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A Conclusions, Extensions and Future Work

In this paper we have proposed a novel gradient sparsification technique for distributed optimization
and demonstrated that it allows one to properly exploit the smoothness structure of the local objective.
We have shown that the proposed matrix-smoothness-aware sparsification can be coupled with both
the variance reduction and acceleration, providing further speedup in terms of the convergence rate
and the total bits transmitted from workers to server. Next, we list possible extensions of our work
that we believe can or should be done in the future:

• Subsampling the local objective. While DCGD+, DIANA+ and ADIANA+ all require an
access to the full local gradient from each machine at every iteration, we believe this require-
ment can be easily dropped. In particular, the local objective can be further subsampled and
extra variance reduction can be employed on top of these methods, similarly to as done for
ISAEGA [Hanzely and Richtárik, 2019b].

• Greedy sparsification. Notice that the sparsified local gradient can be seen as a randomized
coordinate descent estimator of a given machine. However, greedy coordinate descent was
shown to outperform randomized coordinate descent in certain scenarios [Nutini et al.,
2017]. Therefore, one might pose a question whether a greedy sparsification might work for
distributed optimization.

• Bi-directional sparsification. As we also mention in Section B, one drawback of our
approach7 is that only worker→server communication is sparse. It would be very interesting
to develop a bi-directional sparsification capable of properly exploiting the smoothness
matrices. For this matter, in Section J we develop and analyze DIANA++ method employing
bi-directional matrix-smoothness-aware sparsification and twofold variance reduction.

• Weakly convex and non-convex cases. While we state our theory for the strongly convex
case (i.e., Assumpiton 2), it can be rather easily extended to weakly convex case (i.e., µ = 0).
However, obtaining an efficiennt smoothness matrix aware sparsification for non-convex
optimization remains an open problem.

7In fact, this is a drawback of the vast majority of compression methods from the literature. A notable
exception is DoubleSqueeze [Tang et al., 2019] which compresses the server→worker communication too.
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B Limitations

Next, we discuss main limitations of our approach.

• The server is required to store matrices L
1/2
i for all machines i ∈ [n] and multiply them by

sparse updates Ck
i L
†1/2
i ∇fi(xk) in each iteration. Therefore, our method is not expected

to be practical when d is large and matrices Li are not of a special structure so that they
are cheap to store and so that Ck

i L
†1/2
i ∇fi(xk) can be evaluated cheaply.8. On the other

hand, our strategy is still practical when i) d is small or ii) Li is of a special structure such
as low rank or diagonal. In particular, diagonal Li requires only O(τ) extra computation
per each node (which is negligible), while attaining a rate which is never worse compared to
the naive sparsification.

• Except DIANA++ method presented in Section J, we sparsify only the communication from
the workers to server. Sparsifying workers→server communication only is very common in
the area of distributed optimization as the workers→server communication is significantly
more expensive compared to the server→workers communication. Such a phenomenon can
be assigned to the fact that the server is broadcasting the same vector to all workers, and
thus the server→workers communication can be implemented more efficiently.

Remark 6. The overhead that comes from the computation of L
†1/2
i ∇fi(xk) is not an issue in general.

Given that Li is of rank r, one requires O
(
d2r
)

flops to precompute SVD of Li. Given that SVD of

Li is known, the evaluation of L
†1/2
i ∇fi(xk) takes only O

(
d2r
)

flops. While the cost of computing
∇fi(xk) varies depending on the application, we can expect it to takes at least Ω

(
d2r
)

flops for
the application of generalized linear models (i.e., logistic regression). Next, we shall mention that
evaluating L

†1/2
i ∇fi(xk) comes at O (d) cost when Li is diagonal.

8For example, if Li is of rank r, for all i, we require extra O(ndr) storage and O(ndr) flops at the server at
each iteration.
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C Extra Experiments and Experimental Setup

As mentioned, all experiments of this work are performed on logistic regression objective with
LibSVM data. In particular, the objective is given as

fi(x) :=
1

mi

mi∑
j=1

log (1 + exp ((Aim)j,:x · (bim)j)) +
µ

2
‖x‖2,

where Aim ∈ Rdim×d is the data matrix with corresponding labels bim ∈ Rdim . In our case, we did
split the randomly reshuffled datasets into equal chunks among workers in each case so that mi = mj

for all i, j ≤ n. The data matrix A was normalized so that each datapoint has a norm equal to 1
2 .

