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Appendix

A Loss Function Leading to (2)

To obtain (2), first note that for each i = 0, 1, we can define the loss of task i as

Li =
∑

x∈X,y∈Y

P̂
(i)
XY (x, y) log

1

QXY (x, y)
, (19)

where QXY represents the distribution model and P̂
(i)
XY are the empirical distributions as defined

in (1). As a result, training the linear combination of L0 and L1 can lead to the convex combination
model.

argmin
QXY ∈P

α0L0 + α1L1

= argmin
QXY ∈P

∑
x∈X,y∈Y

(
α0P̂

(0)
XY (x, y) + α1P̂

(1)
XY (x, y)

)
log

1

QXY (x, y)

= argmin
QXY ∈P

D
(
α0P̂

(0)
XY + α1P̂

(1)
XY

∥∥∥QXY

)
= α0P̂

(0)
XY + α1P̂

(1)
XY . (20)

B Proof of Theorem 2

To compute the testing loss, we first introduce the following lemma.
Lemma 6. Suppose that random vector (X1, X2, · · · , Xm) follows the multinomial distribution with
the corresponding event probabilities (p1, p2, · · · , pm) and n independent trials, then the variance
of random variable Xi is

var(Xi) = npi(1− pi), (21)
and the covariance of Xi and Xj is

cov(Xi, Xj) = −npipj . (22)

From Lemma 6, for i = 0, · · · , k, we have

E
[(

P̂
(i)
XY (x, y)− P

(i)
XY (x, y)

)2]
=

1

ni
P

(i)
XY (x, y)(1− P

(i)
XY (x, y)). (23)

In turn, the testing loss as defined in (3) is

L
(α0,α1)
test = E

[
χ2(P

(0)
XY , α0P̂

(0)
XY + α1P̂

(1)
XY )

]
= E

[ ∑
x∈X,y∈Y

1

P
(0)
XY (x, y)

(
P

(0)
XY (x, y)− α0P̂

(0)
XY (x, y)− α1P̂

(1)
XY (x, y)

)2]

=
∑

x∈X,y∈Y

(
P

(0)
XY (x, y)− α0P

(0)
XY (x, y)− α1P

(1)
XY (x, y)

)2
P

(0)
XY (x, y)

+ α2
0E

 ∑
x∈X,y∈Y

(
P̂

(0)
XY (x, y)− P

(0)
XY (x, y)

)2
P

(0)
XY (x, y)


+ α2

1E

 ∑
x∈X,y∈Y

(
P̂

(1)
XY (x, y)− P

(1)
XY (x, y)

)2
P

(0)
XY (x, y)

 (24)

= α2
1χ

2
(
P

(0)
XY , P

(1)
XY

)
+ α2

0

1

n0
V (0) + α2

1

1

n1
V (1), (25)
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where to obtain (24) we have used the facts that P̂ (0)
XY and P̂

(1)
XY are independent, E[P̂ (0)

XY ] = P
(0)
XY ,

and E[P̂ (1)
XY ] = P

(1)
XY , and where to obtain (25) we have used (23) and the fact that n0 · P̂ (0)

XY and
n1 · P̂ (1)

XY follows the multinomial distribution.

Similarly, we can obtain Theorem 3.

C Proof of Theorem 4

C.1 Expression of ĝi as defined in (13)

From

χ2
RXY

(
P̂

(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
=

∑
x∈X,y∈Y

1

P
(0)
X (x)P

(0)
Y (y)

·
(
P̂

(i)
XY (x, y)− P

(0)
X (x)P

(0)
Y (y)− P

(0)
X (x)P

(0)
Y (y)fT(x)g(y)

)2
,

we have, for all y′ ∈ Y,

∂χ2
RXY

(
P̂

(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
∂g(y′)

(26)

= −2
∑
x∈X

[
P̂

(i)
XY (x, y

′)− P
(0)
X (x)P

(0)
Y (y′)

]
f(x) + 2

∑
x∈X

P
(0)
X (x)P

(0)
Y (y′)

(
fT(x)g(y′)

)
f(x)

= −2
∑
x∈X

P̂
(i)
XY (x, y

′)f(x) + 2P
(0)
Y (y′)Λfg(y

′) (27)

where to obtain the last equality, we have used the assumption that E
P

(0)
X

[f(X)] = 0 and the notation

that Λf ≜ E
P

(0)
X

[f(X)fT(X)].

