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A Conclusions, Extensions and Future Work

In this paper we have proposed a novel gradient sparsification technique for distributed optimization
and demonstrated that it allows one to properly exploit the smoothness structure of the local objective.
We have shown that the proposed matrix-smoothness-aware sparsification can be coupled with both
the variance reduction and acceleration, providing further speedup in terms of the convergence rate
and the total bits transmitted from workers to server. Next, we list possible extensions of our work
that we believe can or should be done in the future:

e Subsampling the local objective. While DCGD+, DIANA+ and ADIANA+ all require an
access to the full local gradient from each machine at every iteration, we believe this require-
ment can be easily dropped. In particular, the local objective can be further subsampled and
extra variance reduction can be employed on top of these methods, similarly to as done for
ISAEGA [Hanzely and Richtarik, [2019b].

e Greedy sparsification. Notice that the sparsified local gradient can be seen as a randomized
coordinate descent estimator of a given machine. However, greedy coordinate descent was
shown to outperform randomized coordinate descent in certain scenarios [Nutini et al.
2017]]. Therefore, one might pose a question whether a greedy sparsification might work for
distributed optimization.

e Bi-directional sparsification. As we also mention in Section [B} one drawback of our
approaclﬂis that only worker—server communication is sparse. It would be very interesting
to develop a bi-directional sparsification capable of properly exploiting the smoothness
matrices. For this matter, in Section[J]we develop and analyze DIANA++ method employing
bi-directional matrix-smoothness-aware sparsification and twofold variance reduction.

o Weakly convex and non-convex cases. While we state our theory for the strongly convex
case (i.e., Assumpiton 2)), it can be rather easily extended to weakly convex case (i.e., 1t = 0).
However, obtaining an efficiennt smoothness matrix aware sparsification for non-convex
optimization remains an open problem.

"In fact, this is a drawback of the vast majority of compression methods from the literature. A notable
exception is DoubleSqueeze [Tang et al.,2019] which compresses the server—worker communication too.
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B Limitations
Next, we discuss main limitations of our approach.

e The server is required to store matrices L;/ ? for all machines i € [n] and multiply them by

sparse updates CfLIl/ *V f;(z*) in each iteration. Therefore, our method is not expected
to be practical when d is large and matrices L; are not of a special structure so that they

are cheap to store and so that Cijl/ *V fi(«*) can be evaluated cheaply On the other
hand, our strategy is still practical when i) d is small or ii) L; is of a special structure such
as low rank or diagonal. In particular, diagonal L; requires only O(7) extra computation
per each node (which is negligible), while attaining a rate which is never worse compared to
the naive sparsification.

e Except DIANA++ method presented in Section|J| we sparsify only the communication from
the workers to server. Sparsifying workers— server communication only is very common in
the area of distributed optimization as the workers—server communication is significantly
more expensive compared to the server—workers communication. Such a phenomenon can
be assigned to the fact that the server is broadcasting the same vector to all workers, and
thus the server—workers communication can be implemented more efficiently.

Remark 6. The overhead that comes from the computation of L:-rl/ *V f;(z*) is not an issue in general.
Given that L; is of rank r, one requires O (dzr) flops to precompute SVD of L;. Given that SVD of
L; is known, the evaluation of LZTl/ *V fi(x*) takes only O (d2r) flops. While the cost of computing

V fi(x*) varies depending on the application, we can expect it to takes at least ) (dzr) flops for
the application of generalized linear models (i.e., logistic regression). Next, we shall mention that

evaluating LZI/ *V fi(x*) comes at O (d) cost when L; is diagonal.

8For example, if L; is of rank , for all 4, we require extra O(ndr) storage and O(ndr) flops at the server at
each iteration.
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C Extra Experiments and Experimental Setup

As mentioned, all experiments of this work are performed on logistic regression objective with

LibSVM data. In particular, the objective is given as

filw) =~ log (14 exp (Aam ) - (b)) + 5 o,
) J=1

where A, € R%m*d i the data matrix with corresponding labels b;,, € R%m  In our case, we did
split the randomly reshuffled datasets into equal chunks among workers in each case so that m; = m
for all 7, 7 < n. The data matrix A was normalized so that each datapoint has a norm equal to %

Lastly, we have chosen p = 1073 for all experiments.

For each of the datasets, we have selected a specific number of workers given by Table 3] Each of the
method was run with theory supported parameters with an exception of the ADIANA+, where we
have omitted several constant factors for the sake of practicality.

Table 3: Datasets.

Dataset # datapoints d n (Fig BL IZI) (remaining figures)
ala 1 605 123 107 1 15
mushrooms 8124 112 12 1 677
phishing 11 055 68 11 1 1 005
madelon 2000 500 4 1 500
duke 44 7129 4 1 11
a8a 22 696 123 8 1 2837

C.1 Proposed and usual sparsification techniques for the 3 distributed methods.

In the experiment from the main body (Figure[T) we used the largest possible number of workers
for each dataset. For the sake of robustness, we present an equivalent experiment to the one from
Figure|[I] but we use a moderate number of the workers given by Table[3] Figure [3| presents the result.
We set the z-axis as the iteration this time. We do so to properly see the results as in some cases, the
initial communication for our methods was larger than the communication during the actual algorithm

run in the reported time frame.
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C.2 Variance reduction with new sparsification and importance sampling

Here present an equivalent experiment to the one from Figure 2} but we use a moderate number of
the workers given by Table 3]
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Figure 4: Same as Figure [2} but smaller number of workers (see Table .

C.3 The effect of sparsification level 7 on the convergence rate

In this experiment, we study the effect of sparsification level 7 on the convergence rate. Informally
speaking, our theory suggests that the sparsification does not hurt the convergence rate unless 7 is
smaller than some constant. The value of such constant depends on various factors such as the type
of sampling and the specific smoothness structure of the objective.

To contrast this with known results, Mishchenko et al.|[2020] show that the sparsification does not
hurt ISEGA significantly (a method with sparsification unaware of smoothness matrix) as soon as
mn > d. Addmitedly, Mishchenko et al.|[2020] assume identical smoothness constants for both f
and f;, so such a conclusion is slightly imprecise. In our case, ignoring the W, factor, the rate is

Lmax

dominated by the sparsification factors only if L. = O (—)

n

The results are presented in Fugure 5] (Iteration vs Residual) and Fugure [6] (Communication vs Resid-
ual). As expected, we see that the sparsification only hurts the iteration complexity when 7 is below
certain treshold which is smaller for the uniform sampling compared to the importance sampling.
Consequently, DIANA+ is capable of significantly reducing the worker->server communication at no
cost in terms of the total iteration complexity.
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D Table of Frequently Used Notation

Table 4: Notation used throughout the paper

Symbol Description Reference
d dimension of the model z € R <l2—0l)
i strong convexity parameter of f Asm. |2
L smoothness matrix of f Asm. |1
L;; the element at ith row and jth column of L -

L; smoothness matrix of f; Asm.

L; smoothness constant of f;(z), i.e., Li = Amax (Li) -

L smoothness constant of f, i.e., L = Amax (L) -

S random sampling (subset) of coordinates [d] := {1,2,...,d} -

Pjt, Pj pji = Prob ({j,1} C 5), p; == pj; -

P the probability matrix (p;; )?11:1 associated with random sampling S 15!

v; ESO parameters associated with f and .S jointly -

C diagonal sketch matrix with ¢th random variable ¢, = 1/p; if ¢ € S and 0 otherwise (H)

w variance of general compression operator C, i.e. E [||C(x) — :sz} < wlz|?, Vz € R? -

C, Ck C :=1LY2cLi¥?, CF = L}/?CcFL!"? -
I, E the identity matrix and the matrix with all entries equal to 1 -
P, P P = Diag (1/p) PDiag (1/p) with entries p;; = p;;gj ,adP =P — E 1HI
Z, C expected smoothness constants £ = Amax (P 0 L), £ = Amax (P o L) -

n number of parallel machines in distributed setting
C;,P;, ﬁ,‘,, 157 diagonal sketch matrix and probability matrices for ith worker H, |H)
Disj, Disjs Pisj j-th diagonal element of P;, P;, P; -

wi variance of compression operator induced by C;, i.e. w; = maxi<;<a ﬁ -1 -
Wmax maxi<;<n Wi = MaX1<;<n MaX1<<d ﬁ —1 M

i, C; expected smoothness constants, £; = Amax(Pi © L), £; = Amax(Ps 0 L;) -

Lmaxs Lmax Limax = Maxi<;<n Amax(Pi 0 Li), Lmax = maxi<;<n Amax(P; 0 L) 9

vV, Vg Parameters describing matrices L;, v := m‘%}l:i]L‘L, Vs 1= MaX;e[n] Ll‘i/{/g, 13

ieln] Li max; e (q) Lils
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E Theory in the Single Node Case: RCD as Sketched Gradient Descent
(SKGD)

In single node setup, matrix smoothness assumption and arbitrary samplings have been considered
mainly in the context of coordinate descent methods. For example, randomized sampling S =
{s},j € [d] with arbitrary probabilities p; € (0, 1] reduces to standard Randomized Coordinate
Descent (RCD) algorithms [Nesterov, 2012, Richtarik and Takacl 2014]. Parallel and mini-batch
variants arise when the sampling .S contains more than one coordinate [Bradley et al.| 2011} Richtarik
and Takac| 2016b]. The first coordinate descent method analyzed with arbitrary sampling and under
L-smoothness assumption is the "NSync algorithm [Richtarik and Takac, 2016a, |Qu and Richtarikl
2016alb]] considered for strongly convex losses. In the same general setup, Hanzely and Richtarik
[2019a] developed and analyzed Accelerated Coordinate Descent. Recently, Hanzely et al.| [2018]]
developed a variance reduced coordinate descent algorithm, SEGA (SkEtched GrAdient), which uses
general sketch matrices and handles non-separable proximal terms in contrast to traditional coordinate
descent methods. This idea of gradient sketching then extended to Generalized Jacobian Sketching
(GJS) algorithm providing a unified theory for first-order methods with variance reduced [Hanzely
and Richtarik, [2019b].