Lastly, we have chosen µ = 10−3 for all experiments.

For each of the datasets, we have selected a specific number of workers given by Table 3. Each of the
method was run with theory supported parameters with an exception of the ADIANA+, where we
have omitted several constant factors for the sake of practicality.

Table 3: Datasets.

Dataset # datapoints d n
mi

(Fig 3, 4)
mi

(remaining figures)
a1a 1 605 123 107 1 15

mushrooms 8 124 112 12 1 677
phishing 11 055 68 11 1 1 005
madelon 2 000 500 4 1 500
duke 44 7 129 4 1 11
a8a 22 696 123 8 1 2837

C.1 Proposed and usual sparsification techniques for the 3 distributed methods.

In the experiment from the main body (Figure 1) we used the largest possible number of workers
for each dataset. For the sake of robustness, we present an equivalent experiment to the one from
Figure 1, but we use a moderate number of the workers given by Table 3. Figure 3 presents the result.
We set the x-axis as the iteration this time. We do so to properly see the results as in some cases, the
initial communication for our methods was larger than the communication during the actual algorithm
run in the reported time frame.
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Figure 3: Same as Figure 1, but smaller number of workers (see Table 3).
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C.2 Variance reduction with new sparsification and importance sampling

Here present an equivalent experiment to the one from Figure 2, but we use a moderate number of
the workers given by Table 3.
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Figure 4: Same as Figure 2, but smaller number of workers (see Table 3).

C.3 The effect of sparsification level τ on the convergence rate

In this experiment, we study the effect of sparsification level τ on the convergence rate. Informally
speaking, our theory suggests that the sparsification does not hurt the convergence rate unless τ is
smaller than some constant. The value of such constant depends on various factors such as the type
of sampling and the specific smoothness structure of the objective.

To contrast this with known results, Mishchenko et al. [2020] show that the sparsification does not
hurt ISEGA significantly (a method with sparsification unaware of smoothness matrix) as soon as
τn ≥ d. Addmitedly, Mishchenko et al. [2020] assume identical smoothness constants for both f
and fi, so such a conclusion is slightly imprecise. In our case, ignoring the ω̃max factor, the rate is
dominated by the sparsification factors only if L = O

(
L̃max

n

)
.

The results are presented in Fugure 5 (Iteration vs Residual) and Fugure 6 (Communication vs Resid-
ual). As expected, we see that the sparsification only hurts the iteration complexity when τ is below
certain treshold which is smaller for the uniform sampling compared to the importance sampling.
Consequently, DIANA+ is capable of significantly reducing the worker->server communication at no
cost in terms of the total iteration complexity.
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Figure 5: Effect of τ on the convergence speed of DIANA+ (Algorithm 2).
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Figure 6: Same as Figure 5, but x-axis corresponds to the coordinates sent to the server instead of
the iteration.
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D Table of Frequently Used Notation

Table 4: Notation used throughout the paper

Symbol Description Reference

d dimension of the model x ∈ Rd (20)

µ strong convexity parameter of f Asm. 2

L smoothness matrix of f Asm. 1

Lij the element at ith row and jth column of L -

Li smoothness matrix of fi Asm. 1

Li smoothness constant of fi(x), i.e., Li = λmax(Li) -

L smoothness constant of f , i.e., L = λmax(L) -

S random sampling (subset) of coordinates [d] := {1, 2, . . . , d} -

pjl, pj pjl := Prob ({j, l} ⊆ S) , pj := pjj -

P the probability matrix (pjl)
d
j,l=1 associated with random sampling S (8)

vi ESO parameters associated with f and S jointly -

C diagonal sketch matrix with ith random variable ci = 1/pi if i ∈ S and 0 otherwise (6)