Set the gradient (27) to zero, and we obtain

ĝi(y) =
1

P
(0)
Y (y)

Λ−1
f

(∑
x∈X

P̂
(i)
XY (x, y)f(x)

)
. (28)

C.2 Proof of (16)

We first express the testing error (15) as

L
(α)
test = E

[
χ2
RXY

(
P

(0)
XY , P

(0)
X Q

(α)
Y |X

)]
= χ2

RXY

(
P

(0)
XY ,

k∑
i=0

αiP
(0)
X P̃

(f ,gi)
Y |X

)
+

k∑
i=0

α2
i E
[
χ2
RXY

(
P

(0)
X P̃

(f ,gi)
Y |X , P

(0)
X P̃

(f ,ĝi)
Y |X

)]
︸ ︷︷ ︸

1
ni

Ṽ (i)

,

(29)

where to obtain the last equality we have used the fact that the empirical distributions P̂ (i)
XY (i =

0, · · · , k) are independent and

E
[
P̃

(f ,ĝi)
Y |X

]
= E

[
P̃

(f ,gi)
Y |X

]
.

Next, for the terms in (29), we have

χ2
RXY

(
P

(0)
XY ,

k∑
i=0

αiP
(0)
X P̃

(f ,gi)
Y |X

)

= χ2
RXY

(
P

(0)
XY , P

(0)
X P̃

(f ,g0)
Y |X

)
+ χ2

RXY

(
P

(0)
X P̃

(f ,g0)
Y |X ,

k∑
i=0

αiP
(0)
X P̃

(f ,gi)
Y |X

)
, (30)
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which comes from the fact that

∑
x∈X,y∈Y

(
P

(0)
XY (x, y)− [P

(0)
X P̃

(f ,g0)
Y |X ](x, y)

)
[P

(0)
X P̃

(f ,g)
Y |X ](x, y)

P
(0)
X (x)P

(0)
Y (y)

=
∑

x∈X,y∈Y

(
P

(0)
XY (x, y)− [P

(0)
X P̃

(f ,g0)
Y |X ](x, y)

)
fT(x)g(y)

=
∑

x∈X,y∈Y

P
(0)
XY (x, y)f

T(x)g(y)

−
∑

x∈X,y∈Y

P
(0)
X (x)P

(0)
Y (y)fT(x)

1

P
(0)
Y (y)

Λ−1
f

(∑
x∈X

P
(0)
XY (x, y)f(x)

)
fT(x)g(y)

= E
P

(0)
XY

[fT(X)g(Y )]− E
P

(0)
XY

[fT(X)g(Y )]

= 0. (31)

Moreover, we have

Ṽ (i)

= niE
[
χ2
RXY

(
P

(0)
X P̃

(f ,gi)
Y |X , P

(0)
X P̃

(f ,ĝi)
Y |X

)]
= niE

[ ∑
x∈X,y∈Y

P
(0)
X (x)P

(0)
Y (y)

(
fT(x)

1

P 0
Y (y)

Λ−1
f

(∑
x∈X

(
P

(i)
XY (x, y)− P̂

(i)
XY (x, y)

)
f(x)

))2]

= ni

|Y|∑
y=1

1

P
(0)
Y (y)

tr

(
Λ−1

f

· E
[(∑

x∈X

(
P

(i)
XY (x, y)− P̂

(i)
XY (x, y)

)
f(x)

)(∑
x∈X

(
P

(i)
XY (x, y)− P̂

(i)
XY (x, y)

)
f(x)

)T ])

=

|Y|∑
y=1

P
(i)
Y (y)

P
(0)
Y (y)

tr

(
Λ−1

f E
P

(i)

X|Y =y

[f(X)fT(X)]

)
−

|Y|∑
y=1

[P
(i)
Y (y)]2

P
(0)
Y (y)

∥∥∥∥Λ− 1
2

f E
P

(i)

X|Y =y

[f(X)]

∥∥∥∥2 .
(32)

Using (29), (30) and (32), we obtain (16) as desired.

