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Abstract

We study a quadrature, proposed by Ermakov and Zolotukhin in the sixties, through
the lens of kernel methods. The nodes of this quadrature rule follow the distribution
of a determinantal point process, while the weights are defined through a linear
system, similarly to the optimal kernel quadrature. In this work, we show how
these two classes of quadrature are related, and we prove a tractable formula of the
expected value of the squared worst-case integration error on the unit ball of an
RKHS of the former quadrature. In particular, this formula involves the eigenvalues
of the corresponding kernel and leads to improving on the existing theoretical
guarantees of the optimal kernel quadrature with determinantal point processes.

1 Introduction

Integrals appear in many scientific fields as quantities of interest per se. For example, in statistics,
they represent expectations [27], while in mathematical finance, they represent the prices of financial
products [17]. Unfortunately, integrals that can be written in closed form are exceptional. In general,
their values are only known through approximations. For this reason, numerical integration is at the
heart of many tasks in applied mathematics and statistics. Among all the possible approximation
schemes, quadratures are the most practical since they approximate the integral of a function by a
finite mixture of its evaluations. In this work, we focus on quadrature rules that take the form∫

X
f(x)g(x)dω(x) ≈

∑
i∈[N ]

wif(xi), (1)

where the nodes xi are independent of f and g, while the weights wi depend only on g. The nodes and
the weights of a quadrature may be seen as degrees of freedom that the practitioner may tune in order
to achieve a given level of approximation error. The design of quadratures gave birth to a rich literature
from Gaussian quadrature [15] to Monte Carlo methods [25] to quadratures based on determinantal
point processes (DPPs) [1]. These latter form a large class of probabilistic models of repulsive random
subsets that make numerical integration possible in a variety of domains with strong theoretical
guarantees. In particular, central limit theorems with asymptotic convergence rates that scale better
than the typical Monte Carlo rate O(N−1/2) were proven for several DPP based quadratures: when
the integrand is a C1 function [1] or even when the integrand is non-differentiable [10]. Moreover,
it is possible to design quadrature rules based on DPPs with non-asymptotic guarantees and with
rates of convergence that adapt to the smoothness of the integrand. This is the case of the quadrature
proposed by Ermakov and Zolotukhin in [14] and recently revisited in [16], and the optimal kernel
quadrature [3].

In this work, we study the quadrature rule proposed by Ermakov and Zolotukhin (EZQ) through the
lens of kernel methods. We start by comparing the weights of EZQ to the weights of the optimal
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kernel quadrature (OKQ), and we prove that they both belong to a broader class of quadrature rules
that we call kernel based interpolation quadrature. Then, we study the approximation quality of EZQ
in reproducing kernel Hilbert spaces (RKHSs). This is done by proving a general tractable formula of
the expected value of the squared worst-case integration error for functions that belong to the unit ball
of an RKHS when the nodes follow the distribution of a determinantal point process. This formula
involves principally the eigenvalues of the integral operator, and converges to 0 at a slightly slower
rate than the optimal rate. Interestingly, this analysis yields a better upper bound for the optimal
kernel quadrature with DPPs proposed initially in [3]. Comparably to the theoretical guarantees
given in [14, 16], our theoretical guarantees are independent of the choice of the test function. This
facilitates the comparison of EZQ with other quadratures such as OKQ.

The rest of the article is organized as follows. Section 2 reviews the work of [14] and recall key
concepts on kernel based quadrature. In Section 3, we present the main results of this work and their
consequences. A sketch of the proof of the main theorem is given in Section 4. We illustrate the
theoretical results by numerical experiments in Section 5. Finally, we give a conclusion in Section 6.