Consider the unconstrained optimization problem

min f(x), 20

z€R? f( ) (20)
with very large dimension d and assume that function f is L-smooth. In this setting, the state-of-art
methods are Randomized Coordinate Descent (RCD) type methods where in each iteration only a few
coordinates get updated. Here we present new theories for RCD with arbitrary sampling paradigm,

which are new and follow the idea of sketches. We will view RCD as a special case of Compressed
Gradient Descent (CGD) with sketches (6).

E.1 ‘NSync

First, we recall the first coordinate descent type algorithm, ‘NSync [Richtarik and Takac, [2016al],
using arbitrary sampling. Let S C [d] be an arbitrary (proper) samplin of coordinates such that
p;j =Prob(j € S) >0, j =1,2,...,d. Foravector h € R%, let hg € R? be the vector coinciding
with h at coordinates j € S and zeros everywhere else. Denote by o the Hadamard (i.e. element-wise)
product. Given an arbitrary sampling .S and smoothness matrix L, let v = (v1, v9, . . . , v4) be positive
constants satisfying the Expected Separable Overapproximation (ESO) inequality

P oL =< Diag(pov), (21

where P is the probability matrix associated with sampling S having entries p;; := Prob({j,{} C
S), pj = pj;. Analogous to , letP =P —E.

Algorithm 4 ‘NSYNC [[RICHTARIK AND TAKAC, [2016A]]

1: Input: Initial point z° € R%, random sampling S, step size parameters v, current point 2"
2: Sample random set of coordinates Sy ~ S
3: Update selected coordinates 2" ™! = 2% — L o V f(z)g,

Theorem 7 (‘NSync, [Richtdrik and Takdc, [2016al). Let Assumptions|l} 2| hold and v ~ ESO(f, S)
be the vector of ESO parameters associated with function f and sampling S. Then the iterates {z*}
of ‘NSync converge as follows

E[f(z")] - f(z") < (1 ~ min W)kAf,

1<i<d v

where Ay = f(2°) — f(z*).

“only proper samplings are considered in this work
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Thus, ‘Nsync gives an iteration complexity

; A
max i log = (22)
1<j<d pjp €

In case of serial sampling, namely |S| = 1 a.s., we have P = Diag(p1, p2, ..., pq). Hence ESO

holds with v; = L;; and iteration complexity becomes max; Lis log 21 This leads to the optimal
pji B

probabilities p; = % yielding iteration complexity % log %.

E.2 Sketched Gradient Descent (SKGD)

Let us view RCD methods as a special case of Compressed Gradient Descent (CGD) with linear
and diagonal sketch C defined in (6) and consider random sparsification operator C induced by
random diagonal sketch C, namely C(x) = Cz, z € R%. Clearly, C is an unbiased compression (i.e.
E [C(z)] = x) with variance w = max;<j<q4 p%. —1:

E[|Cz —z|3] =2 E[C* - 1] 2 < wl|z3. (23)

Algorithm 5 SKGD

1: Input: Initial point 2° € R?, diagonal sketch C, step size +, current point z*
2: pFtl = 2k — ~yCV f(2F)

Theorem 8 (see[G.1I). Let Assumptions[l) 2| hold and S be any proper sampling with probability
matrix P. Then, for the step-size 0 < v < AL, (P o L), the iterates {x*} of Algorithm|5|converge
as follows

E[f(z*)] = f(a") < (1= m)" Ay
The following lemma shows that, both ‘NSync and SkGD provide the same theoretical guarantees.
Lemma 9. y

min max —+ = Amax (? o L) .
v: PoL<Diag(vop) 1<j<d D;

Proof. If parameters v satisfy ESO inequality (ZI)), then parameters defined by
vg ::pimaxﬁ >v, 1<i<d
J Py
also satisfy ESO inequality and give the same iteration complexity as

v; :
’ /
A := max — = max —.

v Pi v Pi

In particular, this implies that instead of searching for d parameters v, ..., vq satisfying ESO
inequality P o L < Diag(v o p) it suffices to find one scalar A > 0 such that P o L. < Diag(Ap o p)
and set v; = Ap; for all ¢ € [d]. The optimal (smallest) value of the scaling factor is

A = Amax (Diag(1/p)(P o L)Diag(1/p)) = Anax ((Diag(l/p)PDiag(1/p)) o L) = A\pax (P o L) .

Notice that with the choice of v = Ap, iteration complexities as well as the update rules of both
methods coincide. O

One difference between these two methods is that, the update direction % o Vf(x)g of ‘NSync is
biased in general as opposed to unbiased direction % o Vf(x)s of SkGD.

Note that the rate and the analysis of Theoremis with respect to functional values (i.e. f(x*) — f*).
Natural question is to develop an analysis based on iterates of the algorithm (i.e. [|2* — x*[|?).
Below, we provide such analysis under slightly different conditions on f and with weighted distances.
Formally, let, instead of L-smoothness and p-convexity, assume

plle = 2*[IE + [V f(2)]* < 2(V f(2), (& — 27))r. (24)
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Notice that the following is true just by combining L-smoothness and p-convexity:
ulz — 2|2 + V@2, < 2(VF(@), (@ —27)). (25)
However, in general, inequalities (24) and (25) are not equivalent.

Theorem 10. Let instead of L-smoothness and ji-convexity assume (24) holds. Then, for the step-size
0<vy <ALk, ( L) the iterates {x*} ofAlgorzthmE]converge as follows

E[[la* - 2*|2] < (1 =) [a° — |3

Proof. Consider the improvement of the algorithm in a single iteration z+ = 2 — yCV f(x).

E[lz" —a"L] = E[o—2"-1CV/f(2)|i]

= |l —a"|]f = 2v(e — 2", Vf(2)L +E [|CVf(2)IIL]

(2))
= e —a"| - 2v(x — 2", V@) + IV @) Boro

Dz — 272 — 29z - fﬂﬂ@h+fWﬂm%@

< e — 272 - 29(z — 2%, V@)L + 7 Amax (P o L)V £ ()2
< ux—x*u%—zm—x V@) + V@)

i

< (1= o — 2|2

E.3 CGD+

Here we introduce a new variant of CGD with non-diagonal matrix C = L'/2CL1" 2, which works
with any proximable regularizer R(z). In this case the method converges to the neighborhood of the
solution. Recall that the proximal operator is defined as followsL:

1
proxp(z) = arg min (R(u) + —|lu— x||2> . (26)
u€eRd 2

Define expected smoothness constants
L= Amax(PoL), L£=Xnax(PoL).

The following lemma reveals the relationship between these constants.
Lemma 11. Let L = A\pax(L). Then L < L < L + L.

Proof. First, positive semi-definiteness gf P was proved in Theorem 3.1 [Qu and Richtarik, [2016].
As Diag(1/p) is positive definite, then P is positive semi-definite too. Since Hadamard product o
preserves positive semi-definiteness, we have that P o L > 0. It follows from Lemmathat

E[L”(C-1)" (C-DL”| =L L3P o L)LI-L.
Hence the left hand side as well as P o L are symmetric and positive semidefinite. In particular,

PoL = L. Hence L = Apax (L) < Apmax(P o L) = L. The upper bound follows from the convexity
of Amax 8 £ = Apax(P o L) = Apax (L + P o L) < Apax (L) + Apax(Po L) = L + L. O

Algorithm 6 CGD+

1: Input: Initial point a0 GBd, sketch matrix C = L/2CL1"/2, step size -y, current point zk
2: 2" = prox, g (% —yCV f(zF))

With the new sketch C in Algorithm E] we able to perform the analysis with respect to iterates in
standard norm, under strong convexity and L-smoothness, allowing any proximable regularizer.
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Table 5: Original and proposed new methods for both single node and distributed setups.

ORIGINAL ‘NSYNC CGD DCGD DIANA ADIANA
NEW SKGD CGD+ DCGD+ DIANA+ ADIANA+
(ALGJ) (ALG[6) (ALG[T) (ALG]2)) (ALG[3)
PROXIMAL X v v v v
DISTRIBUTED X X v v v
VARIANCE REDUCED X X X v v
ACCELERATED X X X X v

Table 6: Complexity of new methods with hidden log factors and constants.

Method Iteration Complexity
SkGD (Algorithm |5 %
CGD+ (Algorithm 6 £y M%
DCGD+ (Algorithm|1) | £ + E;:X + Lpas
DIANA+ (Algorithm[2) | wyyax + £ + Lmas
W+ Wi Zm if 1L < Lo

ADIANA+ (Algorithm

[9%)
€
5
o
B
_|_
Nl
_|_
(S
g
o
B
E
3k
3
NS
=X
3
h
V
™
g
o
®

Theorem 12 (see[G.2). Let Assumptions[I} 2| hold and S be a sampling with probability matrix P.
Then, for the step-size 0 < v < 1/2Z, the iterates {x*} of Algorithm@converge as follows

E[lla* — 2] < (1 — )" [la® — 2*|” + THW(% s
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F Lower Bounds for Sketches as Linear Compression Operators

Here we investigate general sketch matrices S as a linear compression operators. The motivation
of this is to understand the trade-off between communication and variance of linear compressors.
The notation, used in this section only, slightly deviates from the paper but otherwise is consistent
throughout the section.