D Proof of Proposition 5

Since g∗ as defined in (14) satisfies g∗ =
∑k

i=0 αiĝi, the weight g∗ in the convex combination
model is the solution of the following optimization problem

g∗ = argmin
g

χ2
RXY

(
k∑

i=0

αiP̂
(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
. (33)

Then, we prove that the following two optimization problems have the same solution g∗

g∗ = argmin
g

χ2
RXY

(
k∑

i=0

αiP̂
(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)

= argmin
g

k∑
i=0

αiχ
2
RXY

(
P̂

(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
. (34)
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To obtain (34), we use the fact that the difference

χ2
RXY

(
k∑

i=0

αiP̂
(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
−

k∑
i=0

αiχ
2
RXY

(
P̂

(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)

=
∑

x∈X,y∈Y

(∑k
i=0 αiP̂

(i)
XY (x, y)

)2
P

(0)
X (x)P

(0)
Y (y)

−
∑

x∈X,y∈Y

∑k
i=0 αi

[
P̂

(i)
XY (x, y)

]2
P

(0)
X (x)P

(0)
Y (y)

(35)

is irrelevant to g.

Using (34), we obtain Proposition 5 as desired.

E Details for experiments

E.1 Training Loss

To compute the training loss L(α,f ,g) as defined in (17), we first introduce the following lemma.
Lemma 7 ( [48], Proposition 2). Let (f∗, g∗) be the features that minimize the χ2-distance loss
χ2
RXY

(P̂
(0)
XY , P̂

(0)
X P̂

(f ,g)
Y |X ), where P̃

(f ,g)
Y |X (x, y) ≜ P̂Y (y)(1 + fT(x)g(y)), for all x, y, and the

reference distribution being P̂
(0)
X P̂

(0)
Y . Then, we have

E
P̂

(0)
X

[f∗(X)] = E
P̂

(0)
Y

[g∗(Y )] = 0, (36)

and (f∗, g∗) are also the optimal features that maximize the H-score of target samples:

H(0)(f , g) ≜ E
P̂

(0)
XY

[f̃T(X)g̃(Y )]− 1

2
tr(Λ̂f Λ̂g), (37)

where f̃(X) ≜ f(X)−E
P̂

(0)
X

[f(X)], g̃(Y ) ≜ g(Y )−E
P̂

(0)
Y

[g(Y )], Λ̂f and Λ̂g are the covariance
matrices of features on target samples, defined as:

Λ̂f ≜ E
P̂

(0)
X

[f̃(X)f̃T(X)], (38)

Λ̂g ≜ E
P̂

(0)
Y

[g̃(Y )g̃T(Y )]. (39)

Similarly we can define the H-score for sources. For the task i = 1, · · · , k,

H(i)(f , g) ≜ E
P̂

(i)
XY

[f̃T(X)g̃(Y )]− 1

2
tr(Λ̂f Λ̂g). (40)

Then, line 4 in Algorithm 1 can be implemented by

(f∗, g∗)← argmax
f ,g

k∑
i=0

αiH
(i)(f , g). (41)

E.2 Computation of Testing Loss

In computing the testing loss, after obtaining f∗ from (41), we use the normalization f̃∗(X) ≜
f∗(X) − E

P̂
(0)
X

[f∗(X)] to subtract the sample mean and obtain zero-mean features. Then, the

covariance matrix Λ̂f∗ of f∗ is computed as

Λ̂f∗ ≜ E
P̂

(0)
X

[f̃∗(X)f̃∗T(X)]. (42)

Moreover, for i = 0, · · · , k, the Ṽ (i) [cf. (32)] in (16) can be estimated as

Ṽ (i)

=

|Y|∑
y=1

P̂
(i)
Y (y)