Notation and assumptions. We use the notation N∗ = Nr {0}. We denote by ω a Borel measure
supported on X , and we denote by L2(ω) the Hilbert space of square integrable real-valued functions
on X with respect to ω, equipped with the inner product 〈·, ·〉ω, and the associated norm ‖.‖ω. For
N ∈ N∗, we denote by ω⊗N the tensor product of ω defined on XN . Moreover, we denote by F the
RKHS associated to the kernel k : X × X → R that we assume to be continuous and satisfying the
condition

∫
X k(x, x)dω(x) < +∞. In particular, we assume the Mercer decomposition

k(x, y) =
∑
m∈N∗

σmφm(x)φm(y), (2)

to hold, where the convergence is pointwise, and σm and φm are the corresponding eigenvalues and
eigenfunctions of the integral operator Σ defined for f ∈ L2(ω) by

Σf(·) =
∫
X
k(·, y)f(y)dω(y). (3)

We assume that the sequence σ = (σm)m∈N∗ is non-increasing and its elements are non-vanishing,
and we assume that the corresponding eigenfunctions φm are continuous. Note that the φm are
normalized: ‖φm‖ω = 1 for m ∈ N∗. In particular, (φm)m∈N∗ is an o.n.b. of L2(ω), and every
element f ∈ F satisfies ∑

m∈N∗

〈f, φm〉2ω
σm

< +∞. (4)

Moreover, for every N ∈ N∗, we denote by EN the eigen-subspace of L2(ω) spanned by
φ1, . . . , φN . For any kernel κ : X × X → R, and for x ∈ XN , we define the kernel matrix
κ(x) := (κ(xi, xj))i,j∈[N ] ∈ RN×N . Finally, we denote in bold fonts the corresponding kernel
matrices: K(x) for the kernel k, KN (x) for the kernel kN , K⊥N (x) for the kernel k⊥N , κ(x) for
the kernel κ... Similarly, for any function µ : X → R and for x ∈ XN , we define the vector of
evaluations µ(x) := (µ(xi))i∈[N ] ∈ RN .

2 Related work

In the section, we review some results that are relevant to the contribution.

2.1 Ermakov-Zolotukhin quadrature

The quadrature rule proposed by Ermakov and Zolotukhin in [14] deals with integrals that write∫
X
f(x)φm(x)dω(x), (5)

where f ∈ L2(ω), and (φm)m∈N∗ is an orthonormal family with respect to the measure ω. Its
construction goes as follows. Let N ∈ N∗ and let x ∈ XN such that the matrix

ΦN (x) := (φn(xi))(n,i)∈[N ]×[N ]
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is non-singular. For n ∈ [N ], define

IEZ,n(f) =
∑
i∈[N ]

ŵEZ,n
i f(xi), (6)

where ŵEZ,n := (ŵEZ,n
i )i∈[N ] ∈ RN is given by ŵEZ,n = ΦN (x)−1en, with en is the vector of

RN with the n-th coordinate is 1 and the rest are 0 1. We can prove easily that this quadrature is exact

∀f ∈ Span(φn)n∈[N ],
∑
i∈[N ]

ŵEZ,n
i f(xi) =

∫
X
f(x)φn(x) dω(x). (7)

A quadrature rule that satisfies (7) is typically called an interpolatory quadrature rule.

Now, if f /∈ Span(φn)n∈[N ], the authors studied the expected value and the variance of IEZ,n(f)

when x = (x1, . . . , xN ) is taken to be a random variable in XN that follows the distribution of
density

pDPP(x1, . . . , xN ) :=
1

N !
Det2 ΦN (x), (8)

with respect to the product measure ω⊗N defined on XN . As it was observed in [16], the nodes of
the quadrature follow the distribution of the determinantal point process of reference measure ω and
marginal kernel κN defined by κN (x, y) =

∑
n∈[N ] φn(x)φn(y). We refer to [20] for further details

on determinantal point processes. Now, we recall the main result of [14].
Theorem 1. Let x be a random subset of X that follows the distribution of DPP of kernel κN and
reference measure ω. Let f ∈ L2(ω), and n ∈ [N ]. Then

EDPPI
EZ,n(f) =

∫
X
f(x)φn(x)dω(x), (9)

and
VDPPI

EZ,n(f) =
∑

m≥N+1

〈f, φm〉2ω. (10)

