$x_{t+1} = \arg\min_{\|x\| \leq 1} \psi_0(x).$$

Lemma B.1. Let ψ, x_t be as defined above. Then for any $m \in [T]$ and any vector u with $\|u\| \leq 1$, we have

$$\psi_{0:m}(x_{m+1}) + \sum_{t=m+1}^{T} \psi_t(x_{t+1}) \leq \psi_0(u).$$

When $m = 0$, the lemma is usually referred to as the FTL lemma (see e.g., [14]), and is proved by induction. Our proof follows along the same lines.

Proof. From the definition of x_{T+1} (as the minimizer), we have

$$\psi_0(u) \geq \psi_0(x_{T+1}).$$

Now, we can clearly write $\psi_0(x_{T+1}) = \psi_T(x_{T+1}) + \psi_{T-1}(x_{T+1})$. Next, observe that from the definition of x_T, we have $\psi_{T-1}(x_{T+1}) \geq \psi_{T-1}(x_T)$. Plugging this above,

$$\psi_0(u) \geq \psi_T(x_{T+1}) + \psi_{T-1}(x_{T+1}).$$

Once again, writing $\psi_{T-1}(x_T) = \psi_{T-2}(x_T) + \psi_{T-3}(x_T)$ and now using the definition of x_{T-1}, we obtain

$$\psi_0(u) \geq \psi_T(x_{T+1}) + \psi_{T-1}(x_T) + \psi_{T-2}(x_{T-1}).$$

Using the same reasoning again, and continuing until we reach the subscript $0:m$ in the last term of the RHS, we obtain the desired inequality. \qed

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let us focus on Part 2 for now (see Lemma B.4 for Part 1). Note that we can rearrange the bound we wish to prove, i.e., (3), as follows. Let z be the unit vector in the direction of $-c_{1:S}$, so that $\|c_{1:S}\| = \sum_{t=1}^{S} \langle c_t, z \rangle$. Then (3) can be rewritten as

$$\sum_{t=1}^{S} \langle c_t, z - u \rangle + \sum_{t>S} \langle c_t, x_t - u \rangle \leq \frac{\sqrt{1 + \sigma_{1:S}}}{2} + \frac{18 + 8 \log(1 + \sigma_{1:T})}{\alpha}.$$ \hspace{1cm} (9)

As a first step, we observe that $\langle c_{1:S}, z \rangle \leq \langle c_{1:S}, x_{S+1} \rangle$; indeed, $\|x_{S+1}\| \leq 1$ by definition. Thus, it will suffice to prove that

$$\sum_{t=1}^{S} \langle c_t, x_{S+1} - u \rangle + \sum_{t>S} \langle c_t, x_t - u \rangle \leq \frac{\sqrt{1 + \sigma_{1:S}}}{2} + \frac{18 + 8 \log(1 + \sigma_{1:T})}{\alpha}. \hspace{1cm} (9)$$

For proving this, we first appeal to Lemma B.1. Instantiating the lemma with $m = S$ and plugging in the definition of ψ, we get

$$\langle c_{0:S}, x_{S+1} \rangle + \frac{r_{0:S}}{2} \|x_{S+1}\|^2 + \sum_{t>S} \langle c_t, x_t \rangle + \frac{r_t}{2} \|x_{t+1}\|^2 \leq \langle c_{0:T}, u \rangle + \frac{r_{0:T}}{2} \|u\|^2.$$

Noting that $c_0 = 0$ and rearranging, we get:

$$\sum_{t=1}^{S} \langle c_t, x_{S+1} - u \rangle + \sum_{t>S} \langle c_t, x_t - u \rangle$$

$$\leq \frac{r_{0:S}}{2} (\|u\|^2 - \|x_{S+1}\|^2) + \sum_{t>S} \left(\frac{r_t}{2} (\|u\|^2 - \|x_{t+1}\|^2) + \langle c_t, x_t - x_{t+1} \rangle \right)$$

$$\leq \frac{r_{0:S}}{2} + \sum_{t>S} \left(\frac{r_t}{2} (\|u\|^2 - \|x_{t+1}\|^2) + \langle c_t, x_t - x_{t+1} \rangle \right).$$
The LHS matches the quantity we wish to bound in (9), and thus let us analyze the RHS quantity, which we denote by \(Q \).

The next observation is that if \(t > S \) and \(\sqrt{1 + \sigma_{1:t}} \geq \frac{4}{\alpha} \), then the vector \(x_{t+1} \) has norm exactly 1. This can be shown as follows. If \(t > S \), by the definition of \(S \), we have \(||c_{1:t}|| > \frac{4}{\alpha} (1 + \sigma_{1:t}) \). Thus, the vector \(-c_{1:t}/\sqrt{1 + \sigma_{1:t}}\) has norm \(\geq 1 \). From the definition of \(x_{t+1} \) (see (2)), this means that the global minimizer (without the constraint \(||x|| \leq 1 \)) of the quadratic form is a point outside the ball, and thus the minimizer of the constrained problem is its projection, which is thus a unit vector. See Proposition A.2 for further details. We next have the following claim.

Claim. Let \(M \) be the smallest index \(> S \) for which \(\sqrt{1 + \sigma_{1:M}} \geq \frac{4}{\alpha} \). Then

\[
\sqrt{1 + \sigma_{1:M-1}} \leq \max \left\{ \sqrt{1 + \sigma_{1:S}}, \frac{4}{\alpha} \right\}.
\]

The claim follows by a simple case analysis. If \(M = S + 1 \), then clearly the LHS is \(\sqrt{1 + \sigma_{1:S}} \). Otherwise, from the definition of \(M \), we have the desired bound.