Consider compression of vectors z € R? allowing approximation error in exchange for less bits
of communication. Let compression operator C: RY — R? be composed of some linear encoder
E(z) = Sz with s x d sketch matrix S and an arbitrary decoder D: R® — R<, so that C(z) = D(Sx).
Throughout we consider the space R? equipped with an inner product together with its induced norm
given by some symmetric and positive definite matrix B of size d x d as follows

(r,y)p =By, |zlls =\/(z,2)g, z,yeR"

In general, we let matrix S, number of rows s and decoder D to be random, while the matrix B will
be fixed throughout the analysis. Since we consider only linear encoders, we may assume ||z||g = 1.

F.1 Fixed sketches

We first analyze the case where the sketch matrix S is fixed and hence the compression operator
C is deterministic. The analysis then we will lead us on a more usefull result for random sketches.
The decoder D receiving vector y = Sz should be able to reconstruct & = D(y) so to minimize the
squared error

a(8) = sup [C(x) -zl = sup [|D(Sz)-z|f<1.

llzl[B=1 lzlls=1

The following lemma shows the optimal strategy for the decoder and possible values for a(S).
Lemma 13. For a fixed sketch S the optimal reconstruction from y = St is

D*(y) = Sty =B-18T (SB!8T)'y, 27)

where - indicates the Moore—Penrose inverse of a matrix. Furthermore, if ker(S) = {0} then
a(S) = 0 as in this case D*(Sx) = x for any x € R%. Otherwise, if ker(S) # {0}, then a(S) = 1.

Proof. Let ker(S) = {z: Sz = 0} be the kernel of S and 2T = STy be the minimal B-norm
solution to the system Sz = ¥ so that the set of all solutions is zT® + ker(S):

t
of® = argmin ol = $'7y = B~ (sB) 'y,
z: Sz=y
Denote by
S(x) = (xTB +ker(S)) N{z € R%: ||z g =1}
the intersection of the affine set of solutions and the unit sphere. Notice that initial vector z € S (x)
as it has unit B-norm and satisfies Sz = y. Now the cost of sending Sx instead of original z, is the
uncertainty that the decoder has to deal with by estimating the original vector within the set S so to
minimize o.. We first show that z° = 2218 — x € S(z), which is equivalent to
z'® —z cker(S) and |2z —z||3 =1.

The first claim follows from the fact that both z and 1B are solutions to Sz = y, namely Sz =
y = Sz. Expanding the square in the second claim we get (z'8, z' — z) . = 0 which holds as z'®

is the minimal B-norm solution. Therefore the vector y the decoder receives does not differentiate
between = and 2. This implies that for any choice of & of the decoder

- . S - - s 2 S
max (|| — z[|F, & — 2°(IB) > 1 (& — z|B + |12 — 2%(8)” > {[2” — 2[5 = 2> — 2|

squared-error is unavoidable for the couple z, z° and the optimal choice is # = x'B. Thus, the
optimal decoding strategy to y = Sz is D*(y) = x® given in . Now, if ker(S) # {0} then we
could pick the initial vector x from the kernel space, i.e. « € ker(S) and ||z||g = 1. Then we would
have 28 = (0 and hence the minimal squared-error (S) = 1. On the other hand, if ker(S) = {0},
then z'® = x as the system Sz = y has unique solution. O
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To conclude for fixed sketches, notice that, 2z and 2° are in symmetry in this anal sis. Indeed, if the
initial vector was 5 as opposed to z, then Sz = Sz, hence 2°18 = 8 and 2°% = . Therefore,
the analy51s of Lemma|[I3]leads to the following lower bound for any decoder D and initial vector
r €Re

max_[[C(2) = 2l > [l2™® — 2l =1~ 2™ § = 1 - || Z2|3, (28)

z=x,z5

where we used orthogonality (8,2 — z) . = 0 and defined the random matrix Z = Z(S) via
T
Z:=S™S =B (SB™*) s =B'ST (SB7'S")'s.

F.2 Random sketches

Now we turn to the general case when sketch matrix S is random and drawn from some distribution
D, to which both encoder and decoder have access. The number of rows s of S can also be random. In
this case, the decoder D upon receiving random vector y = Sz should estimate possibly randomized
% = D(y) so to minimize the expected square error

a(D) = sup E[|C(z)-z|g] <1, (29)

lzlls=1

where C(z) = D(Sx) is a random mapping with a source of randomness coming from the distribution
D and decoder D. Below we prove a lower bound for (D).

Theorem 14. Let D be some distribution over s X d matrices S allowing variable number of rows
s € [d]. Then for any (possibly randomized) compression operator C(x) = D(Sx) with i.i.d. samples
S ~ D and x € R? the following lower bound holds

(D) + Ep [/d = 1, (30)
where r = rank(S) is the number of independent rows in S.
Proof. Based on the lower bound (28] obtained from the deterministic case, decoder cannot avoid

the error 1 — ||Zz||% even in the case of knowing what sketch the encoder used. Therefore minimal
expected error 1 — Egp|Zx||% is unavoidable for any initial 2. This leads to the following bound

1—a(D) < inf Ep [|Zz|3]
lzlls=1

= inf Ep [z'Z'BZaz]

lzlle=1

2=B e inf Ep [ZTB*1/2ZTBZB*1/ZZ}

= TEp [B‘I/QZTBZB‘I/Q} p
zl|=1

= A (Ep [B27BZB )

= (Bp [B7'27BZ))

— A (En [B7'ST (sB7'sT)'s])

Amin (Ep [Z])

where the expectation is with respect to S ~ D. Thus, we obtained the following lower bound:
(D) + Amin (Ep [S™S]) > 1. 31)

To prove the inequality (30), it is enough to establish the following upper bound for the minimal
eigenvalue

)\min (ED [Z]) < ED [T/d] .
We follow the proof of Lemma 4.2 of (Gower and Richtarik! [2015]] to prove this inequality. It can be

easily checked that, using the properties of pseudo-inverse, Z = S™8S is an idempotent matrix for
any S, namely Z2 = Z. This implies that all eigenvalues of Z are either 0 or 1 as they must satisfy
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the same relation \> = \. Trace tr(Z) of such matrices coincides with the number of non-zero
eigenvalues, which also shows the rank:

d
tr(Z) = Y X (Z) = #{i € [d]: \; (Z) # 0} = rank(Z). (32)
i=1
From the properties of pseudo-inverse it follows that rank(ATA) = rank(AT) = rank(A) for any

matrix A. Hence

T
rank(Z) = rank(S™$S) = rank (B—l/2 (SB_I/Q) S)

= rank ((SBVZ)T SB1/2> = rank (SB*W) =rank (S) =r.

Combining with we get tr(Z) = r. The purpose of expressing the rank as a trace is that in
contrast to rank, trace and expectation operators are commutative, which basically follows from the
linearity of the expectation:

tr (Ep[Z]) = Ep [tx(Z)]. (33)

Using (32), (33) and tr(Z) = r, we conclude
d
1 tr (ED [Z]) ED [tr (Z)] ED [’I‘]
Amin E Z S . )‘z E 7)) = = = ,
(En[2]) < 5 3N (B [2]) = =7 j y
which completes the proof. O

F.3 Optimal sketches

With the knowledge of this new lower bound, here we construct a distribution D of sketches that
will achieve equality in . Let B= QAQ be the eigendecomposition of the symmetric matrix
B, where A is diagonal with eigenvalues and Q is orthogonal with eigenvectors as columns. Let
C be the diagonal sketch of size d x d corresponding to random sparsification with probabilities
p = (pi)i;. namely

. 1 with prob. p;,

C=D ;= .

iag(c), ¢ {0 with prob. 1 — p;.

Define a distribution D = D,, of sketches as S = CQ" and notice that
d d d
Ep [rank(S)] = Ep [rank(C)] = Ep [#{i € [d]: ¢; = 1}] = Ep lz c] =Y Epla]=) pi
i=1 i=1 i=1

Therefore, Ep [r/d] = & 3" p;. With decoder D(z) = Qz we get a compression operator C(z) =
QSz. Next, we compute (D) as follows

a(D) = ” Si‘up:lE [Ic(z) — ||3]

- s”uglE [11QSz — z||3]

= sup E [IT(I - QS)'B(I - QS)x]
T Bz=1

= sup 2z E[I-QCQ")BI-QCQ")|x
zTQCQTz=1

= sup  (Q'z)'E[(I-C)Q'BQ(I-C)](Q'x)
(QT2)TA(QTx)

= Gp g E[(I- C)A(I-C)]y

y T Ay=1

= sup (A72y)TE[(I- C)?] (AY2y)
y T Ay=1

sup z' - Diag(l —p) -z
llzl=1

max (1 —p;) =1— min p;.
1Si§d( pi) min p;
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Hence

d
1
< r -1 — i R .
1 < a(D) + Ep [/d] ]—1g&m+d§1m,
1=

and equality occurs if and only if all probabilities p; are equal to some ¢ € [0,1]. Thus, the
optimal sketches are obtained by rotating the coordinate basis to the basis of eigenvectors of Q
(.e.  — Q'x), and then randomly sparsify coordinates with diagonal sketch matrix C (i.e.
Q"z — CQ'z = Sx). We summarize this result in the following theorem.

Theorem 15. Let B = QAQT be the eigendecomposition of B of induced norm, q € [0,1] and
C be random diagonal sketch corresponding to the random q-sparsifer. Then sketches S = CQ"
are optimal with respect to variance against rank trade-off with squared error o = 1 — q and
expected rank Elr] = qd.