Theorem 1 shows that the IEZ,n(f) is an unbiased estimator of
∫
X f(x)φn(x)dω(x), and its variance

depends on the coefficients 〈f, φm〉ω for m ≥ N + 1. Consequently, the expected squared error of
the quadrature is equal to the variance of IEZ,n(f) and it is given by

EDPP

∣∣∣∣ ∫
X
f(x)φn(x)dω(x)−

∑
i∈[N ]

ŵEZ,n
i f(xi)

∣∣∣∣2 =
∑

m≥N+1

〈f, φm〉2ω. (11)

The identity (11) gives a theoretical guarantee for an interpolatory quadrature rule when the nodes
follow the distribution of the DPP defined by (8). Compared to existing work on the literature
[11, 22, 23, 24], (11) is generic and applies to any orthonormal family.

Now, we may observe that the expected squared error in (11) depends strongly on the function f . This
makes the comparison between EZQ and other quadratures, based on some test function f , tricky: the
choice of f may favor (or disfavor) EZQ. In order to circumvent this difficulty, we suggest to study
a figure of merit that is independent of the choice of the function f . This is possible using kernels
through the study of the worst-case integration error on the unit ball of an RKHS. The definition of
this quantity will be recalled in the following section.

2.2 The worst integration error in kernel quadrature

The use of the kernel framework in the context of numerical integration can be tracked back to the
work of Hickernell [18, 19], who introduced the use of kernels to the quasi Monte Carlo community.
Their use was popularized in the machine learning community by [28, 9]. In this framework, the
quality of a quadrature is assessed by the worst-case integration error on the unit ball of an RKHS F
associated to some kernel k : X × X → R+. This quantity is defined as follows

sup
f∈F,
‖f‖F≤1

∣∣∣ ∫
X

f(x)g(x)dω(x)−
∑
i∈[N ]

wif(xi)
∣∣∣. (12)

1The dependency of the vector ŵEZ,n on x was dropped for simplicity.
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This quantity reflects how good is the quadrature uniformly on the unit ball of F . Interestingly, this
quantity has a closed formula ∥∥∥∥µg − ∑

i∈[N ]

wik(xi, .)

∥∥∥∥
F
, (13)

where µg = Σg is the so-called embedding of g in the RKHS F . We shall use in Section 3.2 the
equivalent expression (13) of the worst-case integration error, to derive a closed formula of

EDPP sup
f∈F,
‖f‖F≤1

∣∣∣ ∫
X

f(x)g(x)dω(x)−
∑
i∈[N ]

ŵEZ,n
i f(xi)

∣∣∣2. (14)

By now, we observe that the weights ŵEZ,n
i of EZQ are non-optimal in the sense that they do not

minimize (13). By definition, the optimal kernel quadrature for a given configuration x, such that
the kernel matrixK(x) is non-singular, is the quadrature with nodes the xi and weights the ŵi that
minimize (13). We specify in Section 3.1 the subtle difference between the quadrature of Ermakov
and Zolotukhin and the optimal kernel quadrature. Before that, we review the existing constructions
of the optimal kernel quadrature in the following section.

2.3 The design of the optimal kernel quadrature

The optimal kernel quadrature may be calculated numerically under the assumption that the matrix
K(x) is non-singular. Indeed, for a given configuration of nodes x ∈ XN , the square of (13) is
quadratic on w and have a unique solution given by ŵOKQ,g =K(x)−1µg(x)

2. In particular, the
optimal mixture

∑
i∈[N ] ŵ

OKQ,g
i k(xi, .) takes the same values as µg on the nodes xi: the optimal

mixture interpolates the function µg on the configuration of nodes x. At this level, x is still a
degree of freedom and need to be designed. This task was tackled by different approaches. One
approach consists on using adhoc designs for which a theoretical analysis of the convergence rate
is possible. This is the case of, inter alia, the uniform grid in the periodic Sobolev space [6, 26],
higher-order digital nets sequences in tensor products of Sobolev spaces [8], or tensor product of
scaled Hermite roots in the RKHS defined by the Gaussian kernel [22]. Another approach consists on
using a sequential algorithm to build up the configuration x [12, 13, 21, 7]. In general, each step of
these greedy algorithms requires to solve a non-convex problem and costly approximations must be
employed. Alternatively, random designs, based on determinantal point processes and their mixtures
[3, 4], were shown to have strong theoretical guarantees and competitive empirical performances.
More precisely, it was shown that if x follows the distribution of DPP of reference measure ω and
marginal kernel κN , and if g ∈ L2(ω) such that ‖g‖ω ≤ 1, then