Let us get back to bounding the quantity \(Q \) defined above. We split the sum into indices \(\leq M - 1 \) and \(> M \). The nice consequence of the observation above is that for all \(t \geq M \), as \(||x_{t+1}|| = 1 \), we have \(||u||^2 - ||x_{t+1}||^2 \leq 0 \), thus the term disappears. Also, for \(t < M \), we use the simple bound \(\frac{\alpha}{2} (||u||^2 - ||x_{t+1}||^2) \leq \frac{r_2}{T} \). This gives

\[
Q \leq \frac{r_{0,M-1}}{2} + \sum_{t=S+1}^{T} \langle c_t, x_t - x_{t+1} \rangle.
\]

Thus we only need to analyze the summation on the RHS. To bound the summation \(\sum_{t=S+1}^{T} \langle c_t, x_t - x_{t+1} \rangle \) consider two cases for \(M \) separately: either \(M = S + 1 \) or \(M > S + 1 \). If \(M = S + 1 \), then by Proposition B.3, \(\sum_{t=S+1}^{T} \langle c_t, x_t - x_{t+1} \rangle \leq \frac{8}{\alpha} \log(1 + \sigma_{1:T}) \). Alternatively, if \(M > S + 1 \), let us break the summation into terms with \(t \leq M - 1 \) and terms with \(t \geq M \). Proposition B.2 lets us bound the sum of the terms corresponding to \(t \leq M - 1 \) by \(4\sqrt{\sigma_{1:M-1}} < 4\alpha_{0,M-1} \leq \frac{16}{\alpha} \), where the last step is by definition of \(M \) and using the fact that \(M - 1 > S \). Then Proposition B.3 lets us bound the sum of the terms with \(t \geq M \) by \(\frac{8}{\alpha} \log(1 + \sigma_{1:T}) \). Thus in all cases we have:

\[
Q \leq \frac{r_{0,M-1}}{2} + \frac{16}{\alpha} + \frac{8}{\alpha} \log(1 + \sigma_{1:T}) \leq \frac{\sqrt{1 + \sigma_{1:S}}}{2} + \frac{18}{\alpha} + \frac{8}{\alpha} \log(1 + \sigma_{1:T}),
\]

where in the last step we used the claim and bounded the maximum with a sum.

\(\square \)

B.1 Auxiliary lemmas

Proposition B.2. For any time step \(t \leq T \), the iterates of the FTRL procedure satisfy:

\[
||x_t - x_{t+1}|| \leq \frac{2||c_t||}{\sqrt{\sigma_{1:t}} - 1}.
\]

Furthermore, in any time interval \([A, B]\) with \(1 \leq A \leq B \leq T \), we have

\[
\sum_{t=A}^{B} \langle c_t, x_t - x_{t+1} \rangle \leq 4 \left(\sqrt{\sigma_{1:B}} - \sqrt{\sigma_{1:A-1}} \right).
\]

Proof. Let us first show the first part. Define \(\psi_t(x) = \langle c_t, x \rangle + \frac{\alpha}{2} ||x||^2 \). We will invoke [20, Lemma 7], using \(\phi_1 = \psi_{0:t-1} \) and \(\phi_2 = \psi_{0:t} \). We have that \(\phi_1 \) is 1-strongly convex with respect to the norm given by \(||x||^2_{\phi_1} = r_{0:t-1} ||x||^2 \) and \(\psi_t = \phi_2 - \phi_1 \) is convex and \(2||c_t|| \) Lipschitz. Then, since \(x_t = \arg\min \phi_1 \) and \(x_{t+1} = \arg\min \phi_2 \), [20, Lemma 7] implies:

\[
||x_t - x_{t+1}|| \leq \frac{2||c_t||}{r_{0:t-1}} = \frac{2||c_t||}{\sqrt{1 + \sigma_{1:t-1}} - 1}.
\]

We can then use this to show the “furthermore” part as follows. For any \(t \) in the range, we have

\[
\langle c_t, x_t - x_{t+1} \rangle \leq ||c_t|| ||x_t - x_{t+1}|| \leq \frac{2\sigma_t}{\sqrt{1 + \sigma_{1:t-1}}} \leq \frac{2\sigma_t}{\sqrt{\sigma_{1:t}}} \leq 2 \int_{\sigma_{1:t-1}}^{\sigma_{1:t}} \frac{dy}{\sqrt{y}}.
\]
where in the third inequality, we used the fact that $\sigma_t \leq 1$, and in the last inequality, we upper bounded the term via an integral over an interval of length σ_t. Summing this over t in the interval $[A, B]$ thus gives
\[
\sum_{t=A}^{B} (c_t, x_t - x_{t+1}) \leq 2 \int_{\sigma_{A-1}}^{\sigma_{B}} \frac{dy}{\sqrt{y}} = 4 \left(\sqrt{\sigma_{B}} - \sqrt{\sigma_{A-1}} \right).
\]

Proposition B.3. Let S be an index such that for all $t > S$, $\|c_{t+1}\| \geq \frac{8}{T} (1 + c_{1:t})$, and let $t > S$ be an index for which the iterates x_t and x_{t+1} of the FTRL procedure are both unit vectors. Then,
\[
\|x_t - x_{t+1}\| \leq \frac{8\|c_t\|}{\alpha (1 + \sigma_{1:t})}.
\]
Furthermore, let $M > S$ be an index such that $\|x_t\| = 1$ for all $t \geq M$. Then,
\[
\sum_{t=M}^{T} (c_t, x_t - x_{t+1}) \leq \frac{8}{\alpha} \log(1 + \sigma_{1:T}).
\]

Proof. For simplicity, let us denote $g_t = c_{1:t} - 1$ and $g_{t+1} = c_{1:t}$. If the iterates of FTRL are unit vectors, we have
\[
x_t = -\frac{g_t}{\|g_t\|}; \quad x_{t+1} = -\frac{g_{t+1}}{\|g_{t+1}\|}.
\]
Thus their difference can be bounded as
\[
x_{t+1} - x_t = \left(\frac{g_t}{\|g_t\|} - \frac{g_t}{\|g_{t+1}\|} \right) + \left(\frac{g_t}{\|g_{t+1}\|} - \frac{g_{t+1}}{\|g_{t+1}\|} \right).
\]
The second term clearly has norm $\leq \frac{\|g_t\|}{\|g_{t+1}\|}$. Let us bound the first term:
\[
\|g_t\| \left| \frac{1}{\|g_t\|} - \frac{1}{\|g_{t+1}\|} \right| = \|g_{t+1} - g_t\| \leq \frac{\|c_t\|}{\|g_{t+1}\|}.
\]
Note that in the last step, we used the triangle inequality. Combining the two, we get
\[
\|x_{t+1} - x_t\| \leq 2 \frac{\|c_t\|}{\|c_{1:t}\|} \leq \frac{8 \|c_t\|}{\alpha (1 + \sigma_{1:t})},
\]
as desired. Let us now show the “furthermore” part. From our assumptions about M, we can appeal to the first part of the proposition, and as before, we have for any $t \geq M$,
\[
\langle c_t, x_t - x_{t+1} \rangle \leq \|c_t\| \|x_t - x_{t+1}\| \leq \frac{8\|c_t\|}{\alpha (1 + \sigma_{1:t})} \leq \frac{8 \sigma_t}{\alpha (1 + \sigma_{1:t})} \leq \frac{8}{\alpha} \int_{1+\sigma_{1:t}}^{1+\sigma_{1:t+1}} \frac{dy}{y}
\]
Now, summing this inequality over $t \in [M, T]$ gives us
\[
\sum_{t=M}^{T} (c_t, x_t - x_{t+1}) \leq \frac{8}{\alpha} \int_{1+\sigma_{1:M+1}}^{1+\sigma_{1:M+1}} \frac{dy}{y} \leq \frac{8}{\alpha} \log(1 + \sigma_{1:T}).
\]

