
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1.
(b) Did you describe the limitations of your work? [Yes] We clearly state the assumptions

we use in Section 2.
(c) Did you discuss any potential negative societal impacts of your work? [No] We have

done a theoretic work that has few societal impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 2.
(b) Did you include complete proofs of all theoretical results? [Yes] See supplementary

material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We think the error bars are not related to the core result of
our experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] We use few computation resources
in our work.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.
(b) Did you mention the license of the assets? [Yes] See Section 4.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

We don’t use new assets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Section 4.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

Appendix

A Loss Function Leading to (2)

To obtain (2), first note that for each i = 0, 1, we can define the loss of task i as

Li =
∑

x∈X,y∈Y

P̂
(i)
XY (x, y) log

1

QXY (x, y)
, (19)

where QXY represents the distribution model and P̂
(i)
XY are the empirical distributions as defined

in (1). As a result, training the linear combination of L0 and L1 can lead to the convex combination
model.

argmin
QXY ∈P

α0L0 + α1L1

= argmin
QXY ∈P

∑
x∈X,y∈Y

(
α0P̂

(0)
XY (x, y) + α1P̂

(1)
XY (x, y)

)
log

1

QXY (x, y)

= argmin
QXY ∈P

D
(
α0P̂

(0)
XY + α1P̂

(1)
XY

∥∥∥QXY

)
= α0P̂

(0)
XY + α1P̂

(1)
XY . (20)

B Proof of Theorem 2

To compute the testing loss, we first introduce the following lemma.
Lemma 6. Suppose that random vector (X1, X2, · · · , Xm) follows the multinomial distribution with
the corresponding event probabilities (p1, p2, · · · , pm) and n independent trials, then the variance
of random variable Xi is

var(Xi) = npi(1− pi), (21)
and the covariance of Xi and Xj is

cov(Xi, Xj) = −npipj . (22)

From Lemma 6, for i = 0, · · · , k, we have

E
[(

P̂
(i)
XY (x, y)− P

(i)
XY (x, y)

)2]
=

1

ni
P

(i)
XY (x, y)(1− P

(i)
XY (x, y)). (23)

In turn, the testing loss as defined in (3) is

L
(α0,α1)
test = E

[
χ2(P

(0)
XY , α0P̂

(0)
XY + α1P̂

(1)
XY)

]
= E

[∑
x∈X,y∈Y

1

P
(0)
XY (x, y)

(
P

(0)
XY (x, y)− α0P̂

(0)
XY (x, y)− α1P̂

(1)
XY (x, y)

)2]

=
∑

x∈X,y∈Y

(
P

(0)
XY (x, y)− α0P

(0)
XY (x, y)− α1P

(1)
XY (x, y)

)2
P

(0)
XY (x, y)

+ α2
0E

 ∑
x∈X,y∈Y

(
P̂

(0)
XY (x, y)− P

(0)
XY (x, y)

)2
P

(0)
XY (x, y)

+ α2

1E

 ∑
x∈X,y∈Y

(
P̂

(1)
XY (x, y)− P

(1)
XY (x, y)

)2
P

(0)
XY (x, y)

 (24)

= α2
1χ

2
(
P

(0)
XY , P

(1)
XY

)
+ α2

0

1

n0
V (0) + α2

1

1

n1
V (1), (25)

15

where to obtain (24) we have used the facts that P̂ (0)
XY and P̂

(1)
XY are independent, E[P̂ (0)

XY] = P
(0)
XY ,

and E[P̂ (1)
XY] = P

(1)
XY , and where to obtain (25) we have used (23) and the fact that n0 · P̂ (0)

XY and
n1 · P̂ (1)

XY follows the multinomial distribution.

Similarly, we can obtain Theorem 3.

C Proof of Theorem 4

C.1 Expression of ĝi as defined in (13)

From

χ2
RXY

(
P̂

(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
=

∑
x∈X,y∈Y

1

P
(0)
X (x)P

(0)
Y (y)

·
(
P̂

(i)
XY (x, y)− P

(0)
X (x)P

(0)
Y (y)− P

(0)
X (x)P

(0)
Y (y)fT(x)g(y)

)2
,

we have, for all y′ ∈ Y,

∂χ2
RXY

(
P̂

(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
∂g(y′)

(26)

= −2
∑
x∈X

[
P̂

(i)
XY (x, y

′)− P
(0)
X (x)P

(0)
Y (y′)

]
f(x) + 2

∑
x∈X

P
(0)
X (x)P

(0)
Y (y′)

(
fT(x)g(y′)

)
f(x)

= −2
∑
x∈X

P̂
(i)
XY (x, y

′)f(x) + 2P
(0)
Y (y′)Λfg(y

′) (27)

where to obtain the last equality, we have used the assumption that E
P

(0)
X

[f(X)] = 0 and the notation

that Λf ≜ E
P

(0)
X

[f(X)fT(X)].