F.4 Random sketches with linear constraints

In this part we extend the theory of compressing vectors € R? with an additional linear constraint
x € Range(A) for some d x d’ matrix A. Such scenarios occur when to-be-compressed vectors are
the gradients of f(w) = ¢(A Tw), for which V f(w) = AVA(A Tw) € Range(A). Without loss of
generality, we may assume that A is of full column rank and consequently d’ = dim Range(A) =
rank(A). The constraint © € Range(A) then can be equivalently written as © = Az’ for some
2/ € R?. The induced inner product and norm on Range(A ) is then given by the matrix ATBA as

<may>B = <Ax/aAy/>B = <w/7y/>ATBAa T = Al./v Y= Ayl

Notice that,/ since Sz = SAz’/, communication of zz € R? with sketches S reduces to communication
of ' € R% with sketches SA. Thus, the additional constraint x € Range(A) C R? reduces the
problem to lower d’-dimension with sketches SA, S ~ D and norm induced by AT BA.

F.5 Variance against communication trade-off

The obtained lower bound (30) can be easily translated in terms of the number of bits. Assuming
each float takes 32 bits to encode and there is no redundant row in S (i.e. s = r), then Sz € R" can
be communicated with up to b = 32r bits. Therefore, the lower bound can be written as
E [o]
21 34

T34 = G
which (ignoring the expectation) is exponentially stronger than the lower bound o - 4”¢ > 1 obtained
for general compressors in [Safaryan et al.||2020]]. We visualize the comparison of these two lower
bounds in Figure Furthermore, denote by 5 := E [b] /32d the expected communication reduction
factor and recall that « is the portion of the expected lost of information. With this notation the above
lower bound (34) turns to the following simple inequality

a+32>1,

showing the trade-off between information lost and communication reduction for linear compressors;
namely more reduction in communication leads to bigger information loss and vice versa. In one
extreme, when all 32d bits are sent, no reduction in communication is made (8 = 1) and no
information is lost (a« = 0). In other extreme, when no bits gets transferred (3 = 0) we loose all
information (o = 1).

To conclude this section, let us investigate the optimality of random g-sparsifier with respect to the
lower bound . Recall that random g¢-sparsifier is optimal with respect to (30). Let ¢ € (0, 1), and
k be the (random) number of non-zero entries of sparsified vector. Clearly, E |k| = ¢d and to encode
any k-sparse vector one needs b = 32k + log, (z) bits. As we know from Theorem , the squared
error « = 1 — q. Therefore

= g s 1o (2] = L e (7)) < 1o [ (4)] < 12202,

32d 32d k d 32
The first inequality follows from the following estimate (only upper bound) for binomial coefficients
2dH2(‘r) d 2dH2 ()
g( )g, 0<r<1,
8dr(1—7) Td 2rdr(1 —71)
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where Hy(7) = —7logy 7 — (1 — 7) logy (1 — 7) is the binary entropy function in bits. The second
inequality follows from concavity Hs function and the Jensen’s inequality. Because of the symmetry
around 7 = 1/2 (namely Hs(1 — 7) = H»(7)) and concavity of the function Hs, one can show that
the maximum is achieved at 7 = 1/2 and H3(1/2) = 1. Thus, in the worst case we have o+ 5 < 33/32
upper bound, when roughly half of the entries are chosen uniformly at random. For other values of ¢,

it is even closer to the optimum; numerically Hy (1) ~ (47 (1 —7))7*, 0 <7 < 1.

1.0 [
I

normalized variance
o o o
= [} [e:]

o
[N}

o
o

0 4 8 12 16 20 24 28 32
bits per coordinate

== General UP Random-k
== Linear UP Top-k

Figure 7: Comparison of general uncertainty principle o - 4”7 > 1 (dashed red line) of [Safaryan
et al] [2020] against the new linear version (34) (dashed blue line). Each color represents one
compression method: yellow for usual random sparsification with uniform probabilities and orange
for greedy sparsification (a.k.a Top-k sparsification). Each triangle marker indicates one particular

d = 103 dimensional vector randomly generated from Gaussian distribution, which subsequently
gets compressed by the compression operator mentioned in the legend.
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G Proofs

G.1 Proof of Theorem|§

Using smoothness of f, we have
Ef(z"*') = Ef (2" —yCV f(z"))

< J(@*) =y (VI@).E [CVS@N)) + L E [V )}
ol ky)12 (33)
= f(@") =V ()17 + EHVf(JJ SR

1
< f@") =7 (2= YAmax (B [CLC)) - 5[V F ("))
Computing the expectation inside, we get

PijLij

g=1 o
HJ DiDj

E[CLC]=E [(cichij)‘.i. ] = < )d 3 = (Diag(1/p)PDiag(1/p)) oL = PoL. (36)

Therefore, using the bound for the step size v and strong convexity of f, we get
E[f() — f(@)] < (@)~ F@7) — 7 (2~ Wmas (PO L)) - £ [V S (a5
< (@) = f(@) = SIVF@EH) 37
<(1- w) ( (%) = f(z7)),

repeated application of which completes the proof.

G.2 Proof of Theorem

The following lemmas will be useful to handle the computation with pseudo-inverses.

Lemma 16 (Lemma E.2 and E.3 [Hanzely and Richtarik, 2019b]). If f is convex and L-smooth, then
forany x,y € R¢

1
Fly) 2 fl2) +(Vf(2),y —2) + 5[V f(z) - VIWIE:- (38)
If, in addition, f is bounded below, then V f (z) € Range(L') = Range(L) for all x € R%.
Lemma 17. With C = L>CL"/2, the following holds

E [Ll/z C-1' (C-1) Lﬂ — LY2LT (f) o L) LiV2LY2, (39)

Proof. Using the property L'/>L"/>L"/? = L"/? of pseudoinverse, we have
E[L”(@€-1" (C-DL”] = E[L¥(LPecL -1) (LcLi —1) L]

E [LW (LWZCLCLTW _LP2CcLY? — LY2CL™> + I) Lﬂ

5]

L2 (L2 (B oL) LI/ — VALY — 1L + 1) 12
LY2 (Lw/z (PoL)LM2 - LT1/2LLT1/2) LY2
e (L“/?LLWZ LY LAt 1) LY
(PoL—L)LM-LYs 4 L2 (1 - LPLY?) (T L/ALr/2) L
— LYt (P o L) LiverYz o (L1/2 _ Ll/szl/le/z) (L1/2 _ Ll/erl/le/z)
(

— LYLi PoL) ARG WS

— LYtV (P

O
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For convenience we skip iteration count k, and write z,z" instead of ¥, z**+1!.

expansiveness of the prox operator we get

Using non-

E[let - o*?] <E[Jlo - 2" — 7 (LCL?) Vf(2) + 9V f(a")]?]
= o = 2*[]2 = 29 — 2", V(2) = V(")) +2°E [| (L2CLY2) V f(2) = V("]
< llz = 2"|? = 2y{w — ", Vf(z) - Vf(z")
+29°E [ILY2CLI (V (@) = V(@) 2] + 29°E [| (L7*CLI? — 1) ¥ f(a")|?]
< llz = @*|? = 2y(z — ", Vf(2) ~ Vf(2")
+ 292 Amax(E[CLO LY (V (@) = V(@) | +29°E ||| (L*CL2 ~ 1) v f(a*) 2]

E9.ED
< =2t = 29z — 2%, V f(2) = V("))

+ 297" Amax(P o L)V f(2) = V(@) |25 + 27" Amax (P o L)V f (@) |14
= llo — 2% = 29(z — 2", Vf(2) = V(")) + 29°L|[V f(z) = V(@) |Ls + 20 LIV ()3,
where we used E [CLC] = P o L based on (36) and for the last term we used Lemmato represent
Vf(z*) = L'?g, and then applied Lemma

E {H (L1/2CLT1/2 - I) Vf(z*)

1 = E |g/L/ (LPCLY — 1) (LY2CL — 1) L2,

= V)T (L“/Q (ﬁ o L) LT1/2> V(2"

< Amax(P o L)V f(2") |3+
(40)

Using the bound on step size v < 1/2Z, strong convexity of f and (38)), we continue as follows

Eflat —2*?] < |o—a"|?—~{z—2",Vf(x)— Vf(a"))
— ((z —a*, Vf(z) = Vf(@") = [Vf(x) = VI@")E)
+292 LV £ ()3

* ~ *
< (=) e =22+ 2LV () |15 -

Telescoping the above inequality, we complete the proof.

G.3 Proof of Theorem 2l

Proof technique. First we show the unbiasedness of g*. As smoothness matrices L; are not
necessarily invertible, terms like L;/ : le/ ? show up in the analysis and block chains of cancellations.
This part is handled by the fact that gradients V f;(x) of an L;-smooth function are constraint to
remain in Range L; and the mapping associated with the matrix L;/ : L;-fl/ ? is identity on the subspace

Range(L;). Second part is the tight estimation of Ex||gF — V f(2*)||2, which describes the progress
of the method in the presence of stochasticity. Key part is getting the decomposition

* * " 2
Ex [[lg* = VF@)|P] = [Vf(@*) = Vf(@)I* + 55 ; [V Fil) e op iz (4D
which shows the exact interaction between random sketches and local smoothness. We complete the

proof using the unified convergence theory of (Gorbunov et al.| [2020a]].