The next lemma is a consequence of the standard FTRL analysis. We include its proof for completeness. This is also Part (1) of Theorem 3.1.

Lemma B.4. For the FTRL algorithm described earlier, for all $N \in [T]$ and for any vector u with $\|u\| \leq 1$, we have
\[
\sum_{t=1}^{N} \langle c_t, x_t - u \rangle \leq 4.5 \sqrt{1 + \sigma_{1:N}}.
\]

Proof. Suppose we use Lemma B.1 with $m = 0$ and $T = N$, then we get:
\[
\sum_{t=0}^{N} \psi_t(x_{t+1}) \leq \psi_{0,N}(u).
\]
Plugging in the value of \(\psi_t \),
\[
\sum_{i=0}^{N} (c_t, x_t - u) \leq \sum_{t=0}^{N} \frac{r_t}{2}(\|u\|^2 - \|x_{t+1}\|^2) + \sum_{t=0}^{N} (c_t, x_t - x_{t+1}).
\]

Now, we use the naive bound of \(r_{0:N} \) for the first summation on the RHS, and use Proposition A.2 to bound the second summation by \(r_{0:N} \). This completes the proof.

C Switch-once dynamic regret

Theorem 3.3. Let \(\lambda \geq 1 \) be a given parameter, and \((z_t)_{t=1}^T\) be any sequence of cost values satisfying \(z_t^2 \leq 4\sigma_t \). Let \((q_t)_{t=1}^T\) be a valid-in-hindsight sequence. The points \(p_t \) produced by \(A_{qhd} \) then satisfy:
\[
\sum_{t=1}^{T} z_t(p_t - q_t) \leq \lambda \left(1 + 3 \log(1 + \sigma_{1:T})\right).
\]

Proof. The proof is analogous to that of OGD (e.g., [30]), but we need fresh ideas specific to our setup. First, observe that since \(q \) is a valid-in-hindsight sequence, we have \(q_t \in D_t \) for all \(t \).

Thus, we have
\[
(p_{t+1} - q_t)^2 \leq (p_t - \eta_t z_t - q_t)^2 \quad \text{(since projection only shrinks distances)}
\]
\[
= (p_t - q_t)^2 - 2\eta_t (p_t - q_t) + \eta_t^2 z_t^2.
\]
\[
\implies z_t(p_t - q_t) \leq \frac{(p_t - q_t)^2 - (p_{t+1} - q_t)^2}{2\eta_t} + \frac{\eta_t}{2} z_t^2. \tag{10}
\]

We now need to sum (10) over \(t \). Note that the second term is easier to bound:
\[
\sum_{t=1}^{T} \frac{\eta_t}{2} z_t^2 \leq \frac{\lambda}{2} \sum_{t=1}^{T} \frac{4 \sigma_t}{1 + \sigma_{1:t}} \leq 2\lambda \log(1 + \sigma_{1:T}), \tag{11}
\]
where the last inequality uses Proposition A.1. Suppose \(S \) is the time step at which the switch occurs in the sequence \(q \), and let \(\delta \) be \(q_1 \) (i.e., the value in the non-zero segment). We split the first term as:
\[
\sum_{t=1}^{T} (p_t - q_t)^2 - (p_{t+1} - q_t)^2 = \sum_{t \leq S} \frac{(p_t - \delta)^2 - (p_{t+1} - \delta)^2}{2\eta_t} + \sum_{t > S} \frac{p_t^2 - p_{t+1}^2}{2\eta_t}. \tag{12}
\]

Next, by setting \(\eta_0 = \lambda \), writing
\[
\frac{(p_t - \delta)^2 - (p_{t+1} - \delta)^2}{2\eta_t} = \frac{(p_t - \delta)^2}{2\eta_{t-1}} - \frac{(p_{t+1} - \delta)^2}{2\eta_t} + \frac{(p_t - \delta)^2}{2} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}}\right),
\]
and noting that \(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} = \frac{\sigma_t}{\lambda} \), we can make the summation telescope. Doing a similar manipulation for the sum over \(t > S \), the RHS of (12) simplifies to:
\[
\frac{(p_t - \delta)^2}{2\eta_0} - \frac{(p_{S+1} - \delta)^2}{2\eta_S} + \frac{p_S^2}{2\eta_0} - \frac{p_{S+1}^2}{2\eta_S} + \sum_{t \leq S} \frac{(p_t - \delta)^2 \sigma_t}{2\lambda} + \sum_{t > S} \frac{p_t^2 \sigma_t}{2\lambda} \leq \frac{1}{2\eta_0} + \frac{|D_{S}|^2}{2\eta_S} + \sum_{t=1}^{T} \frac{|D_t|^2 \sigma_t}{2\lambda}, \tag{13}
\]

where \(|D_t| \) is the length/diameter of the domain at time \(t \), i.e., \(|D_t|^2 = \min(1, \frac{\lambda^2}{1 + \sigma_{1:t}}) \). The inequality holds because for all \(t \), both \(p_t \) and \(q_t \) are in \(D_t \). Plugging in the values of \(|D_t| \) and \(\eta_t \), the first two terms in (13) are at most \(\lambda/2 \) (because \(\lambda \geq 1 \)). Thus plugging this back into (12), we get
\[
\sum_{t=1}^{T} \frac{(p_t - q_t)^2 - (p_{t+1} - q_t)^2}{2\eta_t} \leq \lambda \left(1 + \sum_{t=1}^{T} \frac{\sigma_t}{2(1 + \sigma_{1:t})}\right).
\]

Finally, using Proposition A.1, the RHS above can be upper bounded by \(\lambda \left(1 + \frac{1}{2} \log(1 + \sigma_{1:T})\right) \).