Set the gradient (27) to zero, and we obtain

ĝi(y) =
1

P
(0)
Y (y)

Λ−1
f

(∑
x∈X

P̂
(i)
XY (x, y)f(x)

)
. (28)

C.2 Proof of (16)

We first express the testing error (15) as

L
(α)
test = E

[
χ2
RXY

(
P

(0)
XY , P

(0)
X Q

(α)
Y |X

)]
= χ2

RXY

(
P

(0)
XY ,

k∑
i=0

αiP
(0)
X P̃

(f ,gi)
Y |X

)
+

k∑
i=0

α2
i E
[
χ2
RXY

(
P

(0)
X P̃

(f ,gi)
Y |X , P

(0)
X P̃

(f ,ĝi)
Y |X

)]
︸ ︷︷ ︸

1
ni

Ṽ (i)

,

(29)

where to obtain the last equality we have used the fact that the empirical distributions P̂ (i)
XY (i =

0, · · · , k) are independent and

E
[
P̃

(f ,ĝi)
Y |X

]
= E

[
P̃

(f ,gi)
Y |X

]
.

Next, for the terms in (29), we have

χ2
RXY

(
P

(0)
XY ,

k∑
i=0

αiP
(0)
X P̃

(f ,gi)
Y |X

)

= χ2
RXY

(
P

(0)
XY , P

(0)
X P̃

(f ,g0)
Y |X

)
+ χ2

RXY

(
P

(0)
X P̃

(f ,g0)
Y |X ,

k∑
i=0

αiP
(0)
X P̃

(f ,gi)
Y |X

)
, (30)

16

which comes from the fact that

∑
x∈X,y∈Y

(
P

(0)
XY (x, y)− [P

(0)
X P̃

(f ,g0)
Y |X](x, y)

)
[P

(0)
X P̃

(f ,g)
Y |X](x, y)

P
(0)
X (x)P

(0)
Y (y)

=
∑

x∈X,y∈Y

(
P

(0)
XY (x, y)− [P

(0)
X P̃

(f ,g0)
Y |X](x, y)

)
fT(x)g(y)

=
∑

x∈X,y∈Y

P
(0)
XY (x, y)f

T(x)g(y)

−
∑

x∈X,y∈Y

P
(0)
X (x)P

(0)
Y (y)fT(x)

1

P
(0)
Y (y)

Λ−1
f

(∑
x∈X

P
(0)
XY (x, y)f(x)

)
fT(x)g(y)

= E
P

(0)
XY

[fT(X)g(Y)]− E
P

(0)
XY

[fT(X)g(Y)]

= 0. (31)

Moreover, we have

Ṽ (i)

= niE
[
χ2
RXY

(
P

(0)
X P̃

(f ,gi)
Y |X , P

(0)
X P̃

(f ,ĝi)
Y |X

)]
= niE

[∑
x∈X,y∈Y

P
(0)
X (x)P

(0)
Y (y)

(
fT(x)

1

P 0
Y (y)

Λ−1
f

(∑
x∈X

(
P

(i)
XY (x, y)− P̂

(i)
XY (x, y)

)
f(x)

))2]

= ni

|Y|∑
y=1

1

P
(0)
Y (y)

tr

(
Λ−1

f

· E
[(∑

x∈X

(
P

(i)
XY (x, y)− P̂

(i)
XY (x, y)

)
f(x)

)(∑
x∈X

(
P

(i)
XY (x, y)− P̂

(i)
XY (x, y)

)
f(x)

)T])

=

|Y|∑
y=1

P
(i)
Y (y)

P
(0)
Y (y)

tr

(
Λ−1

f E
P

(i)

X|Y =y

[f(X)fT(X)]

)
−

|Y|∑
y=1

[P
(i)
Y (y)]2

P
(0)
Y (y)

∥∥∥∥Λ− 1
2

f E
P

(i)

X|Y =y

[f(X)]

∥∥∥∥2 .
(32)

Using (29), (30) and (32), we obtain (16) as desired.