Proof.
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In this proof we skip the iteration count k to simplify the notation. Define

M, L/E[(C;,-1)T(C, -] L/

IE

L/2LI (B, o L)L LY
Ll/ZLT1/2(P oL; — Ly)LI*L)/

_ LB o LLILY - LU L LY

= Ll/zLW(P oL)LI’L” — L,

- L”(E[C]C]-1)L/” (42)

We are going to estimate the moment E [||g(z) — V f(2*)||?] and show the following bound for the
gradient estimator g(x) = = >°" | C;V f;(x) (see line 5 of Algorithm:

" 2L e 20"
E [llg(z) = Vf(z")|P] <2 <L+ n) Dy(z, ") +

Due to Lemma we have V f;(z) = L;/ *r,; for some ;. Therefore
E[CiVfi(z)] =E [Lz/zCiLjI/zLihm} —LLILY 2 = L = Vi), (43)

which implies unbiasedness of the estimator g(z), namely E [g(x)] = V f(z). Next, note that

E [lg(z) - Vf(x [H Z;@Wi(x)—wu*) ]
;iE[HCNﬁ( ViG] + ;E CiVfi(x) - Vf(2"),C;V (@) - V(")
—;iE[HCNﬁ *] + 1V @) - 2E(C:V (), v x*>>+nlz;Wfi(:c)—Vf<x*>,ij<x>—Vf<x*>>
- anvfz ||EcTc]+||Vf< WP = 2(Vfilw), VI @) + [V F(2) = V)P - Z\\sz Vi)l

o +—Z||sz P+ 19 @)~ 2(Vfila), V(")
Vi (@)~ Vf@E)P - Z IV £i(@) — V£ ()2

= |Vf(x) ~ VF@EIP + Z Irilis,

— IVf(2) = V)| + = lenHszLr o Bron VL

=V f(z) = Vf(=")I]* +

Tl/ 2y f H
which gives as the following decomposition

LTl/QVfZ )‘

E[llg() = VI@)I*] = [VF(z) = Vi) +

44)
P oL;
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For the first term it can be bounded using convexity and smoothness of f, namely |V f(z) —
V f(z*)||?* < 2LDy(z,z*). For the second term we proceed as follows

1/9 2
LIV @)

1 n
=3
=1

IN

1 & =~ 1
5 2 Amax(By 0 L) [L]*V i @)
i=1

1 w— +
ﬁgﬁillvﬁ(w)lli;

2 n . . 2 n . .
<= > LillVfi(z) = Vi )Iliz +s D LillV iz )Ili;
=1 1=1
2 n _ 20.*
< ﬁ;zﬁil)ﬂ(x )+
AL max 20"
_ Dy(w,a*) + =2
n

(45)

Combining these two estimates, we get

20"

E [llg(z) = Vf(=")IIP] < < + ﬁmd’()Df(a?,w*)ﬂL

It remains to apply the result of (Gorbunov et al.| [2020a].

G.4 Proof of Theorem[3

Proof technique. The structure of the proof resembles the one for DCGD+. With the introduced
shift vectors, the unbiasedness of g* additionally requires ¥ € Range(L;). This is resolved by
the initialization hY € Range(L;) and linear update rule for h; **1in line 5. The proof develops a
decomposition similar to |li with modified second term o* := }L SR =V f(z )Hi* involving
shifts h¥. To avoid the neighborhood term in and guarantee a linear convergence for 9:;“, we make
o converge linearly too. Key technical part of the proof is to establish contracting recurrence relation
for o* which boils down to E[C;] LIC,] < (w; + 1)L!. The latter bound justifies the structure of

C; as it filters the interaction between compression and smoothness mixed in the expectation and
separates variance w; of compression from smoothness matrix L;.

Proof. First, we show the unbiasedness of the estimator g(z*). In , we showed unbiasedness
of CFV f,;(z*) using inclusion V f;(z*) € Range(L;). Assume for a moment that we also have
h¥ € Range(L;). Hence, in the same way we can show E;, [CFh¥] = h¥, which implies the
unbiasedness of ¢* as

Ex [¢*] = %ZE%@ [CEVfi(2*)] — Ey [CERE] + hE = Zsz = Vf(z").
i=1

The inclusion h¥ € Range(L;) follows from the initialization hY € Range(L;) (see line 1 of
Algorithm and linear update rule of hf“ =hF + ozL;/ *Ak (see line 5 of Algorithm . As both
V fi(z*) and h¥ belong to Range(L;), denote V f;(z*) — h¥ = Lz/zrf. Next we bound
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E [llg" = VF#@")IIP] = IVf(2*) = V)P + E[lg" — VF(=")I]

2

<2LD;(2",2*) +E H’lL Zn:éf(wi(xk) — b5y + hEF — Y fi(2F)

1]

" 2
=2LDy (", %) + ; Z Hrf||]E[Li/z(éffl)T(affl)L;/ﬂ

i=1

fQLDf ¥ , ZE [H Ck 1/2

2} 1 « 2
2 2LDy(a*,2") + ) Z Hrf!’L?QLIW(EoL,;)LZTl/QLj/Q
i=1
ko 1 ¢ k N (46)
= 2LDy(a", ) + 7122_;‘ (VhE)—mD|,
k. E < k
<2LDy(a",x7) + ill;
i=1
2L max 22 -
<9LD k * max max k
T zuh -V
=1 i=1
< 2LDs(z* z*) + 4EWD(D (zF, Emax Z Hhk Vii(x
> f ) n f ) ’L
2L 2L max o
L max D k% max hk v ; .
~o (4 2o ey 4 2 ;H el
Then we deduce a recurrence relation for the last term o* = %Z?zl ||hk Vfi(z HLT For that
we will need the following bounds
0<L/°LIL/* <1, 47)

which can be proved via SVD and eigenvalue decompositions. Since L; is square, symmetric and
positive semidefinite, we know that singular value decomposition and eigenvalue decompositions
are the same. Let L;/Q = U,;D, U]/, where D; is diagonal and U; is orthogonal so that U] = U; ',
Then

L/"LIL/” = U;D,U] U;D’U] UD U] = U, (D,DI°D:) U] = U; (D:D]) U],

which can admit eigenvalues only in [0, 1] since the matrix DiDZ is diagonal with entries either O or
1. Denote

Wi = Amax (E [(CE)Q]) — 1= max

! 1<5<d Py

1. (48)
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and bound each summand of o¥11 as follows
w112
Ei [ = Vfila")||5, ]

=Eyg {th - Vfi(z™) + aZinﬂ

= ||hF = Vfi(z") |;iT + 20 (B = Vfi(2"), Vfila") = B}y + 0B [Hck Vi(a*) = 18]

= ||hf = Vfi(z") LT +2a (hi = Vi(2"), Vi) = by + o [V fi(a" h’“HE () LITH]
<|[hf = Vfila HLT + 20 (Bf = Vfi(2"), Vfi(a®) = h) 1 + 0® |V fila" w:HLﬂﬂE[(cg)z]le/?
< ||k = Vi o (hf = Vfi(a™), Vfi(a") = hf) s + 0 (14 w) Hsz )= hilles
< |[ni = Vit HLT +2a<hf = Vfila"), Vi(a") = i >LT +al|VAi(*) - mE|l7

< (1—a)||hf = Vfi(z*)

Lg + a||Vfi(a®) = Vi(a")

LT)

where we used bounds o < H% and
i

E[(©)TLICH] = LIE [ciLLiL et L] < LIVE [(ch? L.

Therefore

Ei [o"1] = % ZEk [[[ps+ =V fia")

2}
T
Li

2

- V/iz

n

2
<1fa>o’“+§ZDfi<x’zz*>

i=1
= (1 —a)o” +2aDg(z*, z*).

IN

Thus, with o < ——, the estimator g* of Algorithmsatisﬁes

14+wmax
Ex [¢"] = Vf(z¥)

* Zrnax * 2Zmax
e llg* = ViEII] < <L+ ” )Df(w‘“,w)+o’“

n

Ey, [0"T] < (1 — @)o” +2aDy (", 2%).

sz(l"*)| Lt

It remains to apply Theorem 4.1 [Gorbunov et al.,[2020a] with parameters A=L+2 ﬁm'}x’ =
2Lmax,p—a C’—aandM_—EIIlax,A+CM L+ gmax’1+ —p_l—f

G.5 Proof of Theoremd

Proof technique. The additional difficulty that acceleration brings on top of variance reduction is
the modified term H* := L 3" ||hF — V f;(wh) ||2 controlling variance reduction process. The

subtlety of H* in contrast to o* is gradients V f;(w ) which are not fixed. Key technical part is to
reduce contracting property of H* into upper bounding E[(I — aCl)TLZ(I —aGC;)] by (1 - a)LI

as quadratic forms in the subspace Range(L;).

Proof. Following the analysis of |Li et al.[[2020], define
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ZF = ||2F — 2|2, Yk = F(y*) — F(z*), Wk = F(w®) — F(z*),

1 n
=~ > _IVA@®) = i
i=1

Lemma 18 (Lemma 2, [Li et al;, 2020]). Let n < 5p, 01 < g, b = 3, 7 = gy and
B8 =1—~u. Then

2
E[251] + ;5 [YFH1] <BZF + (1 - 6, — 65) gﬂY’“+2 e %E[Hgk — Vi)

ST ZHW =~ VAN - g ZHVL = ViiIg

Proof. Proof is the same as for the original lemma except we use L;-smoothness of f; via (38).

Fiw) 2 Fila) + (Vi) u o)+ L9 Fiw) Va2,

Lemma 19 (Lemma 3, [Li et al.l[2020]).
E [WHH] = (1 — q)WF + gV
Lemma 20 (Lemma 4, [Li et al., 2020]).