ω variance of general compression operator C, i.e. E
[
‖C(x)− x‖2

]
≤ ω‖x‖2, ∀x ∈ Rd -

C, Ck
i C := L1/2CL†1/2, Ck

i = L
1/2
i Ck

i L
†1/2
i -

I, E the identity matrix and the matrix with all entries equal to 1 -

P, P̃ P = Diag (1/p) PDiag (1/p) with entries pij =
pij
pipj

, and P̃ = P− E (8)

L, L̃ expected smoothness constants L = λmax(P ◦ L), L̃ = λmax(P̃ ◦ L) -

n number of parallel machines in distributed setting (1)

Ci,Pi,Pi, P̃i diagonal sketch matrix and probability matrices for ith worker (6), (8)

pi;j , pi;j , p̃i;j j-th diagonal element of Pi, Pi, P̃i -

ωi variance of compression operator induced by Ci, i.e. ωi = max1≤j≤d
1
pi;j
− 1 -

ωmax max1≤i≤n ωi = max1≤i≤n max1≤j≤d
1
pi;j
− 1 (11)

Li, L̃i expected smoothness constants, Li = λmax(Pi ◦ Li), L̃i = λmax(P̃i ◦ Li) -

Lmax, L̃max Lmax = max1≤i≤n λmax(Pi ◦ Li), L̃max = max1≤i≤n λmax(P̃i ◦ Li) (9)

ν, νs Parameters describing matrices Li, ν :=
∑n
i=1 Li

maxi∈[n] Li
, νs := maxi∈[n]

∑d
j=1 L

1/s
i;j

maxj∈[d] L
1/s
i;j

, (13)
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E Theory in the Single Node Case: RCD as Sketched Gradient Descent
(SkGD)

In single node setup, matrix smoothness assumption and arbitrary samplings have been considered
mainly in the context of coordinate descent methods. For example, randomized sampling S =
{j}, j ∈ [d] with arbitrary probabilities pj ∈ (0, 1] reduces to standard Randomized Coordinate
Descent (RCD) algorithms [Nesterov, 2012, Richtárik and Takáč, 2014]. Parallel and mini-batch
variants arise when the sampling S contains more than one coordinate [Bradley et al., 2011, Richtárik
and Takáč, 2016b]. The first coordinate descent method analyzed with arbitrary sampling and under
L-smoothness assumption is the ’NSync algorithm [Richtárik and Takáč, 2016a, Qu and Richtárik,
2016a,b] considered for strongly convex losses. In the same general setup, Hanzely and Richtárik
[2019a] developed and analyzed Accelerated Coordinate Descent. Recently, Hanzely et al. [2018]
developed a variance reduced coordinate descent algorithm, SEGA (SkEtched GrAdient), which uses
general sketch matrices and handles non-separable proximal terms in contrast to traditional coordinate
descent methods. This idea of gradient sketching then extended to Generalized Jacobian Sketching
(GJS) algorithm providing a unified theory for first-order methods with variance reduced [Hanzely
and Richtárik, 2019b].

Consider the unconstrained optimization problem

min
x∈Rd

f(x), (20)

with very large dimension d and assume that function f is L-smooth. In this setting, the state-of-art
methods are Randomized Coordinate Descent (RCD) type methods where in each iteration only a few
coordinates get updated. Here we present new theories for RCD with arbitrary sampling paradigm,
which are new and follow the idea of sketches. We will view RCD as a special case of Compressed
Gradient Descent (CGD) with sketches (6).

E.1 ‘NSync

First, we recall the first coordinate descent type algorithm, ‘NSync [Richtárik and Takáč, 2016a],
using arbitrary sampling. Let S ⊆ [d] be an arbitrary (proper) sampling9 of coordinates such that
pj := Prob(j ∈ S) > 0, j = 1, 2, . . . , d. For a vector h ∈ Rd, let hS ∈ Rd be the vector coinciding
with h at coordinates j ∈ S and zeros everywhere else. Denote by ◦ the Hadamard (i.e. element-wise)
product. Given an arbitrary sampling S and smoothness matrix L, let v = (v1, v2, . . . , vd) be positive
constants satisfying the Expected Separable Overapproximation (ESO) inequality

P ◦ L � Diag(p ◦ v), (21)

where P is the probability matrix associated with sampling S having entries pjl := Prob({j, l} ⊆
S), pj = pjj . Analogous to (8), let P̃ = P−E.