Plugging this back into (10), summing over \(t \), and using (11), we get
\[
\sum_{t} z_t(p_t - q_t) \leq \lambda \left(1 + 3 \log(1 + \sigma_{1:T})\right). \qedhere
\]
D Proofs for Section 4

Theorem 4.1. For any B,
\[
\mathbb{E}[R_{A_{mn}, \alpha}(\check{c})] \leq \frac{78 + 38 \log(1 + \|c\|_1^2)}{\alpha} \sqrt{\sum_{t \in B} \|c_t\|^2} + 40 \sqrt{\frac{20}{\alpha} \sum_{t \in B} \|h_t\|^2 \sqrt{\log(1 + \|c\|_1^2)}}
\]
\[
= O\left(\frac{\sqrt{|B| \log T}}{\alpha}\right), \quad \text{and} \quad \mathbb{E}[Q_{A_{mn}, \alpha}(\check{c})] \leq 20 \sqrt{\|c\|_1^2}.
\]

Proof. In the proof of Theorem 3.4, we exploited the fact that Lemma 3.5 actually bounds the expected regret when $B = \emptyset$. However, when $B \neq \emptyset$, we have a more complicated relationship:
\[
\sum_{t=1}^T \mathbb{E}[\langle c_t, \hat{x}_t - u \rangle] = \sum_{t=1}^T p_t \langle c_t, -h_t - x_t \rangle + \langle c_t, x_t - u \rangle \\
\leq \sum_{t \in B} p_t (-\alpha \|c_t\|^2 - \langle c_t, x_t \rangle) + \langle c_t, x_t - u \rangle + \sum_{t \in B} p_t \langle c_t, -h_t - x_t \rangle + \langle c_t, x_t - u \rangle \\
= \sum_{t=1}^T p_t (-\alpha \|c_t\|^2 - \langle c_t, x_t \rangle) + \langle c_t, x_t - u \rangle + \sum_{t \in B} -p_t (\langle c_t, h_t \rangle - \alpha \|c_t\|^2) \\
\leq \sum_{t=1}^T p_t (-\alpha \|c_t\|^2 - \langle c_t, x_t \rangle) + \langle c_t, x_t - u \rangle + \sum_{t \in B} |D_{t-1}| (\|c_t\| \|h_t\| + \alpha \|c_t\|^2),
\]
where $|D_{t-1}| = \frac{10}{\alpha \sqrt{1 + \|c\|_1^2}}$. and the last line follows from the restrictions on p_t in Algorithm 2. The first sum in the above expression is already controlled by Lemma 3.5. For the second sum,
\[
\sum_{t \in B} |D_{t-1}| (\|c_t\| \|h_t\| + \alpha \|c_t\|^2) \leq 2 \sum_{t \in B} |D_t| (\|c_t\| \|h_t\| + \alpha \|c_t\|^2) \\
\leq 2 \sum_{t \in B} \sqrt{\frac{10 \|c_t\|^2}{1 + \sum_{T \in B, T \leq t} \|c_t\|^2}} + |D_t| \|c_t\| \|h_t\| \\
\leq 40 \sum_{t \in B} \|c_t\|^2 + 2 \sum_{t \in B} |D_t| \|c_t\| \|h_t\| \\
(\text{by Cauchy–Schwarz}) \leq 40 \sqrt{\sum_{t \in B} \|c_t\|^2 + 2 \sqrt{\sum_{t \in B} \|h_t\|^2} \sqrt{\sum_{t \in B} \|c_t\|^2} |D_t|^2} \\
\leq 40 \sqrt{\sum_{t \in B} \|c_t\|^2 + 2} \sqrt{\sum_{t \in B} \|h_t\|^2} \sqrt{\log(1 + \|c\|_1^2)}. \quad \square
\]

Theorem 4.2. Set $\alpha = \frac{1}{4}$. Then
\[
\mathbb{E}[R_{A_{mn}, \alpha}(\check{c})] \leq 312 + 152 \log(1 + \|c\|_1^2) + 80 \left(1 + \sqrt{\log(1 + \|c\|_1^2)}\right) \sqrt{\sum_{t \in B} \|c_t - h_t\|^2}
\]
\[
= O \left(\log(T) + \sum_{t=1}^T \|c_t - h_t\|^2 \log(T)\right), \quad \text{and} \quad \mathbb{E}[Q_{A_{mn}, \alpha}(\check{c})] \leq 20 \sqrt{\|c\|_1^2}.
\]

Proof. The idea is to get a bound in terms of $\|c_t - h_t\|^2$. Since $\alpha = \frac{1}{4}$, $t \in B$ is equivalent to $\langle c_t, h_t \rangle \leq \|c_t\|^2$. Thus if $t \in B$:
\[
\|c_t - h_t\|^2 = \|c_t\|^2 - 2 \langle c_t, h_t \rangle + \|h_t\|^2 \geq \frac{\|c_t\|^2}{2} + \|h_t\|^2.
\]
Therefore, we have:

\[
40 \sqrt{\sum_{t \in B} \|c_t\|^2} + 80 \sqrt{\sum_{t \in B} \|h_t\|^2 \log(1 + \|c\|^2_{1:T})} \leq 80(1 + \sqrt{\log(1 + \|c\|^2_{1:T})}) \sqrt{\sum_{t \in B} \|c_t - h_t\|^2}.
\]

Now, by Theorem 4.1 we have:

\[
E[\mathcal{R}_{\mathcal{A},\alpha}(\cdot)] \leq \frac{78 + 38 \log(1 + \|c\|^2_{1:T})}{\alpha} + 40 \sqrt{\sum_{t \in B} \|c_t\|^2} + \frac{20}{\alpha} \sqrt{\sum_{t \in B} \|h_t\|^2 \log(1 + \|c\|^2_{1:T})} \\
\leq \frac{78 + 38 \log(1 + \|c\|^2_{1:T})}{\alpha} + 80 \left(1 + \sqrt{\log(1 + \|c\|^2_{1:T})}\right) \sqrt{\sum_{t \in B} \|c_t - h_t\|^2}. \quad \square
\]

E Proofs for Section 5

Theorem 5.2. Let \(A \) be any deterministic algorithm for OLO with hints that makes at most \(C \sqrt{T} < T/2 \) queries, for some parameter \(C > 0 \). Then there is a sequence cost vectors \(c_t \) and hints \(h_t \) of unit length such that (a) \(h_t = c_t \) whenever \(A \) makes a hint query, and (b) the regret of \(A \) on this input sequence is at least \(\sqrt{T} \).