EDPP

∥∥∥∥µg − ∑
i∈[N ]

ŵOKQ,g
i k(xi, .)

∥∥∥∥2
F
≤ 2σN+1 + 2

( ∑
n∈[N ]

|〈g, φn〉ω|
)2
NrN , (15)

where rN =
∑
m≥N+1 σm [2] (Theorem 4.8). However, numerical simulations suggest that the l.h.s.

of (15) converges to 0 at the faster rate O(σN+1), which corresponds to the best achievable rate
according to [4]. This optimal rate was proved to be achieved, under some mild conditions on the
eigenvalues σn, using the distribution of continuous volume sampling (CVS) [4]. This distribution is
a mixture of determinantal point processes and is closely tied to the projection DPP used in [3] and
comes with the following guarantee

∀g ∈ L2(ω), ECVS

∥∥∥∥µg − ∑
i∈[N ]

ŵOKQ,g
i k(xi, .)

∥∥∥∥2
F
=
∑
m∈N∗

〈g, φn〉2ωεm(N), (16)

where εm(N) = O(σN+1) for every m ∈ N∗, so that the expected squared worst-integration error of
OKQ under the continuous volume sampling distribution scales as O(σN+1) for every g ∈ L2(ω).

2The dependency of the vector ŵOKQ,g on x was dropped for simplicity.
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3 Main results

This section gathers the main contributions of this article. In Section 3.1, we prove that both EZQ
and OKQ belong to a larger class of quadrature rules called kernel-based interpolation quadrature
(KBIQ). In Section 3.2, we prove a close formula of the expected squared worst-case integration error
of EZQ. In Section 3.3, we use Theorem 3 to improve on the existing theoretical guarantees of OKQ
with DPPs.

3.1 Kernel-based interpolation quadrature

In this section, we define a new class of quadrature rules that extends both Ermakov-Zolotukhin
quadrature and the optimal kernel quadrature. We start by the following observation: the weights
ŵEZ,n
i (x) of EZQ, defined in (6), writes as

ŵEZ,n(x) = ΦN (x)−1en. (17)

By observing that φn(x) = ΦN (x)ᵀen, and κN (x) = ΦN (x)ᵀΦN (x), we prove that

ŵEZ,n(x) = κN (x)−1φn(x), (18)

Equivalently, we have φn(x) = κN (x)ŵEZ,n(x). In other words,
∑
i∈[N ] ŵ

EZ,n
i (x)κN (xi, .) takes

the same values as φn on the nodes xi: ŵEZ,n(x) is the vector resulting of the interpolation of φn
by the kernel κN . From this observation, we define kernel-based interpolation quadrature as an
extension of EZQ as follows: let γ := (γm)m∈N∗ be a sequence of positive real numbers, and let
M ∈ N∗ ∪ {+∞}. Define the kernel κγ,M on X × X by

∀x, y ∈ X , κγ,M (x, y) =

M∑
m=1

γmφm(x)φm(y). (19)

Now, starting from a configuration x ∈ XN such that DetκN (x) > 0, we have Detκγ,M (x) > 0 3,
and for a given g ∈ L2(ω), we define the vector of weights ŵγ,M,g(x) ∈ RN by

ŵγ,M,g(x) = κγ,M (x)−1µγ,Mg (x), (20)

where

µγ,Mg (x) =

M∑
m=1

γm〈g, φm〉ωφm(x). (21)