Algorithm 4 ‘NSYNC [RICHTÁRIK AND TAKÁČ, 2016A]
1: Input: Initial point x0 ∈ Rd, random sampling S, step size parameters v, current point xk
2: Sample random set of coordinates Sk ∼ S
3: Update selected coordinates xk+1 = xk − 1

v ◦ ∇f(x)Sk

Theorem 7 (‘NSync, [Richtárik and Takáč, 2016a]). Let Assumptions 1, 2 hold and v ∼ ESO(f, S)
be the vector of ESO parameters associated with function f and sampling S. Then the iterates {xk}
of ‘NSync converge as follows

E
[
f(xk)

]
− f(x∗) ≤

(
1− min

1≤j≤d

pjµ

vj

)k
∆f ,

where ∆f = f(x0)− f(x∗).

9only proper samplings are considered in this work
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Thus, ‘Nsync gives an iteration complexity

max
1≤j≤d

vj
pjµ

log
∆f

ε
. (22)

In case of serial sampling, namely |S| = 1 a.s., we have P = Diag(p1, p2, . . . , pd). Hence ESO
holds with vj = Ljj and iteration complexity becomes maxj

Ljj
pjµ

log
∆f

ε . This leads to the optimal

probabilities pj =
Ljj∑
l Lll

yielding iteration complexity
∑

Ljj
µ log

∆f

ε .

E.2 Sketched Gradient Descent (SkGD)

Let us view RCD methods as a special case of Compressed Gradient Descent (CGD) with linear
and diagonal sketch C defined in (6) and consider random sparsification operator C induced by
random diagonal sketch C, namely C(x) = Cx, x ∈ Rd. Clearly, C is an unbiased compression (i.e.
E [C(x)] = x) with variance ω = max1≤j≤d

1
pj
− 1:

E
[
‖Cx− x‖22

]
= x>E

[
C2 − I

]
x ≤ ω‖x‖22. (23)

Algorithm 5 SKGD
1: Input: Initial point x0 ∈ Rd, diagonal sketch C, step size γ, current point xk
2: xk+1 = xk − γC∇f(xk)

Theorem 8 (see G.1). Let Assumptions 1, 2 hold and S be any proper sampling with probability
matrix P. Then, for the step-size 0 < γ ≤ λ−1

max

(
P ◦ L

)
, the iterates {xk} of Algorithm 5 converge

as follows
E
[
f(xk)

]
− f(x∗) ≤ (1− γµ)

k
∆f .

The following lemma shows that, both ‘NSync and SkGD provide the same theoretical guarantees.
Lemma 9.

min
v : P◦L≤Diag(v◦p)

max
1≤j≤d

vj
pj

= λmax

(
P ◦ L

)
.

Proof. If parameters v satisfy ESO inequality (21), then parameters defined by

v′i := pi max
j

vj
pj
≥ vi, 1 ≤ i ≤ d

also satisfy ESO inequality and give the same iteration complexity as

λ := max
i

vi
pi

= max
i

v′i
pi
.

In particular, this implies that instead of searching for d parameters v1, . . . , vd satisfying ESO
inequality P ◦L ≤ Diag(v ◦ p) it suffices to find one scalar λ > 0 such that P ◦L ≤ Diag(λp ◦ p)
and set vi = λpi for all i ∈ [d]. The optimal (smallest) value of the scaling factor is

λ = λmax (Diag(1/p)(P ◦ L)Diag(1/p)) = λmax ((Diag(1/p)PDiag(1/p)) ◦ L) = λmax

(
P ◦ L

)
.

Notice that with the choice of v = λp, iteration complexities as well as the update rules of both
methods coincide.

One difference between these two methods is that, the update direction 1
v ◦ ∇f(x)S of ‘NSync is

biased in general as opposed to unbiased direction 1
p ◦ ∇f(x)S of SkGD.