Proof. The main limitation of a deterministic algorithm \(A \) is that even if it adapts to the costs seen so far, the adversary always knows if \(A \) is going to make a hint query in the next step, and in steps where a query will not be made, the adversary knows which \(x_t \) will be played by \(A \).

Using this intuition, we define the following four-dimensional instance. For convenience, let \(e_0 \) be a unit vector in \(\mathbb{R}^4 \), and let \(S \) be the space orthogonal to \(e_0 \). The adversary constructs the instance iteratively, doing the following for \(t = 1, 2, \ldots \):

1. If the algorithm makes a hint query at time \(t \), set \(h_t = c_t = e_0 \).
2. If the algorithm does not make a hint query, then if \(x_t \) is the point that will be played by the algorithm, set \(c_t \) to be a unit vector in \(S \) that is orthogonal to \(x_t \) and to \(c_1 + \cdots + c_{t-1} \). (Note that since \(S \) is a three-dimensional subspace of \(\mathbb{R}^4 \), this is always feasible.)

For convenience, define \(I_t \) to be the set of indices \(\leq t \) in which the algorithm has asked for a hint. Then we first observe that for all \(t \),

\[
\left\| \sum_{j \in [t] \setminus I_t} c_j \right\|^2 = t - |I_t|.
\]

(14)

This is easy to see, because \(c_t \) is always orthogonal to \(e_0 \), and thus is also orthogonal to \(\sum_{j \in [t-1] \setminus I_{t-1}} c_j \). The equality (14) then follows from the Pythagoras theorem.

Thus, suppose the algorithm makes \(K \) queries in total (over the course of the \(T \) steps). By assumption \(K \leq C \sqrt{T} < T/2 \). Then we have that

\[
\left\| \sum_{j \in [T]} c_j \right\|^2 = K^2 + \left\| \sum_{j \in [T] \setminus I_T} c_j \right\|^2 = K^2 + T - K.
\]

Thus the optimal vector in hindsight (say \(u \)) achieves \(\sum_{j \in [T]} (c_j, u) = -\sqrt{T - K + K^2} \).

Let us next look at the cost of the algorithm. In every step where it makes a hint query, the best cost that \(A \) can achieve is \(-1\) (by playing \(-e_0\)). In the other steps, the construction ensures that the cost is 0. Thus the regret is at least

\[
-K + \sqrt{T - K + K^2} = \frac{T - K}{K + \sqrt{T - K + K^2}} > \frac{T/2}{K + \sqrt{T}} \geq \sqrt{T} \frac{1}{2(1 + C)}. \quad \square
\]
F Proofs for Section 6

In order to prove Theorems 6.1 and 6.2, we first provide the following technical statement that allows us to unify much of the analysis:

Lemma F.1. Suppose that A_{unc} is an unconstrained online linear optimization algorithm that outputs $u_t \in \mathbb{R}^d$ in response to costs $c_1, \ldots, c_{t-1} \in \mathbb{R}^d$ satisfying $\|c_\tau\| \leq 1$ for all τ and guarantees for some constants A and B for all $u \in \mathbb{R}^d$:

$$
\mathcal{R}_{A_{unc}}(u, \tilde{c}) \leq \epsilon + A\|u\| \sqrt{\sum_{t=1}^{T} \|c_t\|^2 \log(\|u\|T/\epsilon + 1) + B\|u\| \log(\|u\|T/\epsilon + 1)},
$$

where ϵ is an arbitrary user-specified constant. Further, suppose $A_{unc:D}$ is an unconstrained online linear optimization algorithm that outputs $y_t \in \mathbb{R}$ in response to $g_1, \ldots, g_{t-1} \in \mathbb{R}$ satisfying $|g_t| \leq 1$ for all τ and guarantees for all $y_* \in \mathbb{R}$:

$$
\sum_{t=1}^{T} g_t(y_t - y_*) \leq \epsilon + A\|y_*\| \sqrt{\sum_{t=1}^{T} g_t^2 \log(|y_*|T/\epsilon + 1) + B\|y_*\| \log(|y_*|T/\epsilon + 1)}.
$$

Finally, suppose also that $\mathbb{E} \left[\sum_{t=1}^{T} \mathbb{1}_t(c_t, h_t) \right] \geq M \sqrt{1 + \|c\|_1^2T} - N$ and $\mathbb{E} \left[\sum_{t=1}^{T} \mathbb{1}_t(c_t, h_t)^2 \right] \leq H$ and $\mathbb{E} \left[\sum_{t=1}^{T} \mathbb{1}_t(c_t, h_t) \right] \leq F \sqrt{1 + \|c\|_1^2T}$ for some constant M, N, H, F. Then both the deterministic and randomized version of Algorithm 4 guarantee:

$$
\mathbb{E} [\mathcal{R}_{A_{unc}}(u, \tilde{c})] \leq 2\epsilon + B\|u\| \log(\|u\|T/\epsilon + 1) + \frac{4A\|u\|(H + N)\sqrt{\log(\|u\|T/\epsilon + 1)}}{M} \\
\quad + \frac{2AB\|u\| \sqrt{\log(\|u\|T/\epsilon + 1) \log(2A\|u\|T \log(\|u\|T/\epsilon + 1)/(M\epsilon) + 1)}}{M} \\
\quad + \frac{2A^3F\|u\| \sqrt{\log(\|u\|T/\epsilon + 1) \log(2A\|u\|T \log(\|u\|T/\epsilon + 1)/(M\epsilon) + 1)}}{M^2}.
$$