We check again that
∑
i∈[N ] ŵ

γ,M,g
i κγ,M (xi, .) takes the same values as µγ,Mg on the nodes xi: the

mixture interpolates µγ,Mg on the nodes xi. Now, for a given g ∈ L2(ω), the vector of weights
ŵγ,M,g(x) have two degrees of freedom: the sequence γ and the rank of the kernel M . These
degrees of freedom may be mixed in a variety of ways to cover a large class of quadrature rules.
In particular, we show in Section 3.1.1 that, for any sequence γ, KBIQ is equivalent to EZQ when
M = N , and we show in Section 3.1.2 that KBIQ is equivalent to OKQ when M = +∞ and γ = σ;
as summarized in Table 1. We may also consider M to be finite but strictly larger than N . Yet, the
theoretical analysis of these intermediate quadrature rules is beyond the scope of this work.

Quadrature M γ µγ,Mg κγ,M

EZQ N Any
∑
n∈[N ] γn〈g, φn〉ωφn κγ,N

EZQ N γm = 1 gN :=
∑
n∈[N ]〈g, φn〉ωφn κN

. . . . . . . . . . . . . . .
OKQ +∞ σ µg k

Table 1: An overview of some examples of KBIQ with the corresponding couples (κγ,M ,µγ,Mg ).

3See Appendix D.1. in [3] for a proof.
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3.1.1 EZQ is a special case of KBIQ

We recover EZQ, as defined in [14, 16], by taking M = N , and γ is defined by γm = 1 for every
m ∈ N∗, and g ≡ φn for some n ∈ [N ]. The equivalent definition (20) extends EZQ to the situation
when g /∈ EN . Even better, we show in the following that ŵγ,N,g(x) is independent of γ when
M = N . In particular, for any sequence of positive numbers γ we have

∀n ∈ [N ], ŵγ,N,φn(x) = ŵEZ,n(x). (22)

Proposition 2. Let g ∈ EN , and let x ∈ XN such that DetκN (x) > 0. Let γ = (γm)m∈N∗ and
γ̃ = (γ̃m)m∈N∗ be two sequences of positive numbers. We have

ŵγ,N,g(x) = ŵγ̃,N,g(x). (23)

Thanks to the invariance of ŵγ,N,g with respect to γ, we simplify the notation and we write
ŵEZ,g instead 4. Moreover, using this invariance, EZQ may be seen as an approximation of OKQ
when g ∈ EN . Indeed, by approximating the kernel matrix K(x) ≈ KN (x) where kN (x, y) =∑

n∈[N ] σnφn(x)φn(y), we have

K(x)−1µg(x) ≈ ŵEZ,g, (24)

sinceKN (x)−1µg(x) = ŵ
EZ,g by Proposition 2. Interestingly, this approximation is reminiscent to

the one used in [23] in the case of the Gaussian kernel.

3.1.2 OKQ is a special case of KBIQ

The optimal kernel quadrature is a special case of KBIQ when M = +∞ and γ = σ. Indeed, in this
case, we have κγ,M = k, and µγ,Mg = µg , so that

ŵσ,M,g(x) =K(x)−1µg(x) = ŵ
OKQ,g. (25)

In other words, Ermakov-Zolotukhin quadrature and the optimal kernel quadrature are extreme
instances of interpolation based kernel quadrature that correspond to the regimes M = N and
M = +∞. As it was shown in Proposition 2, the weights of EZQ depend only on the eigenfunctions
φm and do not depend on the eigenvalues σm. This is to be compared to the weights of OKQ that
depend simultaneously on the eigenvalues and the eigenfunctions.