Note that the rate and the analysis of Theorem 8 is with respect to functional values (i.e. f(xk)− f∗).
Natural question is to develop an analysis based on iterates of the algorithm (i.e. ‖xk − x∗‖2).
Below, we provide such analysis under slightly different conditions on f and with weighted distances.
Formally, let, instead of L-smoothness and µ-convexity, assume

µ‖x− x∗‖2L + ‖∇f(x)‖2 ≤ 2〈∇f(x), (x− x∗)〉L. (24)
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Notice that the following is true just by combining L-smoothness and µ-convexity:

µ‖x− x∗‖2 + ‖∇f(x)‖2L† ≤ 2〈∇f(x), (x− x∗)〉. (25)

However, in general, inequalities (24) and (25) are not equivalent.
Theorem 10. Let instead of L-smoothness and µ-convexity assume (24) holds. Then, for the step-size
0 < γ ≤ λ−1

max

(
P ◦ L

)
, the iterates {xk} of Algorithm 5 converge as follows

E
[
‖xk − x∗‖2L

]
≤ (1− γµ)

k ‖x0 − x∗‖2L.

Proof. Consider the improvement of the algorithm in a single iteration x+ = x− γC∇f(x).

E
[
‖x+ − x∗‖2L

]
= E

[
‖x− x∗ − γC∇f(x)‖2L

]
= ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ2E

[
‖C∇f(x)‖2L

]
= ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ2‖∇f(x)‖2E[CLC]

(36)
= ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ2‖∇f(x)‖2

P◦L

≤ ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ2λmax(P ◦ L)‖∇f(x)‖2

≤ ‖x− x∗‖2L − 2γ〈x− x∗,∇f(x)〉L + γ‖∇f(x)‖2
(24)

≤ (1− γµ) ‖x− x∗‖2L.

E.3 CGD+

Here we introduce a new variant of CGD with non-diagonal matrix C := L1/2CL†1/2, which works
with any proximable regularizer R(x). In this case the method converges to the neighborhood of the
solution. Recall that the proximal operator is defined as followsL:

proxR(x) = arg min
u∈Rd

(
R(u) +

1

2
‖u− x‖2

)
. (26)

Define expected smoothness constants

L = λmax(P ◦ L), L̃ = λmax(P̃ ◦ L).

The following lemma reveals the relationship between these constants.

Lemma 11. Let L = λmax(L). Then L ≤ L ≤ L+ L̃.

Proof. First, positive semi-definiteness of P was proved in Theorem 3.1 [Qu and Richtárik, 2016].
As Diag(1/p) is positive definite, then P is positive semi-definite too. Since Hadamard product ◦
preserves positive semi-definiteness, we have that P ◦ L � 0. It follows from Lemma 17 that

E
[
L

1/2
(
C− I

)> (
C− I

)
L

1/2
]

= L
1/2L†

1/2(P̃ ◦ L)L†
1/2L

1/2.

Hence the left hand side as well as P̃ ◦ L are symmetric and positive semidefinite. In particular,
P ◦L � L. Hence L = λmax(L) ≤ λmax(P ◦L) = L. The upper bound follows from the convexity
of λmax as L = λmax(P ◦ L) = λmax(L + P̃ ◦ L) ≤ λmax(L) + λmax(P̃ ◦ L) = L+ L̃.

Algorithm 6 CGD+

1: Input: Initial point x0 ∈ Rd, sketch matrix C = L1/2CL†1/2, step size γ, current point xk

2: xk+1 = proxγR
(
xk − γC∇f(xk)

)
With the new sketch C in Algorithm 6 we able to perform the analysis with respect to iterates in
standard norm, under strong convexity and L-smoothness, allowing any proximable regularizer.
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Table 5: Original and proposed new methods for both single node and distributed setups.

ORIGINAL ‘NSYNC CGD DCGD DIANA ADIANA

NEW SKGD
(ALG.5)

CGD+
(ALG.6)

DCGD+
(ALG.1)

DIANA+
(ALG.2)

ADIANA+
(ALG.3)

PROXIMAL 7 3 3 3 3
DISTRIBUTED 7 7 3 3 3

VARIANCE REDUCED 7 7 7 3 3
ACCELERATED 7 7 7 7 3

Table 6: Complexity of new methods with hidden log factors and constants.