D Proof of Proposition 5

Since g∗ as defined in (14) satisfies g∗ =
∑k

i=0 αiĝi, the weight g∗ in the convex combination
model is the solution of the following optimization problem

g∗ = argmin
g

χ2
RXY

(
k∑

i=0

αiP̂
(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
. (33)

Then, we prove that the following two optimization problems have the same solution g∗

g∗ = argmin
g

χ2
RXY

(
k∑

i=0

αiP̂
(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)

= argmin
g

k∑
i=0

αiχ
2
RXY

(
P̂

(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
. (34)

17

To obtain (34), we use the fact that the difference

χ2
RXY

(
k∑

i=0

αiP̂
(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)
−

k∑
i=0

αiχ
2
RXY

(
P̂

(i)
XY , P

(0)
X P̃

(f ,g)
Y |X

)

=
∑

x∈X,y∈Y

(∑k
i=0 αiP̂

(i)
XY (x, y)

)2
P

(0)
X (x)P

(0)
Y (y)

−
∑

x∈X,y∈Y

∑k
i=0 αi

[
P̂

(i)
XY (x, y)

]2
P

(0)
X (x)P

(0)
Y (y)

(35)

is irrelevant to g.

Using (34), we obtain Proposition 5 as desired.

E Details for experiments

E.1 Training Loss

To compute the training loss L(α,f ,g) as defined in (17), we first introduce the following lemma.
Lemma 7 ([48], Proposition 2). Let (f∗, g∗) be the features that minimize the χ2-distance loss
χ2
RXY

(P̂
(0)
XY , P̂

(0)
X P̂

(f ,g)
Y |X), where P̃

(f ,g)
Y |X (x, y) ≜ P̂Y (y)(1 + fT(x)g(y)), for all x, y, and the

reference distribution being P̂
(0)
X P̂

(0)
Y . Then, we have

E
P̂

(0)
X

[f∗(X)] = E
P̂

(0)
Y

[g∗(Y)] = 0, (36)

and (f∗, g∗) are also the optimal features that maximize the H-score of target samples:

H(0)(f , g) ≜ E
P̂

(0)
XY

[f̃T(X)g̃(Y)]− 1

2
tr(Λ̂f Λ̂g), (37)

where f̃(X) ≜ f(X)−E
P̂

(0)
X

[f(X)], g̃(Y) ≜ g(Y)−E
P̂

(0)
Y

[g(Y)], Λ̂f and Λ̂g are the covariance
matrices of features on target samples, defined as:

Λ̂f ≜ E
P̂

(0)
X

[f̃(X)f̃T(X)], (38)

Λ̂g ≜ E
P̂

(0)
Y

[g̃(Y)g̃T(Y)]. (39)

Similarly we can define the H-score for sources. For the task i = 1, · · · , k,

H(i)(f , g) ≜ E
P̂

(i)
XY

[f̃T(X)g̃(Y)]− 1

2
tr(Λ̂f Λ̂g). (40)

Then, line 4 in Algorithm 1 can be implemented by

(f∗, g∗)← argmax
f ,g

k∑
i=0

αiH
(i)(f , g). (41)

E.2 Computation of Testing Loss

In computing the testing loss, after obtaining f∗ from (41), we use the normalization f̃∗(X) ≜
f∗(X) − E

P̂
(0)
X

[f∗(X)] to subtract the sample mean and obtain zero-mean features. Then, the

covariance matrix Λ̂f∗ of f∗ is computed as

Λ̂f∗ ≜ E
P̂

(0)
X

[f̃∗(X)f̃∗T(X)]. (42)

Moreover, for i = 0, · · · , k, the Ṽ (i) [cf. (32)] in (16) can be estimated as

Ṽ (i)

=

|Y|∑
y=1

P̂
(i)
Y (y)

P̂
(0)
Y (y)

tr

(
Λ̂−1

f∗EP̂
(i)

X|Y =y

[f̃∗(X)f̃∗T(X)]

)
−

|Y|∑
y=1

[P̂
(i)
Y (y)]2

P̂
(0)
Y (y)

∥∥∥∥Λ̂− 1
2

f∗ E
P̂

(i)

X|Y =y

[f̃∗(X)]

∥∥∥∥2 .
(43)