2A&'max - Linax
E[llg" - Vi@")|’] < 2 D IViwh) = Vii(e I . 2omax g,
=1

Proof. Let V f;(z*) — L/2 k. Then
2

E[llg" - V/(z H Z CH(Vfila®) = b)) = (Vfilz®) — hi)
2 Lo ,
- || - nwaeh - | = 5 S |- o]

i=1 i—1

2 @ 1
=2 Z HrfHLj/QlE[(éf—I)T(éf—I)]Lj Y Z v HLI/QLT /2(B;oL;)LI/?L)/?

i=1 i=1
2 L, - 2
o, = VA

ZEmax - Emax -
< RN (VA = V@) g+ 5 Y [ VAb) kg
=1 =1

LI (V fi(a*) — hE)

O

Lemma 21 (Lemma 5, [Li et al., [2020]). If o < —————, where wmax = MaXi<i<p W; and w; =

max1<3<d— 1, then

s < (1-5) e (14 2) 2 (an = VR + IV - TR )
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Proof. We start bounding the summands of H**+1. Let V f;(w*) — h¥ = L/*rF

Ekmwiwml)_m@]_ 192064 = Ry |+ = o 9 ) -
<a(1+ %) 19504 = T20MGy + (1=a+ (145 ) 0 B[V ~ 4
2q
a)uwz =V + (14 5) E [0S - 1

2
_<1+q

(67

H
’.—\
_|_

(
IV£i®) = VGOl + (1+ 5) E[[la = aCHVAi®) - mD)]]
(

(67
o143 )um =9y + (14 5) It ety et acp e

Next, we simplify the matrix of the second term.

L/’E [(I —aCHTLII - aéf)} L/
—E [LZT/Z(I —aL2CFLY)LI(I - aLl./2Cijl/2)L§/2]
) [(Ll}/z L/2LI CFLY)LI(LY? — Lz/chle/QL;/z)]
= E |L/LILY - oL/ "LiL/ " ClLl VL)
— aLPLICILPLILY 4+ L)L P el LI P el L)

4> [L1/2LTL V2 oLYLILY*CRLALY?

- UL O LY - L e L]

= LLIL” — oL"LIL"LI"L)” — oL/”LI*L°LIL)” + o*L/°LIE [(CF)?] LI °L)”

@)
! L/°LIL/? — 20L/”LIL/” + o®(w; + 1DL/*LI*LI*1)/?

= (1— 20+ a®(w; + 1))L/°LIL}?
=< (1- o)L "LIL,

where in the last step we make use of the bound o <
recurrence as follows

1+wmax = minj<;<p 1+ . Then we finish the

<q{l+ o [V £i(w") = V fily ||LT + (1 + ||7"zl‘€Hij/QE[(I—aéf)TLj(I—aéf)]Lj/Q

IV i) = Vi) lg; + (1+

[
(1+2) 3)

<0 (14 22) I9Awh - V6O + (1+5) 0=t g
(1+%) 3) (1= ) [V fitwh) = hElgg

<2 (14 2) (I9504) - VAER + 19568 - TG + (1- 5) VA

Averaging over ¢ € [n] completes the proof. O
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Proof of Theorem[] Using the 4 lemmas above and 6; < %, 5 = 1, the Lyapunov function ¥*1
admits the following recurrence

02(1 + 91) Wk+1 SvnﬁmaxH k41

k+17 .
E U] =E Toa e

2
Zk+ 4 GLIBY’c+1 + 278

76

Lemma[IR]
<

BZ + (1= 01— 02) 7~ Y’f+w N”E[ng V()]

ST Z IV fi(w*) =V fi(a" Z IV £i(y") =V fila®)IIEs

891L max
01q abin

296
6,

.
ST Z IV £i(w") = VAGEIIL = gg ; IV £i(y") = Vi)

Hk-‘,—l

Lemma[T9]

BZF 4+ (1— 06, —6,)= 2 Y’“+2B W’“+ E[Ilg — V(E"))?]

+ 275 2(1 + 01) (1 _ q)Wk + 27ﬁ92(1 + 01)yk +E 87n£maka+1
thq 01 abin
gﬂz’w(l)hﬁyk <191q)25 (”Gl)w
2 91 1C]
ST Z IV filw*) =V fi(a* Z IV £i(y") =V fila®)IIE
n k_ ky(2 8’Y77£max k+1
+ g, Ellg" = VIEIP] + E | === H ]
Lemma[20]
< pz* +(1_> 27ﬂyk ( 91q>2 wa
2) 6 b1q
ST Z IV £ilw®) =V fila®)]3 Z IV£iy*) = VI (a")I1Fs
291L max _ 2’777£max LT —
+ T L) - V) + T it B | ey
Lemma[Z1]
< 52’6_,_(1_)276 (1_9)2 ﬁﬂw
2 91 2 1q

2777Emax k 2’777£max k 8’Y77£max @ k
2YMNEmax | o ¢ vt H 1--)H
—+ 9 n2 vaz(w ) vfz( )HLT + 91n + aeln ( 2)

<1+ > 1690 Lomaxq <Z IV fi(w®) — Vf(a T+Z||sz vfi(g;’“)lliif

N———

Cabn?
2~ vk 01q (1+91) & o S’ynzmax &
_ gz (1) 2P 1—— 2y 1 - &) S max gy

1 max
- ( - ) SV iwh) Vi),

'Cmax i
- (; - (1+ ) 16’7anq> (Zwmw )~ Vi T+Z|\sz Vfi(xk)||i3> .

i=1
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To make the last two lines disappear from the recurrence, we need to make sure

1 20l 1 2¢\ 160Lmax
S ZPmex 5o and o - (14 1) 20Emaxd 5
8 n 8 o an
or equivalently
<2 d n<—0 .
n < = an n= = '
16 L max 64Lmax o (2 +1)

Since o < ﬁ (see Lemma and we also need to have n < ﬁ (see Lemma , we can set

. 1 n
n=min| —, = .
<2L 64Lmax (2q(wmax + 1) + 1)2>

Therefore

Bwk) < pzh 4 (1o D) 20y (1) 5 580t ) gy (1-9) BV g
01q 4 afdin

e Lk 01\ 278 by t1q (1+91) 890 Lwmax ok
<(1-2)z 1-2 Y L- = ) 28— 1— =) 2wy
- < 491) + < > 0, < 8 01q w* ( 4) abin

where we set v = m,ﬁz 1 —yp < 1— f duetonu < 61, and 0 :min{i, ’77}

After telescoping we get an e-solution E [||2* — 2*|?] < ¢ after

8 2
max | 4(1 4+ Wmax), —, — max | L,
q nq

32 o (2¢(wmax + 1) + 1)2> o ¥

n

max(lﬂ/ nlL 71)
1 32Lmax

iterations. Choosing ¢ = min { , o) } we can simplify the above iteration com-

plexity into

O (W + W) it L < 128Cmax
k=90 1+ wmax + ”jgz;nL> if 128Lmax < nL < 32Lmax (2wmax + 3)2
o (wmax n \/%) if 32Lmax (2wmax + 3)% < nL.
Combining last two cases concludes the proof. O
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H Improvements Over The Original Methods

In this part we provide detailed derivations skipped in Section[5] Recall parameters v, v, describing
matrices L;:

n d 1/5
Zi:l Lz ZJ 1 L
vi= ===y, = max 71 49)
max L; 1<i<n pax LY
1<i<n 1<j<d 3

where L; = Amax(L;) and we will choose s = 1 or s = 2. Let Liyax = maxi<;<n Li.

H.1 Importance sampling for DCGD+

Let7 = E[|S;]] = 2?21 pi;; be the expected mini-batch size for the samplings S;. Notice that
convergence rate of DCGD+ depends on Zmax = maxi<i<n /31 Since each node i € [n] generates
its own diagonal sketch C; independently from others, each node can optimize EZ = )\max(f)i oL;)
independently based on local smoothness matrix L;. In general, minimizing )\max(f’i o L;) with

respect to probability matrix P, is hard. However, we can find the optimal probabilities when each
node generates via an independent sampling, namely p;.;; = p;;;jpi; if j # [. Then

~ 1
Amax(Pi o L;) = max (
1<j<d \ Pi;5

_ 1) L, (50)

for which we can find the optimal probabilities p;;;. To minimize the maximum term in (50), we
should have (1/p;;; — 1) L;,; = p; for some p; > 0. Then the solution is

Pij = : , (51)
o Lig +pi
where p; > 0 is the unique solution to Z;.lzl Lvaiip» = 7. The latter does not allow closed form
i3] [

solution for p;, but it can be computed numerically using one dimensional solvers. Hence, we can
efficiently compute the optimal probabilities (51)). Moreover, we can deduce a simple upper bound

for p;
d y, 1A
< = - L;.;, (52)
ZLJ+pZ ;Pi Pi; "

which gives us an upper bound for £i as follows

d
- - 1 @ o,
Li = Amax(PioL;) = p; < = Li; < —Lmax- 53
(PioLi)=p - §: i - 53

Proof of Remark[3] Using the following inequalities with respect to matrix order

1 n
< - L;, L; <nL, 54
n; n (54)

we bound L as follows

e 1' 1/

1 « 1« 1
L= >\max L < >\m x | — L1 < - >\max i Lv mix 55

Fix 7 = Z;l:l pi;; € [0,d] expected mini-batch of coordinates for all nodes ¢ € [n]. Then, with
probabilities (5T)) we have

= — max L; = — max Pi = ELmax < ELmaxv



To get it upper bounded by L.y, notice that max;<j<q Lj;; < Amax(L;) = L;, which implies