Method Iteration Complexity

SkGD (Algorithm 5) L
µ

CGD+ (Algorithm 6) L
µ + L̃

µ2ε

DCGD+ (Algorithm 1) L
µ + L̃max

µn + L̃max

µ2nε

DIANA+ (Algorithm 2) ωmax + L
µ + L̃max

µn

ADIANA+ (Algorithm 3)


ωmax +

√
ωmax

L̃max

µn if nL ≤ L̃max

ωmax +
√

L
µ +

√
ωmax

√
L̃max

µn

√
L
µ if nL > L̃max.

Theorem 12 (see G.2). Let Assumptions 1, 2 hold and S be a sampling with probability matrix P.
Then, for the step-size 0 < γ ≤ 1/2L, the iterates {xk} of Algorithm 6 converge as follows

E
[
‖xk − x∗‖2

]
≤ (1− γµ)

k ‖x0 − x∗‖2 +
2γL̃
µ
‖∇f(x∗)‖2L† .
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F Lower Bounds for Sketches as Linear Compression Operators

Here we investigate general sketch matrices S as a linear compression operators. The motivation
of this is to understand the trade-off between communication and variance of linear compressors.
The notation, used in this section only, slightly deviates from the paper but otherwise is consistent
throughout the section.

Consider compression of vectors x ∈ Rd allowing approximation error in exchange for less bits
of communication. Let compression operator C : Rd → Rd be composed of some linear encoder
E(x) = Sxwith s×d sketch matrix S and an arbitrary decoderD : Rs → Rd, so that C(x) = D(Sx).
Throughout we consider the space Rd equipped with an inner product together with its induced norm
given by some symmetric and positive definite matrix B of size d× d as follows

〈x, y〉B = x>By, ‖x‖B =
√
〈x, x〉B, x, y ∈ Rd.

In general, we let matrix S, number of rows s and decoder D to be random, while the matrix B will
be fixed throughout the analysis. Since we consider only linear encoders, we may assume ‖x‖B = 1.

F.1 Fixed sketches

We first analyze the case where the sketch matrix S is fixed and hence the compression operator
C is deterministic. The analysis then we will lead us on a more usefull result for random sketches.
The decoder D receiving vector y = Sx should be able to reconstruct x̂ = D(y) so to minimize the
squared error

α(S) := sup
‖x‖B=1

‖C(x)− x‖2B = sup
‖x‖B=1

‖D(Sx)− x‖2B ≤ 1.

The following lemma shows the optimal strategy for the decoder and possible values for α(S).
Lemma 13. For a fixed sketch S the optimal reconstruction from y = Sx is

D∗(y) = S†By ≡ B−1S>
(
SB−1S>

)†
y, (27)

where ·† indicates the Moore–Penrose inverse of a matrix. Furthermore, if ker(S) = {0} then
α(S) = 0 as in this case D∗(Sx) = x for any x ∈ Rd. Otherwise, if ker(S) 6= {0}, then α(S) = 1.

Proof. Let ker(S) = {z : Sz = 0} be the kernel of S and x†B = S†By be the minimal B-norm
solution to the system Sz = y so that the set of all solutions is x†B + ker(S):

x†B = arg min
x : Sx=y

‖x‖2B = S†By = B−
1/2
(
SB−

1/2
)†
y,

Denote by
Ŝ(x) :=

(
x†B + ker(S)

)
∩ {z ∈ Rd : ‖z‖B = 1}

the intersection of the affine set of solutions and the unit sphere. Notice that initial vector x ∈ Ŝ(x)
as it has unit B-norm and satisfies Sx = y. Now the cost of sending Sx instead of original x, is the
uncertainty that the decoder has to deal with by estimating the original vector within the set Ŝ so to
minimize α. We first show that xS := 2x†B − x ∈ Ŝ(x), which is equivalent to

x†B − x ∈ ker(S) and ‖2x†B − x‖2B = 1.