3.2 Main theorem

We give in this section the theoretical analysis of the worst case integration error of EZQ under the
distribution of the projection DPP.
Theorem 3. Let N ∈ N∗. We have

∀g ∈ EN , EDPP‖µg −
∑
i∈[N ]

ŵEZ,g
i k(xi, .)‖2F =

∑
n∈[N ]

〈g, φn〉2ωrN , (26)

where rN =
∑
m≥N+1 σm. Moreover,

∀g ∈ L2(ω), EDPP‖µg −
∑
i∈[N ]

ŵEZ,g
i k(xi, .)‖2F ≤ 4‖g‖2ωrN . (27)

As an immediate consequence of Theorem 3, we have

∀g ∈ L2(ω), EDPP sup
f∈F,
‖f‖F=1

∣∣∣∣ ∫
X
f(x)g(x)dω(x)−

∑
i∈[N ]

ŵEZ,g
i f(xi)

∣∣∣∣2 = O(rN ). (28)

In other words, the squared worst-case integration error of Ermakov-Zolotukhin quadrature with
DPP nodes converges to 0 at the rate O(rN+1). This rate is slower than the rate of convergence of

4In the case g ≡ φn for some n ∈ [N ], we use ŵEZ,φn or ŵEZ,n alternatively.
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EDPPI
EZ,n(f)2 given by Theorem 1. Indeed, if f ∈ F then ‖f‖2F =

∑
m∈N∗〈f, φm〉2ω/σm < +∞,

and Theorem 1 yields
VDPPI

EZ,n(f)2 ≤ σN+1‖f‖2F , (29)
so that

EDPP

∣∣∣∣ ∫
X
f(x)φn(x)dω(x)−

∑
i∈[N ]

ŵEZ,n
i f(xi)

∣∣∣∣2 = VDPPI
EZ,n(f)2 = O(σN+1). (30)

Now, observe that for some sequences we have σN+1 = o(rN+1). For instance, if σm = m−2s for
some s > 1/2, then rN+1 = O(N1−2s). We conclude that the convergence of EZQ under DPP is
slower than the optimal rate O(σN+1), that was observed empirically for OKQ under DPP in [3] and
proved theoretically for OKQ under CVS in [4], if we consider the worst-case integration error as
a figure of merit. This is to be compared with the theoretical result of [14] that can not predict the
difference in the rate of convergence between EZQ and OKQ: our analysis highlights the interest of
using kernels when comparing quadratures.

3.3 Improved theoretical guarantees for the optimal kernel quadrature with DPPs

Theorem 3 improves on the existing theoretical guarantees of the optimal kernel quadrature with
determinantal point processes initially proposed in [3]. This is the purpose of the following result.
Theorem 4. Let N ∈ N∗. We have

∀g ∈ L2(ω), EDPP‖µg −
∑
i∈[N ]

ŵOKQ,g
i k(xi, .)‖2F ≤ 4‖g‖2ωrN . (31)

Compared to the analysis conducted in [3], Theorem 4 offers a sharper upper bound of

EDPP‖µg −
∑
i∈[N ]

ŵOKQ,g
i k(xi, .)‖2F . (32)

Indeed, the upper bound (31) is dominated by
∑N
n=1〈g, φn〉2ωrN comparably to the upper bound (15),

proved in [3], dominated by (
∑N
n=1 |〈g, φn〉ω|)2NrN : our bound improves upon (15) by a factor of

N2, since

(

N∑
n=1

|〈g, φn〉ω|)2 ≤ N
N∑
n=1

〈g, φn〉2ω ≤ N‖g‖2ω. (33)

Theorem 4 follows immediately from Theorem 3 by observing that

‖µg −
∑
i∈[N ]

ŵOKQ,g
i k(xi, .)‖2F ≤ ‖µg −

∑
i∈[N ]

ŵEZ,g
i k(xi, .)‖2F . (34)

Table 2 summarizes the theoretical contributions of this work compared to the existing literature.

Quadrature Distribution Theoretical rate Empirical rate Reference
EZQ DPP O(rN+1) O(rN+1) Theorem 3
OKQ DPP N2O(rN+1) O(σN+1) [3]

O(rN+1) O(σN+1) Theorem 4
OKQ CVS O(σN+1) O(σN+1) [4]

Table 2: A comparison of the rates given by Theorem 3 and Theorem 4 compared to the existing
guarantees in the literature.