Lyax = max max L;; < max L; = Liyax. (56)
1<i<n 1<5<d 1<i<n

Therefore

L
L S (K + ﬂ) Lmax~
n ™

O

Remark 7 (Speedup for uniform sampling). For standard sparsification with uniform probabilities,
the term affected by the compression in the complexity (consider the linear rate of DCGD for
simplicity) is WmaxLmax = (g — 1) Limax, where L. = max;e(n) L; is the largest smoothness
constant over devices. On the other hand, in the proposed sparsification strategy we have probabilities
Disjl = :Ti ifj # 1, and p;.j1 = 7 if j = I, which implies that P; = (% — 1) L In this case, the term
affected by the compression in the complexity is

Emax = maxie[n] )\max(lgi o L?) = (g - 1) Amax(Diag(Lz)) = (% - 1) LmaX7

where Ly, = max;e ) MaX;e[q] L;.; is the largest diagonal element over all smoothness matrices.
Now notice that Linax < Linax < dLmax hold and bounds are tight. Hence, the upper bound
obtained for our sparsification is always better and can be up to d times better depending on the ratio
ﬁ € [1,d). Thus, we can make an analogous observation between classical uniform sampling and

our uniform sampling albeit with a different condition on smoothness matrices, i.e. ﬁ"“”‘ = Q(d)

instead of vs = O(1). o
H.2 Importance sampling for DIANA+

To find optimal probabilities for DIANA+, we minimize wy,ax + Lmax part of the complexity

when each node uses an independent sampling as for DCGD+. Deﬁnltlons of Cmax and wpax imply

Lonax 1 1 L;.; 1 L,
un w \Pi;j w \Pisj pn t - \Pisj un

(57
Therefore it is equivalent to minimize the following for each node i € [n] independently:
1 L;;
max ( ) L, Li=="l4+1>1, (58)
1<j<d \ Pisj ’ un
This can be solved in the same way as (50). The optimal probabilities are
L., Lig 4 q
i3] un
ToLi e Imgagy
and an upper bound for p} is analogous to (53)
d
- ) )
712 Z(Ilz,]_’_l) @ 72 zg?d VleaxQd Vleax
T — \ un nT W T Nt o
(60)

Proof of Remark[d] With probabilities (59) we can upper bound the complexity (TT)) as follows

r (1K) 1

+ 2% 22 max max ( —1) L;,j
un 1<i<n 1<5<d \ ps;5 k

) g max p 61)
T 1<i<n'"®

24, 2 L

T ™m p

wmax
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Combined with (53], we have

n ™

L Zmax 2d v 2v1 \ Lmax
Wmax + —+—— < — + + o
w w

O

Remark 8 (Improvement over standard DGD). Let us estimate how much improvement do we get with
respect to standard Distributed Gradient Descent (DGD), where each node computes full gradients
\% fl( k) and sends dense updates to the server in each iteration. The iteration complexity of DGD is
(9( ). To compare it against the complexity (11) of DIANA+ we use the same setup as in previous

remarks (namely, independent samplings with probabilities (@) and 7 = d/n). Since L; < nL, we
have Liax = MaX;c(n) Amax(Li) < nL. Hence, implies

which is O(n) times bigger than the iteration complexity of DGD. However, in case of DGD, each
node sends n times more bits to the server. In total, DIANA+ and DGD have the same communication
complexity in the worst case. To illustrate the best complexity DIANA+ can provide, consider the
special case when L; = L for all i € [n] and v1 = O(1). Then, clearly Lyx = L and we get
O(n+ %) complexity for DIANA+, yielding up to n times speedup against DGD. Moreover, in case

of diagonal matrices L;, DIANA+ spends n times less local computation on partial derivatives and
guarantees additional n times speedup.

H.3 Independent sampling for ADIANA+

For the accelerated method ADIANA+, we construct probabilities p;.; similar to and (59) as

follows
1
L; , /2 17: +1 /2 / L,
i = [ —22— = ”7 , Li.=—"L4+1>1, (62)
3] L 1 isj 1 4]
i;j"‘pi W-i—l-i—pz un
d L’ . 1/2
where p! is determined uniquely from Z 1 (W) = 7. Notice that
d / /2 / 1/2
L; L} 1
3 (i) <X () -
j=1 <Li;j +p; j=1 Pi p;‘, j=1
Therefore

=t (63)

Proof of RemarkE] ‘We bound terms wy,,x and ﬁ:‘rj" using probabilities as follows:

1 // |Il lID d Linax
Wmax = Max ( — 1> = max pf +1—-1] <max pf < max v 0l VQ max
0\ Diyj i L;; i,j L, un

(64)
Li;
max . max < _ 1) Li;j ‘) max p;/TnJ < max p// h " é n E Lyax Lax
pn i \Dij L R I O pn
un
(65)
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Let v and vy are O(1). Denote w = 4 g = % and Kmax = MaX;c[y] #;. Then with this notation

T

we have

£ S Kﬁmax =0 HmaX)
1% n n
Vo Kmax V2 Rmax Kmax
max < - = 1 - = 1
e w+T n w<+d ”) O(w<+d\/ﬁ)> (60)
£I‘l'laX

Then, in case of nL < Zmax, we have

Emax V ’%max Hmax 1/4
—_— 1
wmaX+\/wmaX un (’)(w <1+ dv/n ) ( +( n ) ))’

which should be compared with O (w (1 + \/®222)) [Li et al.,[2020]. If fmax = O(nd?), then we
get (’)(\/a) speedup factor. If n, > Zmax, then

L | Lo | L
Wmax + —+ Wmax -
% pn \ p

o () B O N (- ) B
o () OBV

which should be compared with w + Kmax + w”*n /%, /25 [Li et al.l 2020]. If £pax = O(nd?),
then we get O(+/n) times smaller second term and O ((nd)*/*) times smaller third term. O
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I Variance Reduction: ISEGA+

In this part we apply our redesign to another variance reduced method called ISEGA [Mishchenko
et al., 2020, |Hanzely and Richtarikl, 2019b]]. At the core of ISEGA, the mechanism for variance
reduction is based on SEGA method [Hanzely et all [2018]]. The key difference between ISEGA
and DIANA is that ISEGA updates the control variates h more aggressively using projection instead
of the mere a-step towards the projection used in DIANA. Adapting our matrix-smoothness-aware
sparsification to ISEGA, we define the update rule of control vectors k¥ as follows (for now assume
L; is invertible)
P = arg min [
heRange(L;) i
CELI2V fy(a*)=CFL/?h

T 1 .
=+ L Ol (CILLLlal) Ol (Vi) — )
1 . 11/:

z*) — hy)
— hh).

~—

Note that the update rule in DIANA+ has the form

hEHL = pk 4 oL CELI (V fi(a) — h))
for some fixed scalar o > 0, and thus is more conservative. Note that we choose the gradient estimator
to be the same g = hY + L;/QC;CLZWQ (V fi(z*) — hY). The method is presented as Algorithm

Algorithm 7 ISEGA+
1: Input: Initial point 2° € RY, initial shifts hY € R?, current point z*, step size parameter y and
a, sketch CF and C¥ := L*CFLI"”, current shifts h¥, ..., hE and h* .= LS pk.
on each node
get ¥ from the server

2:

3

4:  send sparse update AF = CFLI"2(V f,(z%) — hF)
5. gf=hE+ LA
6

7

8

9

hE+L = pk 4+ L/”Diag(P;)A¥
: on server
get sparse updates A¥ from each node

iy
gz :1 w1 0 :k h* +k% S LAY
10: 2"t = prox (=" —vg") y
k 29
Mo RET = %L S b =0k %Z:‘L:I L, Diag(P;)A}

Note that we can not obtain the convergence rate of ISEGA+ directly from the framework of(Gorbunov
et al.| [2020a]]. Instead, to get the tight convergence rate, we shall cast it as an instance of GJS
method [Hanzely and Richtarik, 2019b]]. Theorem 22| provides the result — we can see that the worst
case complexity is identical to DIANA+. In terms of the practical performance, we expect ISEGA+
to outperform DIANA+ due to the more aggressive update rule of control variates.

1
4Lmax 4 91,4 1 (wmax+1)

E[U*] < (1 — yu)¥°,

. Then, we have

Theorem 22. Suppose that v <

where

. ~y n L .
e R D W (s AR HTC |
i=1
and ¢f = Lil/ zhf. Consequently, the overall complexity of ISEGA+ is

A L Nmax
O Wmax + —+ L .
B np

47



Proof. The proof can be seen as a special case of the generalized Jacobian sketching theory of[Hanzely
and Richtarik| [2019b]. For the sake of clarity, we provide a specialized proof here.