Proof of Lemma F.1. Some algebraic manipulation of the regret definition yields:

$$
\mathbb{E}[\mathcal{R}_{A_{unc}}(u, \tilde{c})] \leq \mathbb{E} \left[\inf_{y_* \geq 0} \sum_{t=1}^{T} \langle c_t, w_t - u \rangle - y_* \sum_{t=1}^{T} \mathbb{1}_t(h_t, c_t) - \sum_{t=1}^{T} \mathbb{1}_t(h_t, c_t)(y_t - y_*) \right] \\
\leq \mathbb{E} \left[\inf_{y_* \geq 0} \sum_{t=1}^{T} \langle c_t, w_t - u \rangle - y_* \sum_{t=1}^{T} \mathbb{1}_t(h_t, c_t) + 2y_* \sum_{t=1}^{T} \mathbb{1}_t(h_t, c_t) - \sum_{t=1}^{T} \mathbb{1}_t(h_t, c_t)(y_t - y_*) \right].
$$

Now using the hypothesized bounds we have

$$
\mathbb{E} [\mathcal{R}_{A_{unc}}(u, \tilde{c})] \leq \mathbb{E} \left[\inf_{y_* \geq 0} \sum_{t=1}^{T} \langle c_t, w_t - u \rangle - y_* M \sqrt{1 + \|c\|_1^2T} + 2y_* H + y_* N - \sum_{t=1}^{T} \mathbb{1}_t(h_t, c_t)(y_t - y_*) \right] \\
\leq \inf_{y_* \geq 0} \mathbb{E} \left[2\epsilon + A\|u\| \sqrt{\sum_{t=1}^{T} \|c_t\|^2 \log(\|u\|T/\epsilon + 1) + B\|u\| \log(\|u\|T/\epsilon + 1)} \\
\quad - y_* M \sqrt{1 + \|c\|_1^2T} + 2y_* H + y_* N + Ay_* \sum_{t=1}^{T} g_t^2 \log(y_* T/\epsilon + 1) + By_* \log(y_* T/\epsilon + 1) \right]
$$

19
using Jensen inequality,

\[
\leq \inf_{y_t \geq 0} 2\epsilon + A||u|| \sqrt{\sum_{t=1}^{T} ||c_t||^2 \log(||u||T/\epsilon + 1) + B||u|| \log(||u||T/\epsilon + 1) - y_t M \sqrt{1 + ||c||^2_{1:T}}}
\]

\[
+ 2y_t H + y_t N + Ay_t \sqrt{E \left[\sum_{t=1}^{T} \mathbb{1}_{c_t, h_t} \right] \log(y_t T/\epsilon + 1) + B y_t \log(y_t T/\epsilon + 1)}
\]

\[
\leq \inf_{y_t \geq 0} 2\epsilon + A||u|| \sqrt{\sum_{t=1}^{T} ||c_t||^2 \log(||u||T/\epsilon + 1) + B||u|| \log(||u||T/\epsilon + 1) - \frac{y_t}{2} M \sqrt{1 + ||c||^2_{1:T}}}
\]

\[
+ 2y_t H + y_t N + Ay_t \sqrt{F \sqrt{1 + ||c||^2_{1:T}} \log(y_t T/\epsilon + 1) - \frac{y_t}{2} M \sqrt{1 + ||c||^2_{1:T}}}
\]

\[
\leq \inf_{y_t \geq 0} 2\epsilon + A||u|| \sqrt{\sum_{t=1}^{T} ||c_t||^2 \log(||u||T/\epsilon + 1) + B||u|| \log(||u||T/\epsilon + 1) - \frac{y_t}{2} M \sqrt{1 + ||c||^2_{1:T}}}
\]

\[
+ 2y_t H + y_t N + Ay_t \log(y_t T/\epsilon + 1) + \sup_{y_t} Ay_t \sqrt{FX \log(y_t T/\epsilon + 1) - \frac{y_t}{2} M X}
\]

\[
\leq \inf_{y_t \geq 0} 2\epsilon + A||u|| \sqrt{\sum_{t=1}^{T} ||c_t||^2 \log(||u||T/\epsilon + 1) + B||u|| \log(||u||T/\epsilon + 1) - \frac{y_t}{2} M \sqrt{1 + ||c||^2_{1:T}}}
\]

\[
+ 2y_t H + y_t N + Ay_t \log(y_t T/\epsilon + 1) + \frac{y_t A^2 F \log(y_t T/\epsilon + 1)}{2M}
\]

Now, we set

\[
y_t = \frac{2A||u|| \sqrt{\log(||u||T/\epsilon + 1)}}{M}
\]

This yields

\[
E[R_{Auc} (u, \bar{c})]
\]

\[
\leq 2\epsilon + B||u|| \log(||u||T/\epsilon + 1) + 2y_t H + y_t N + B y_t \log(y_t T/\epsilon + 1) + \frac{y_t A^2 F \log(y_t T/\epsilon + 1)}{2M}
\]

\[
\leq 2\epsilon + B||u|| \log(||u||T/\epsilon + 1) + \frac{4A||u|| (H + N) \sqrt{\log(||u||T/\epsilon + 1)}}{M}
\]

\[
+ \frac{2AB||u|| \sqrt{\log(||u||T/\epsilon + 1) \log(2A||u||T \sqrt{\log(||u||T/\epsilon + 1)/(Me) + 1})/(Me) + 1)}}{M}
\]

\[
+ \frac{2A^3 F||u|| \sqrt{\log(||u||T/\epsilon + 1) \log(2A||u||T \sqrt{\log(||u||T/\epsilon + 1)/(Me) + 1})/(Me) + 1}}{M^2}
\]

\[
\square
\]

Now, to prove Theorem 6.1, it suffices to instantiate the Lemma. We restate the Theorem below for convenience:
Theorem 6.1. The randomized version of Algorithm 4 guarantees an expected regret at most:

\[
2\epsilon + \tilde{O}\left(\|u\| \sqrt{\log(\|u\|T/\epsilon)} \left[K + \frac{\log(\|u\|T/\epsilon) \log \log(\|u\|/\epsilon)}{\alpha} + \sqrt{\sum_{t \in B} \|h_t\|^2 \log(T)} \right] \right),
\]

with expected query cost at most \(2K \sqrt{\|c\|_{1:T}^2}\).