We give in the following section, a sketch of the main ideas behind the proof of Theorem 3.

4 Sketch of the proof

The proof of Theorem 3 decomposes into two steps. First, in Section 4.1, we give a decomposition of
the squared approximation error ‖µg −

∑
i∈[N ] ŵ

EZ,g
i k(xi, .)‖2F , then, in Section 4.2, we use this

decomposition to prove a closed formula of EDPP‖µg −
∑
i∈[N ] ŵ

EZ,g
i k(xi, .)‖2F .
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4.1 A decomposition of the approximation error

Let g ∈ EN and let x ∈ XN such that DetκN (x) > 0, we have

‖µg −
∑
i∈[N ]

ŵEZ,g
i k(xi, .)‖2F = ‖µg‖2F − 2µg(x)

ᵀŵEZ,g + ŵEZ,gᵀK(x)ŵEZ,g. (35)

The last two terms of the r.h.s of (35) decompose as follows.

Proposition 5. Let g ∈ EN and let x ∈ XN such that DetκN (x) > 0. We have

µg(x)
ᵀŵEZ,g = ‖µg‖2F , (36)

and

ŵEZ,gᵀK(x)ŵEZ,g = ‖µg‖2F + εᵀΦN (x)−1
ᵀ

K⊥N (x)ΦN (x)−1ε, (37)

where ε =
∑
n∈[N ]〈g, φn〉ωen, and k⊥N is the kernel defined by

k⊥N (x, y) =
∑

m≥N+1

σmφm(x)φm(y). (38)

The proof of Proposition 5 is detailed in Appendix A.3. Now, by combining (35), (36) and (37), we
get

‖µg −
∑
i∈[N ]

ŵEZ,g
i k(xi, .)‖2F = �

��‖µg‖2F − 2�
��‖µg‖2F +�

��‖µg‖2F + εᵀΦN (x)−1
ᵀ

K⊥N (x)ΦN (x)−1ε.

This proves the following result.

Theorem 6. Let g ∈ EN and let x ∈ XN such that DetκN (x) > 0. We have

‖µg −
∑
i∈[N ]

ŵEZ,g
i k(xi, .)‖2F = εᵀΦN (x)−1

ᵀ

K⊥N (x)ΦN (x)−1ε, (39)

where ε =
∑
n∈[N ]〈g, φn〉ωen.

4.2 A tractable formula of the expected approximation error

In the following, we prove a closed formula for EDPP‖µg−
∑
i∈[N ] ŵ

EZ,g
i k(xi, .)‖2F . By Theorem 6,

it is enough to calculate
EDPPε

ᵀΦN (x)−1
ᵀ

K⊥N (x)ΦN (x)−1ε, (40)

for ε ∈ RN . For this purpose, observe thatK⊥N (x) =
∑
m≥N+1 σmφm(x)φm(x)ᵀ, so that

εᵀΦN (x)−1
ᵀ

K⊥N (x)ΦN (x)−1ε =
∑

m≥N+1

σmε
ᵀΦN (x)−1

ᵀ

φm(x)φm(x)ᵀΦN (x)−1ε. (41)

Therefore, the calculation of 40 boils down to the calculation of

EDPPε
ᵀΦN (x)−1

ᵀ

φm(x)φm(x)ᵀΦN (x)−1ε, (42)

for m ≥ N + 1. This is the purpose of the following result.

Theorem 7. Let ε =
∑
n∈[N ] εnen, ε̃ =

∑
n∈[N ] ε̃nen ∈ RN , and m ≥ N + 1. Then

EDPPε
ᵀΦN (x)−1

ᵀ

φm(x)φm(x)ᵀΦN (x)−1ε̃ =
∑
n∈[N ]

εnε̃n. (43)

In particular,

EDPPε
ᵀΦN (x)−1

ᵀ

K⊥N (x)ΦN (x)−1ε̃ =
∑

m≥N+1

σm
∑
n∈[N ]

εnε̃n. (44)
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(b) KBIQ (s = 2)

10 20 30 50 100
log10(N)

7

6

5

4

3

2

lo
g 1

0(
Sq

ua
re

d 
er

ro
r)

OKQ
1 (N)
OKQ
10 (N)
OKQ
20 (N)

rN + 1
N + 1

(c) OKQ (s = 2)
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(d) EZQ (s = 3)
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(e) KBIQ (s = 3)
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Figure 1: Squared worst-case integration error vs. number of nodes N for EZQ, KBIQ and OKQ in
the Sobolev space of periodic functions of order s ∈ {2, 3}.