Note first that by @6)),we have

E [lg" — Vf(z")|?] < <L + 'Cde) Dy(a*,2*) +

Similarly, we have

1/ 2

2L imax
2

E[I68 = LIV £ (") iagen) 1 |
E|ll¢} + Diag(P)CH(L Y fi(a*) = 08) = LIV £i(a") [iagee) |

E[II(1 - Diag(P:)C}) (6} — LIV fi(2*)) + Diag(P) CELI (Y fi(a*) = ¥ fi(2")||Bag(e) - |

E |||(T - Diag(P;)C})Diag(P;)~# (¢} ~ L{"*V fi(x")) + Diag(P:) "*CFL*(V fy(a*) — V fi(z"))|?]
E[II(1 - Diag(P:)C})Diag(P:)~# (6} ~ LI/*Vfi(2"))|?| + E || Diag(P:)*CIL"* (V fi(a*) — V fi(a")) 2]
= |16} ~ LIV fi(a") [Diagee 11 + I (Vila®) = Vi)

1 * *
< lof = LIV @) [ Biageey) 11 + 2D, (2F,2%)
and therefore

1 i 1/o 1/2 *
E | [0 — LIV fi () biagcr,)- ] Z||¢ LIV i) iagep, -1 1+2D (2 7)
i=1
(67)

Following the classical analysis of SGD (i.e., proof of Lemma C.1 of |Gorbunov et al.|[2020a])), we
get

E[llz"" —a*?] = (1—qp)la® -2 —2yDs(a",2*) +1’E [|¢" — Vf(a")|?]
2L max
< (L —p)la® —ar|? - v( <L+ - ))Df(w’“,x*)
2£

1/ 2

Adding Z-multiple of (67) to the above, we get

1 — 1 *
g Z H¢§+1 - L:r /2sz(-r )%iag(Pi)I]
i=1

. 1 2L max .
< (1 —yp)la* —a*|® - 2y (2 — <L+ - )) Dy(a",a")

2L
_|_

E [ka+1 - m*HQ] + Y

LT1/2va(

7 - 1/2 *
o 2 168 = LIV (@) [ingr, ) (683
i=1

Next, note that we have

2L max?? ) . 1 *
~LV )|+ 5 D08 = LV i) [Diage.) - x
=1
(1 =)y ¢ ‘ .
< “on Z [ L;fl/szi(x )||]23iag(Pi)—1 (69)

i=1
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since it is equivalent to

4/3maxfy - ‘

which holds since 7 <

¢ — LI’V fi(a*)

2 n n
v Y NIV i@ agp 1 < Y l6E—LI*V (@)
i=1 i=1

1
st 1)
1

4Lmax
—Reet2L

To finish the proof, it remains to plug (69) into (68), use that v < and unroll the recurrence.

O
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J Variance Reduction with Bi-directional Compression: DIANA++

In this method, the master server applies compression in its turn with sketch C independently. Thus,
we maintain an additional control vector H*, which helps to reduce the variance coming from the
master’s sparsification. Moreover, nodes keep track of H* just like the central server.

Algorithm 8 DIANA++
1: Input: Initial point 2° € RY, initial shifts k) € Range(L;), H° € Range(L), current point z*,

step size parameter v, ov and 3, sketch C¥ and C¥ := L;*CFL!"/?, current shifts h¥, ... h% HF
and h* .= LS50 bk
on each node

send sparse update AF = C’“LJr /2 (Vfi(z*) — hk)

Ak =LAk, gk = pk 4 Ak pFH1 = pk 4 oAk
on server

get sparse updates A from each node

- % ZZL:I Af = % 22;1 LE/ZA?
=AF+ph=L1%" Ck (Vf,( ) — hk) + hf
send sparse update 5’“ CFLY/2(gk — HF)
10: (;k 1/25k Ak Hk + 5k Hk 4 Ck (gk _ Hk)
1: gkl = proxA/R(xk D)
12: R = hF £ AP
13 HM = HF 4 gt
14: on each node
15:  get 6% from the server
16:  reconstruct 0% = L'26%, g* = H* + 6% = H* 4+ CF (¢* — H¥)
17:  xF*t = prox, z(z* — v§")
18: Hk+1 — Hk + ng

R IR AN AN ol

Theorem 23. Let Assumptions[I|and 2| hold and assume that each node generates its own diagonal
sketch C; independently from others. The master server, in its turn, generates C independently from
the nodes. Then, Algorithm[8 has the following iteration complexity

o 1 L et BO+5Y L+£+££;W+me
min (o — 86',8)  min(a—F6,68) \ p p np np ’

where we made the following notations
g— £ <. H,C’maxgle[o,l]
EIII&X + Zﬁﬁénax 2‘c;nax
= max Amax (Pio (L LTLY)) . £= Anax (PoL)

1<i<n

£/

max

; — . ) 1 1 _ ) 1
with bounds o < = MaXie[n] MAXje(d] .- and 8 < Tro — MaXje[d) ;-

1
1+wmax
Remark 9. Note that, when master does not compress the messages, then we have P = 0. This
implies the same complexity we had for DIANA+ as quantities L, 0, 0 are all become zeros.

Proof. The proof follows the same structure as for DIANA+, with additional variance reduction
process introduced for the master server. Analogously, we start bounding the following second
moment:

E [||gF — Vf(@@)|?] = E[lIg* - ¢*[1)] +E[lg" — VFf(@@")|?] . (70)

We can bound the second term as it was done in (46):

E[lg" - Vf(@@")IIP] < <L+ Emax) Dy(a*,2*) + En Z 175 =V filx Hm
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Then we decompose the first term E [[|g* — ¢*[|?] into two as follows:

E [l - 6°II”] = E[IC*(¢" — H") - (¢" — H")||”]

= ”gk - HkHQ[(I_(;k)T(I_ék)]

k
= ”g —-H HL+1/2(pOL)L11/2 (71)
< LHQ - Hk”m

<2L|lg" — V(@)L + 2L H* — V£ ()13

To bound each of the two summands in (7T)), we derive the analogue of (39).

E[L/(C:-1) L (G- 1)L]
Cefu rear (e i
=& L/ (L] C L) e - L e,/ - 1L e,L” + L) L]
L/ (L] (Bio (LT LIV - LIPLPL - L L 4+ 1) 1)
L/°LIY? (E- o (Lll./zLTLll»h)) LI°L/” - L/*L'L/”

=L/°L (Pro (LLIL)) ) LIL),

(72)
Then we bound them as follows. First, we have
E[llg" = Vf(@)is] = IV (") = VF@E)IEe +E [llg" — VI (")E]
2
1 =~
< 2Dy (aF a*) +E ||| = Z CFH(Vfi(z®) — hF) + hE — V f,(2F)
n i
= 2D (2", 2* ZE [H (CF — )Lk LT]
k% k|2
=2Dy(a%,27) + E Z 3 H]E[Li/z(éf7I)TLT(6§'71)L2/2]
i=1
@ 2p,at 0 + ; I oo
1
L 2 (73)
= 2D;(a*,a" (Vfilw hi) ’ﬁ-o(LWLTLV?)
k * max k k(2
< 2D, (o, ") + mes Z 1V i(a*) = fi( == Z 10} =V filw

* 4£;nax * max * 2
< 2Dg(2", 2*) + TDf(xk,x )+ T §‘ |h¥ =V fi(@™)]| 4
2‘Cinax max -
=2 <1+ " )Df(zk,x § :||h’“ Vfi(z ||LT
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Then, for the control vectors H* at the master, we have

L)
— By [[|H* = 9 s(a) + 53| |

= [H* =V ||m+2/3E[<H’“—Vf(x*>’9’“—ﬂ’“> I+ BB [ CH e~ Y]

By || H* - Vf(a)

=\!Hk—Vf< e+ 288 [(H" 9" = 1) ]+ BB (19 = B 3 0 rrion]
< ||~ vy ||U+mk [(H* VI, g fHk>LJ S| P S——,
gHH’“—Vf( o+ 28E [(H* = Vf(2), 6" = H)y ] + 8201+ w)Bk [||g* — B¥|, ]

< || = V5@ |lg, + 288 [(H* = V1), 0" = H*)y.] + 8 [|g* = Bl

= (1= ) [[H* = V(") + BEx [ng -~ Vi m

El

—/3>||Hk—Vf<x*)lliT+2ﬁ<1 ;j”‘)Df(xk,x*H m“ZHh’“ Vi)l

Now, for some 6 (to be defined later), let
1 - * *
= oI =V ifi(x L + Ol H" =V f ()3
i=1

Then, we have

E[[§* = Vf(=*)]]
E[l§* - ¢*II°] +E [lg* — V£(z")II]

el . ~
2LE [|g" = VF()§:] + 2L H* = V(") |5 +E [llg" - Vf(x*)m

w3~ 2L 4££’ -
< 4 1 max D k S~ ~max k
P11 o
2»&imax k max k
+2<L+ - )Df(x ) ZHh — V/iz ||]LT
+2L||H* — V f (")},
~ / r
=2 (L +2L + E'C’“ax + 25“’“) Dy (a*, x%)
n
4££§mx 2L max .
+ ( - ) Z IrE = fi (@) + 2L HE =V f ("),
4 ~r 9 4 -~ 2~
=2 <L+2£+ Ll + ﬁm“"‘) Dy(a" ") + < Ll + Ema") o,
n n n n
with the following choice of 6:
0 " <t = <
Lomax + 2££]’max 2£{nax n
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For the control vectors h¥ and H*, we deduce
E [o*+1]

(1-a)— ZHhk Vfi(z ||2,+2an(a; ,x")

2L! 2 e,c
+(1-pB)o||H" - Vf(:z:*)HiT + 236 <1 + T‘;“”‘) Dy(a®, x*) + ”B ——mex Z |hf =V fi(x ||LT

_ (1_ 269‘61113)() ZHhk vfz( )”LT + 6)0HHI¢ —Vf(l‘*) i’r

i=1

li
+2 (a + B0 (1 2£max>> Dy(2", %)
n
!
< max (1 — o ——8x 250[:““”‘ ,1— [3) of +2 <a + 36 (1 2£max>> Df(xk,x*)
n n

=max (1 —a+ B0',1—B)o" +2(a+ B0+ B0) Dp(z", 2*).

Thus the constants from [[Gorbunov et al., [2020a]] are as follows

cc;m 2L
+

A=L+2L+
n
B MLl 2Emax _2L
n 0
C=a+ p6+ 30
p = min (a— 59/, ).
Let M = 2B and note that Bf = 2L and BY' = ~Emax Then

a—l—ﬁﬁ—i—ﬁ@'

/ " ’ r
—@( o+ B0 + B <L £+££;M+£max>>.

min (a — B0, 5) n
B L
1+M p=1 2—1 2mln(oz B, p).
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