18

The bias term χ2
RXY

(
P

(0)
X P̃

(f ,g0)
Y |X ,

∑k
i=0 αiP

(0)
X P̃

(f ,gi)
Y |X

)
in (16) can be estimated as

χ2
RXY

(
P

(0)
X P̃

(f ,g0)
Y |X ,

k∑
i=0

αiP
(0)
X P̃

(f ,gi)
Y |X

)
=

k∑
i=1

k∑
j=1

αiαjDij , (44)

where

Dij ≜ tr

(
Λ̂−1

f∗

(∑
y∈Y

(h(0, y)− h(i, y))(h(0, y)− h(j, y))T

P̂
(0)
Y (y)

))
(45)

and

h(l, y) ≜ P̂
(l)
Y (y)E

P̂
(l)

X|Y =y

[f̃∗(X)], l = 0, · · · , k. (46)

Finally, the testing loss (16) can be expressed as

L
(α)
test =

k∑
i=1

k∑
j=1

αiαjDij +

k∑
i=0

α2
i

ni
Ṽ (i). (47)

Then, α∗ can be computed by solving a non-negative quadratic programming problem.

E.3 Details of Implementations

E.3.1 Multi-Source Transfer Learning

In this experiment, the corresponding labels for the 5 binary classification tasks are as follows: task 0
(airplane and automobile), task 1 (bird and cat), task 2 (deer and dog), task 3 (frog and horse), and
task 4 (ship and truck). After training the loss (40) for each source task, if the test accuracy on target
samples is less than 50%, we would flip the binary label for this source. Accordingly, in task 3, frog
matches automobile and horse matches airplane. In other tasks, the labels of the source match the
target in alphabetical order.

Moreover, we normalize all the images for 3 channels under the mean (0.485, 0.456, 0.406) and
standard deviation (0.229, 0.224, 0.225). When the sample size of the target training set is 6, to make
the training process stable, we use data augmentation to generate 50 samples by random horizontal
flips and random crops.

The feature f is generated of 10 dimensions by GoogLeNet, followed by a fully connection layer
(1024 → 32) with ReLU activation, and then a fully connection layer (32 → 10). Throughout the
training process, we use the Adam optimizer with a learning rate of 0.001 and the batch size for each
source task is 50. We train the networks in 20 epochs and before each epoch we reshuffle the training
samples.

E.3.2 Few-shot Transfer Learning Tasks on Office-31

In this experiment, the feature f is generated by the pretained and fixed VGG-16 network, followed
by a fully connection layer (4096 → 1024) with ReLU activation, and a fully connection layer
(1024 → 64). Throughout the training process, we use the Adam optimizer with learning rate of
0.0002 and in 100 epochs.

E.3.3 Few-shot Transfer Learning Tasks on Office-Caltech

In this experiment, the feature f is generated by a fully connection layer (4096→ 1024) with ReLU
activation followed by a fully connection layer (1024 → 10). The inputs of f are the pretrained
DeCAF features. Throughout the training process, we use the Adam optimizer with learning rate of
0.01 and in 100 epochs.

E.4 Instruction for codes

We provide code examples in “code.zip”. In the folder “./code/data”, we provide the features we
used. Folder “o31_feature” contains the features of Office-31 dataset, and folder “oc_feature”

19

contains the features of Office-Caltech dataset. “cifar10_alpha.py” is an example for CIFAR-10
dataset for the case of 6 target samples. “o31_atod_renew.py” is an example for Office-31 dataset
for the case of task A→D, with the details of computing renewed α. “oc_atoc.py” is an example for
Office-Caltech dataset for the case of task A→C.

20

	Introduction
	Problem Formulation and Analysis
	 Single-Source Transfer Learning
	Multi-source Transfer Learning

	Parametric Models and Transfer Learning Algorithm
	Transferability Measure with Pre-trained Neural Network
	Multi-source Transfer Learning Algorithm

	Experiments
	Multi-source Transfer Learning
	Few-shot Transfer Learning
	Caltech-31
	Office-Caltech

	Related Work
	Conclusion
	Loss Function Leading to (2)
	Proof of Theorem 2
	Proof of Theorem 4
	Expression of i as defined in (13)
	Proof of (16)

	Proof of Proposition 5
	Details for experiments
	Training Loss
	Computation of Testing Loss
	Details of Implementations
	Multi-Source Transfer Learning
	Few-shot Transfer Learning Tasks on Office-31
	Few-shot Transfer Learning Tasks on Office-Caltech

	Instruction for codes