We give the proof of Theorem 7 in Appendix A.4. By taking ε = ε̃ =
∑
n∈[N ]〈g, φn〉ωen in

Theorem 7, we obtain (26). As for (27), it is sufficient to observe that

‖µg −
∑
i∈[N ]

ŵEZ,g
i k(xi, .)‖2F ≤ 2

(
‖µg − µgN ‖2F + ‖µgN −

∑
i∈[N ]

ŵEZ,g
i k(xi, .)‖2F

)
, (45)

where gN =
∑
n∈[N ]〈g, φn〉ωφn ∈ EN , so that we can apply (26) to gN and we obtain

EDPP‖µgN −
∑
i∈[N ]

ŵEZ,g
i k(xi, .)‖2F =

∑
n∈[N ]

〈g, φn〉2ω
∑

m≥N+1

σm ≤ ‖g‖2ω
∑

m≥N+1

σm. (46)

The term ‖µg − µgN ‖2F is upper bounded by σN+1‖g‖2ω. We give the details in Appendix A.
This concludes the proof of Theorem 3. In the following section, we give numerical experiments
illustrating this result.

5 Numerical experiments

In this section, we illustrate the theoretical results presented in Section 3 in the case of the RKHS
associated to the kernel

ks(x, y) = 1 +
∑
m∈N∗

1

m2s
cos(2πm(x− y)), (47)

that corresponds to the periodic Sobolev space of order s on [0, 1] [5], and we take ω to be the uniform
measure on X = [0, 1]. We compare the squared worst-case integration error of EZQ and OKQ and
KBIQ, with M = 2N and γ = σ, for x that follows the distribution of the projection DPP and for
g ∈ {e1, e10, e20}. We take N ∈ [5, 100]. Figure 1 shows log-log plots of the squared error w.r.t.
N , averaged over 1000 samples for each point, for s ∈ {2, 3}. We observe that the squared error of
EZQ converges to 0 at the exact rate O(rN+1) predicted by Theorem 3, while the squared error of
OKQ converges to 0 at the rate O(σN+1) as it was already observed in [3], which is still better than
the rate O(rN+1) proved in Theorem 4. Finally, KBIQ (M = 2N and γ = σ) converges to 0 at the
rate O(σN+1). We conclude that, by taking M = αN with α > 1, KBIQ have practically the same
averaged error as OKQ (M = +∞). As we have mentioned before, the theoretical analysis of KBIQ
in the regime when M is finite and strictly larger than N is beyond the scope of this work, and we
defer it for future work.
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6 Conclusion

We studied the quadrature rule proposed by Ermakov and Zolotukhin through the lens of kernel
methods. We proved that EZQ and OKQ belong to a larger class of quadrature rules that may
be defined through kernel based interpolation. From this new perspective, EZQ may be seen as
an approximation of OKQ. Moreover, we studied the expected value of the squared worst-case
integration error of EZQ when the nodes follow the distribution of a DPP. In particular, we proved that
EZQ converges to 0 at the rate O(rN+1) which is slower than the optimal rate O(σN+1) typically
observed for OKQ with DPPs. This work shows the importance of the worst-case integration error
as a figure of merit when comparing quadrature rules. Interestingly, we use our analysis of EZQ to
improve upon the existing theoretical guarantees of OKQ under DPPs. Finally, we illustrated the
theoretical results by some numerical experiments that hint that KBIQ in the regime M > N may
have similar performances as OKQ. It would be interesting to study this broader class of quadratures
in the future.
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