A Derivation of Variational Log-Partition Function

\[
\max_q \mathbb{E}_{q(x)} [f_\theta(x)] + H(q) \\
= \max_q \int q(x) f_\theta(x) \, dx - \int q(x) \log(q(x)) \, dx \\
= \max_q \int q(x) \log \left(\frac{\exp(f_\theta(x))}{q(x)} \right) \, dx \\
= \max_q \int q(x) \log \left(\frac{\exp(f_\theta(x)) / Z(\theta)}{q(x)} \right) \, dx + \log Z(\theta) \\
= \max_q \int q(x) \log \left(\frac{\exp(f_\theta(x)) / Z(\theta)}{q(x)} \right) \, dx + \log Z(\theta) \\
= \max_q -KL(q(x) || p_\theta(x)) + \log Z(\theta) \\
= \log Z(\theta)
\]

B 2C Loss as a Variational Lower Bound of Entropy

In Section 2.4 we use 2C loss as a lower bound of the entropy. Here we provide the proof.

Given samples \((x_1, y)\) from \(p(x_1)p(y|x_1)\) and additional \(M-1\) samples \(x_2, \ldots, x_M\), Eq. (10) in [40] have shown that the InfoNCE loss [47] is a lower bound of mutual information:

\[
I(X; Y) \geq \mathbb{E} \left[\frac{1}{M} \sum_{i=1}^{M} \log \frac{\exp(f(x_i, y_i))}{\sum_{j=1}^{M} \exp(f(x_i, y_j))} \right]
\]

where the expectation is over \(M\) independent samples from the joint distribution: \(\Pi_j p(x_j, y_j)\) and \(f\) can be any function.

Let

\[
f(x_i, y_j) = \begin{cases}
I(x_i)^\top e(y_i)/t, & \text{for } i = j \\
I(x_i)^\top I(x_j)/t, & \text{for } i \neq j,
\end{cases}
\]

We have

\[
I(X; Y) \geq \mathbb{E} \left[\frac{1}{M} \sum_{i=1}^{M} \log \left(\frac{\exp \left(I(x_i)^\top e(y_i)/t \right)}{\exp(I(x_i)^\top e(y_i)/t) + \sum_{j=1}^{M} \exp \left(I(x_j)^\top I(x_j)/t \right)} \right) \right],
\]

which is Eq. (7) in [16].

Since \(H(X) = I(X; Y) + H(X|Y)\) and \(H(X|Y) \geq 0, H(X) \geq I(X; Y)\). Therefore, 2C loss is a variational lower bound of \(H(X)\).

C Implementation Issue of Hinge Loss

In Section 2.2 and Section 2.3, we derive the loss functions \(L_{d_1}\) and \(L_{d_2}\) as the loss in Wasserstein GAN [2]. In practice, we use the hinge loss as proposed in Geometric GAN [26] for better convergence. An intuitive combination of \(L_{d_1}\) and \(L_{d_2}\) can be as following:

\[
\text{Hinge}(f_\theta(x_{\text{real}}, y), f_\theta(x_{\text{fake}}, y)) + \alpha \cdot \text{Hinge}(h_\theta(x_{\text{real}}), h_\theta(x_{\text{fake}})),
\]

where \(\text{Hinge}()\) is the hinge loss function proposed in [26].

The property of the hinge loss encourages the output value of \(f_\theta(x_{\text{real}}, y), h_\theta(x_{\text{real}})\) to \(1\), and \(f_\theta(x_{\text{fake}}, y), h_\theta(x_{\text{fake}})\) to \(-1\), which leads to better stability in optimization generally. However, since \(h_\theta(x) = \log \sum_y \exp(f_\theta(x)[y])\), we notice that encouraging the output of both \(f_\theta, h_\theta\) into the same scale harms the optimization. Therefore, we use the following combination instead:

\[
\text{Hinge}(f_\theta(x_{\text{real}}, y) + \alpha \cdot h_\theta(x_{\text{real}}), f_\theta(x_{\text{fake}}, y) + \alpha \cdot h_\theta(x_{\text{fake}})).
\]

The new formulation leads to more stable optimization and is less sensitive to the parameter \(\alpha\) empirically.
D Experimental Setup Details

We use hinge loss [26] and apply spectral norm [35] on all models to stabilize the training. We adopt the self-attention technique [50] and horizontal random flipping [52] to provide better generation quality. We apply moving average update [17, 31, 49] for generators after 1,000 generator updates for CIFAR-10 and 20,000 generator updates for Tiny ImageNet with a decay rate of 0.9999. We follow the setting of 2C-loss in [16], using $\lambda_c = 1$ and 512-dimension linear projection layer for CIFAR-10 and 768-dimension linear projection layer for Tiny ImageNet. We use Adam [19] optimizer with batch size 64 for CIFAR-10 and batch size 256 for Tiny ImageNet. The training takes 150,000 steps for CIFAR-10 and 100,000 steps for Tiny ImageNet.

E Training Algorithm

Input: Unconditional GAN loss weight: α. 2C loss weight: λ_c. Classification loss weight: λ_{clf}. Parameters of the discriminator and the generator: (θ, ϕ).

Output: (θ, ϕ)

Initialize (θ, ϕ)

for $\{1, \ldots, n_{\text{iter}}\}$ do

for $\{1, \ldots, n_{\text{dis}}\}$ do

Sample $\{(x_i, y_i)\}_{i=1}^{m} \sim p_d(x, y)$

Sample $\{z_i\}_{i=1}^{m} \sim p(z)$

Calculate L_D by Eq. (11)

$\theta \leftarrow$ Adam($L_D, lr_d, \beta_1, \beta_2$)

end for

Sample $\{(y_i)\}_{i=1}^{m} \sim p_d(y)$ and $\{z_i\}_{i=1}^{m} \sim p(z)$

Calculate L_G by Eq. (12)

$\phi \leftarrow$ Adam($L_G, lr_g, \beta_1, \beta_2$)

end for

F Discriminator Designs of Existing cGANs and their ECGAN Counterparts

Fig. 2 depicts the discriminator designs of existing cGANs and their ECGAN counterparts.

G Images Generated by ECGAN

Fig. 3, Fig. 4, Fig. 5 shows the images generated by ECGAN for CIFAR-10, Tiny ImageNet, and ImageNet respectively.
Figure 2: Discriminator Designs of Existing cGANs and their ECGAN Counterparts
Figure 3: CIFAR-10 images generated by ECGAN-UC (FID: 7.89, Inception Score: 10.06, Intra-FID: 41.42)
Figure 4: Tiny ImageNet images generated by ECGAN-UC (FID: 17.16, Inception Score: 17.77, Intra-FID: 201.66)
Figure 5: ImageNet images generated by ECGAN-UCE (FID: 8.491, Inception Score: 80.685)