Proof. Define

\[
p_t = \min \left(1, \frac{K}{\alpha \sqrt{1 + \|c\|_{1:t}^2}}\right),
\]

so that in the randomized version of Algorithm 4, at round \(t\), we ask for a hint with probability \(p_{t-1}\). Clearly, the expected query cost is:

\[
E\left[\sum_{t=1}^{T} \mathbb{I}_t(c_t, h_t) \right] = \sum_{t=1}^{T} \alpha p_{t-1} \|c_t\|^2 \leq K \sum_{t=1}^{T} \frac{\|c_t\|^2}{\sqrt{\|c\|_{1:t}^2}} \leq 2K \sqrt{\|c\|_{1:T}^2}.
\]

Now, to bound the regret we consider two cases. First, if \(1 + \|c\|_{1:T}^2 \leq \frac{K^2}{\alpha^2}\), then we have:

\[
E[R_{\text{unc}}(u, \vec{c})] \leq E\left[\sum_{t=1}^{T} \langle c_t, w_t - u \rangle - \sum_{t=1}^{T} \mathbb{I}_t(c_t, h_t) y_t \right] \leq E\left[\sum_{t=1}^{T} \langle c_t, w_t - u \rangle + \sum_{t=1}^{T} g_t(y_t - 0) \right]
\leq 2\epsilon + A\|u\| \sqrt{\sum_{t=1}^{T} \|c_t\|^2 \log(\|u\|T/\epsilon + 1)} + B\|u\| \log(\|u\|T/\epsilon + 1)
\leq 2\epsilon + A\|u\|K \sqrt{\log(\|u\|T/\epsilon + 1)} + B\|u\| \log(\|u\|T/\epsilon + 1),
\]

and so the result follows. Thus, we may assume \(1 + \|c\|_{1:T}^2 > \frac{K^2}{\alpha^2}\). In this case, we will calculate values for \(M\), \(H\), and \(F\) to use in tandem with Lemma F.1. First,

\[
E\left[\sum_{t=1}^{T} \mathbb{I}_t(c_t, h_t)^2 \right] \leq \sum_{t=1}^{T} p_{t-1} \|c_t\|^2 \leq K \alpha \sum_{t=1}^{T} \frac{\|c_t\|^2}{\sqrt{\|c\|_{1:t}^2}} \leq \frac{2K}{\alpha} \sqrt{1 + \|c\|_{1:T}^2}.
\]

So that we may take \(F = \frac{2K}{\alpha}\). Next, note that \(p_T = \frac{K}{\alpha \sqrt{1 + \|c\|_{1:T}^2}}\) by our casework assumption. Therefore:

\[
-\alpha p_T \|c\|_{1:T}^2 \leq -\alpha \left(1 + \|c\|_{1:T}^2\right) \leq -\alpha \sqrt{\|c\|_{1:T}^2},
\]

so that we may take \(M = K\) and \(N = \alpha\). Finally,

\[
\sum_{t \in B} p_t |\langle c_t, h_t \rangle| \leq K \sum_{t \in B} \frac{\|c_t\| \|h_t\|}{\alpha \sqrt{\|c\|_{1:t}^2}} \leq \frac{K}{\alpha} \sqrt{\sum_{t \in B} \|c_t\|^2 \sum_{t \in B} \|h_t\|^2} \leq \frac{K}{\alpha} \sqrt{\sum_{t \in B} \|h_t\|^2 \log(1 + \|c\|_{1:T}^2)},
\]

so that we may take \(H = \frac{K}{\alpha} \sqrt{\sum_{t \in B} \|h_t\|^2 \log(1 + \|c\|_{1:T}^2)}\). Then Lemma F.1 implies
\[\mathbb{E}[\mathcal{R}_{\mathcal{A}_m}(u, \tilde{c})] \leq 2\epsilon + B||u|| \log(||u||T/\epsilon + 1) + \frac{4A||u|| (H + \alpha) \log(||u||T/\epsilon + 1)}{M} \]
\[+ \frac{2AB||u|| \sqrt{\log(||u||T/\epsilon + 1)} \log(2A||u||T \sqrt{\log(||u||T/\epsilon + 1)}/(M\epsilon + 1))}{M} \]
\[+ \frac{2A^3 F||u|| \sqrt{\log(||u||T/\epsilon + 1)} \log(2A||u||T \sqrt{\log(||u||T/\epsilon + 1)}/(M\epsilon + 1))}{M^2} \]
\[\leq 2\epsilon + B||u|| \log(||u||T/\epsilon + 1) + \frac{4A||u|| \sqrt{\log(||u||T/\epsilon + 1)} \sum_{t \in \mathbb{B}} ||h_t||^2 \log(1 + ||c||_1^2)}{K} \]
\[+ \frac{4A||u|| \alpha \sqrt{\log(||u||T/\epsilon + 1)}}{K} \]
\[+ \frac{2AB||u|| \sqrt{\log(||u||T/\epsilon + 1)} \log(2A||u||T \sqrt{\log(||u||T/\epsilon + 1)}/(K\epsilon + 1))}{K} \]
\[+ \frac{2A^3||u|| \sqrt{\log(||u||T/\epsilon + 1)} \log(2A||u||T \sqrt{\log(||u||T/\epsilon + 1)}/(K\epsilon + 1))}{K\alpha} \].

Simplifying the expression yields
\[\mathbb{E}[\mathcal{R}_{\mathcal{A}_m}(u, \tilde{c})] \]
\[\leq 2\epsilon + \tilde{O} \left(\frac{||u|| (\log(||u||T/\epsilon))^{3/2} \log \log(||u||/\epsilon)}{K} + \frac{\sqrt{\log(||u||T/\epsilon)} \sum_{t \in \mathbb{B}} ||h_t||^2 \log(1 + ||c||_1^2)}{\alpha} \right). \square \]

F.1 Deterministic version

Before providing the proof of Theorem 6.2, we need the following auxiliary statement.