P̂
(0)
Y (y)

tr

(
Λ̂−1

f∗EP̂
(i)

X|Y =y

[f̃∗(X)f̃∗T(X)]

)
−

|Y|∑
y=1

[P̂
(i)
Y (y)]2

P̂
(0)
Y (y)

∥∥∥∥Λ̂− 1
2

f∗ E
P̂

(i)

X|Y =y

[f̃∗(X)]

∥∥∥∥2 .
(43)
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The bias term χ2
RXY

(
P

(0)
X P̃

(f ,g0)
Y |X ,

∑k
i=0 αiP

(0)
X P̃

(f ,gi)
Y |X

)
in (16) can be estimated as

χ2
RXY

(
P

(0)
X P̃

(f ,g0)
Y |X ,

k∑
i=0

αiP
(0)
X P̃

(f ,gi)
Y |X

)
=

k∑
i=1

k∑
j=1

αiαjDij , (44)

where

Dij ≜ tr

(
Λ̂−1

f∗

(∑
y∈Y

(h(0, y)− h(i, y))(h(0, y)− h(j, y))T

P̂
(0)
Y (y)

))
(45)

and

h(l, y) ≜ P̂
(l)
Y (y)E

P̂
(l)

X|Y =y

[f̃∗(X)], l = 0, · · · , k. (46)

Finally, the testing loss (16) can be expressed as

L
(α)
test =

k∑
i=1

k∑
j=1

αiαjDij +

k∑
i=0

α2
i

ni
Ṽ (i). (47)

Then, α∗ can be computed by solving a non-negative quadratic programming problem.

E.3 Details of Implementations

E.3.1 Multi-Source Transfer Learning

In this experiment, the corresponding labels for the 5 binary classification tasks are as follows: task 0
(airplane and automobile), task 1 (bird and cat), task 2 (deer and dog), task 3 (frog and horse), and
task 4 (ship and truck). After training the loss (40) for each source task, if the test accuracy on target
samples is less than 50%, we would flip the binary label for this source. Accordingly, in task 3, frog
matches automobile and horse matches airplane. In other tasks, the labels of the source match the
target in alphabetical order.

Moreover, we normalize all the images for 3 channels under the mean (0.485, 0.456, 0.406) and
standard deviation (0.229, 0.224, 0.225). When the sample size of the target training set is 6, to make
the training process stable, we use data augmentation to generate 50 samples by random horizontal
flips and random crops.

The feature f is generated of 10 dimensions by GoogLeNet, followed by a fully connection layer
(1024 → 32) with ReLU activation, and then a fully connection layer (32 → 10). Throughout the
training process, we use the Adam optimizer with a learning rate of 0.001 and the batch size for each
source task is 50. We train the networks in 20 epochs and before each epoch we reshuffle the training
samples.

E.3.2 Few-shot Transfer Learning Tasks on Office-31

In this experiment, the feature f is generated by the pretained and fixed VGG-16 network, followed
by a fully connection layer (4096 → 1024) with ReLU activation, and a fully connection layer
(1024 → 64). Throughout the training process, we use the Adam optimizer with learning rate of
0.0002 and in 100 epochs.

E.3.3 Few-shot Transfer Learning Tasks on Office-Caltech

In this experiment, the feature f is generated by a fully connection layer (4096→ 1024) with ReLU
activation followed by a fully connection layer (1024 → 10). The inputs of f are the pretrained
DeCAF features. Throughout the training process, we use the Adam optimizer with learning rate of
0.01 and in 100 epochs.

E.4 Instruction for codes

We provide code examples in “code.zip”. In the folder “./code/data”, we provide the features we
used. Folder “o31_feature” contains the features of Office-31 dataset, and folder “oc_feature”
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contains the features of Office-Caltech dataset. “cifar10_alpha.py” is an example for CIFAR-10
dataset for the case of 6 target samples. “o31_atod_renew.py” is an example for Office-31 dataset
for the case of task A→D, with the details of computing renewed α. “oc_atoc.py” is an example for
Office-Caltech dataset for the case of task A→C.
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