Lemma F.2. Suppose \(\mathbb{B} = \emptyset \). Then for all \(t \), the deterministic version of Algorithm 4 guarantees:

\[\sqrt{||c||_{1:T-1}^2} - K - 1 - \frac{K}{2\alpha} \leq \sum_{t=1}^{T} I_t \langle c_t, h_t \rangle \leq K \sqrt{1 + ||c||_{1:T-1}^2}. \]

Proof. Define \(Z_t = 1 + \sum_{t=1}^{T} I_t \langle c_t, h_t \rangle \) with \(Z_0 = 1 \). We will instead prove the slightly different statement that we will later show implies the desired result:

\[K \sqrt{||c||_{1:T-1}^2} - K - \frac{K}{2\alpha} \leq Z_T \leq 1 + K \sqrt{1 + ||c||_{1:T-1}^2}. \]

The upper bound is immediate from the definition of \(Z_T \) and the fact that \(\langle c_t, h_t \rangle \leq 1 \). For the lower bound, we will prove a slightly different statement that we will later show implies the desired result:

\[\text{for all } t \geq 0, \ Z_t \geq K \sqrt{1 + ||c||_{1:t}^2} - K \sum_{t' \leq t} \frac{||c_{t'}||^2}{2\sqrt{||c||_{1:t'}^2}}. \]

We proceed by induction. The base case for \(t = 0 \) is clear from definition of \(Z_t \). Suppose the statement holds for some \(t \). Then consider two cases, either \(Z_t < K \sqrt{1 + ||c||_{1:t}^2} \) or not. If \(Z_t \geq K \sqrt{1 + ||c||_{1:t}^2} \), then \(Z_{t+1} = Z_t \geq K \sqrt{1 + ||c||_{1:t}^2} \geq K \sqrt{1 + ||c||_{1:t+1}^2} - K \) and so the statement holds. Alternatively, suppose \(Z_t < K \sqrt{1 + ||c||_{1:t}^2} \). Then:
\[Z_{t+1} = Z_t + (c_{t+1}, h_{t+1}) \]
\[\geq K \sqrt{1 + \|c\|_1^2 - K - \sum_{t' \leq t} \frac{\|c_{t'}\|^2}{2 \sqrt{\|c\|_1^2}} + \alpha \|c_{t+1}\|^2} \]
\[\geq K \sqrt{1 + \|c\|_1^2 - K - \frac{K \|c_{t+1}\|^2}{2 \sqrt{1 + \|c\|_1^2}} - K - \sum_{t' \leq t} \frac{\|c_{t'}\|^2}{2 \sqrt{\|c\|_1^2}} + \alpha \|c_{t+1}\|^2} \]
\[\geq K \sqrt{1 + \|c\|_1^2 - K - \frac{K \|c_{t+1}\|^2}{2 \sqrt{\|c\|_1^2}} - K - \sum_{t' \leq t} \frac{\|c_{t'}\|^2}{2 \sqrt{\|c\|_1^2}} + \alpha \|c_{t+1}\|^2} \]
\[\geq K \sqrt{1 + \|c\|_1^2 - K - \sum_{t' \leq t} \frac{\|c_{t'}\|^2}{2 \sqrt{\|c\|_1^2}}} \]
so that the induction is complete.

Finally, observe that if \(\tau \) is the largest index such that \(\sqrt{\|c\|_1^2} \leq \frac{K}{2\alpha} \), then
\[\sum_{t' \leq \tau + 1} \frac{\|c_{t'}\|^2}{2 \sqrt{\|c\|_1^2}} \leq \sum_{t' = 1}^{\tau} \frac{\|c_{t'}\|^2}{2 \sqrt{\|c\|_1^2}} \leq \sqrt{\|c\|_1^2} \leq \frac{K}{2\alpha}. \]

Now we can prove Theorem 6.2:

Theorem 6.2. If \(B = \emptyset \), then the deterministic version of Algorithm 4 guarantees:
\[\sum_{t=1}^{T} \langle c_t, x_t - u \rangle \leq 2\epsilon + O \left(\frac{\|u\| \log(\|u\|T/\epsilon + 1)}{\alpha} + \frac{\|u\| \log^{3/2}(\|u\|T/\epsilon) \log \log(\|u\|T/\epsilon)}{K} \right), \]
with a query cost at most \(2K \sqrt{\|c\|_1^2}T \).

Proof. From Lemma F.2 we have that the query cost is at most \(K \sqrt{\|c\|_1^2}T \). To bound the regret, we will appeal to Lemma F.1, which requires finding values for \(M, N, H, F \). First, again by Lemma F.2, we have:
\[K \sqrt{1 + \|c\|_1^2} - 3K - 1 - \frac{K}{2\alpha} \leq K \sqrt{\|c\|_1^2}T - K - 1 - \frac{K}{2\alpha} \leq \sum_{t=1}^{T} \mathbb{I}_t(c_t, h_t). \]
So that we may set \(M = K \) and \(N = 3K + 1 + \frac{K}{2\alpha} \). Next, since \(B = \emptyset \), \(H = 0 \). Finally, since all hints are \(\alpha \)-good, we have
\[\sum_{t=1}^{T} \mathbb{I}_t(c_t, h_t)^2 \leq \sum_{t=1}^{T} \mathbb{I}_t(c_t, h_t) \leq K \sqrt{\|c\|_1^2}T, \]
so that we may take \(F = K \). Therefore, noticing that the expected regret is the actual regret since the algorithm is deterministic, we have
\[R_{\Delta m}(u, \epsilon) \leq 2\epsilon + B\|u\| \log(\|u\|T/\epsilon + 1) + \frac{4A\|u\|(H + N)\sqrt{\log(\|u\|T/\epsilon + 1)}}{M} \]
\[+ \frac{2AB\|u\|\sqrt{\log(\|u\|T/\epsilon + 1)} \log(2A\|u\|T\sqrt{\log(\|u\|T/\epsilon + 1)}/(M\epsilon + 1))}{M} \]
\[+ \frac{2A^3F\|u\|\sqrt{\log(\|u\|T/\epsilon + 1)} \log(2A\|u\|T\sqrt{\log(\|u\|T/\epsilon + 1)}/(M\epsilon + 1))}{M^2} \]
\[\leq 2\epsilon + B\|u\| \log(\|u\|T/\epsilon + 1) + 4A\|u\| \left(\frac{4}{\alpha} + \frac{1}{K} \right) \sqrt{\log(\|u\|T/\epsilon + 1)} \]
\[+ \frac{2AB\|u\|\sqrt{\log(\|u\|T/\epsilon + 1)} \log(2A\|u\|T\sqrt{\log(\|u\|T/\epsilon + 1)}/(K\epsilon + 1))}{K} \]
\[+ \frac{2A^3\|u\|\sqrt{\log(\|u\|T/\epsilon + 1)} \log(2A\|u\|T\sqrt{\log(\|u\|T/\epsilon + 1)}/(K\epsilon + 1))}{K^2} \]
\[\leq 2\epsilon + O \left(\frac{\|u\|\sqrt{\log(\|u\|T/\epsilon + 1)}}{\alpha} + \frac{\|u\|\log^{3/2}(\|u\|T/\epsilon) \log \log(\|u\|T/\epsilon)}{K} \right). \]