The first claim follows from the fact that both x and x†B are solutions to Sz = y, namely Sx†B =
y = Sx. Expanding the square in the second claim we get

〈
x†B , x†B − x

〉
B

= 0 which holds as x†B
is the minimal B-norm solution. Therefore the vector y the decoder receives does not differentiate
between x and xS . This implies that for any choice of x̂ of the decoder

max
(
‖x̂− x‖2B, ‖x̂− xS‖2B

)
≥ 1

4

(
‖x̂− x‖B + ‖x̂− xS‖B

)2 ≥ 1
4‖x

S − x‖2B = ‖x†B − x‖2B
squared-error is unavoidable for the couple x, xS and the optimal choice is x̂ = x†B . Thus, the
optimal decoding strategy to y = Sx is D∗(y) = x†B given in (27). Now, if ker(S) 6= {0} then we
could pick the initial vector x from the kernel space, i.e. x ∈ ker(S) and ‖x‖B = 1. Then we would
have x†B = 0 and hence the minimal squared-error α(S) = 1. On the other hand, if ker(S) = {0},
then x†B = x as the system Sz = y has unique solution.
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To conclude for fixed sketches, notice that, x and xS are in symmetry in this analysis. Indeed, if the
initial vector was xS as opposed to x, then Sx = SxS , hence xS†B = x†B and xSS = x. Therefore,
the analysis of Lemma 13 leads to the following lower bound for any decoder D and initial vector
x ∈ Rd

max
z=x,xS

‖C(z)− z‖2B ≥ ‖x†B − x‖2B = 1− ‖x†B‖2B = 1− ‖Zx‖2B, (28)

where we used orthogonality
〈
x†B , x†B − x

〉
B

= 0 and defined the random matrix Z = Z(S) via

Z := S†BS = B−
1/2
(
SB−

1/2
)†

S = B−1S>
(
SB−1S>

)†
S.

F.2 Random sketches

Now we turn to the general case when sketch matrix S is random and drawn from some distribution
D, to which both encoder and decoder have access. The number of rows s of S can also be random. In
this case, the decoder D upon receiving random vector y = Sx should estimate possibly randomized
x̂ = D(y) so to minimize the expected square error

α(D) := sup
‖x‖B=1

E
[
‖C(x)− x‖2B

]
≤ 1, (29)

where C(x) = D(Sx) is a random mapping with a source of randomness coming from the distribution
D and decoder D. Below we prove a lower bound for α(D).
Theorem 14. Let D be some distribution over s× d matrices S allowing variable number of rows
s ∈ [d]. Then for any (possibly randomized) compression operator C(x) = D(Sx) with i.i.d. samples
S ∼ D and x ∈ Rd the following lower bound holds

α(D) + ED [r/d] ≥ 1, (30)

where r = rank(S) is the number of independent rows in S.

Proof. Based on the lower bound (28) obtained from the deterministic case, decoder cannot avoid
the error 1− ‖Zx‖2B even in the case of knowing what sketch the encoder used. Therefore minimal
expected error 1− ES∼D‖Zx‖2B is unavoidable for any initial x. This leads to the following bound

1− α(D) ≤ inf
‖x‖B=1

ED
[
‖Zx‖2B

]
= inf

‖x‖B=1
ED
[
x>Z>BZx

]
z=B

1/2x
= inf

‖z‖=1
ED
[
z>B−

1/2Z>BZB−
1/2z
]

= inf
‖z‖=1

z>ED
[
B−

1/2Z>BZB−
1/2
]
z

= λmin

(
ED
[
B−

1/2Z>BZB−
1/2
])

= λmin

(
ED
[
B−1Z>BZ

])
= λmin

(
ED
[
B−1S>

(
SB−1S>

)†
S
])

= λmin (ED [Z]) ,

where the expectation is with respect to S ∼ D. Thus, we obtained the following lower bound:

α(D) + λmin

(
ED
[
S†BS

])
≥ 1. (31)

To prove the inequality (30), it is enough to establish the following upper bound for the minimal
eigenvalue

λmin (ED [Z]) ≤ ED [r/d] .

We follow the proof of Lemma 4.2 of Gower and Richtárik [2015] to prove this inequality. It can be
easily checked that, using the properties of pseudo-inverse, Z = S†BS is an idempotent matrix for
any S, namely Z2 = Z. This implies that all eigenvalues of Z are either 0 or 1 as they must satisfy
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the same relation λ2 = λ. Trace tr(Z) of such matrices coincides with the number of non-zero
eigenvalues, which also shows the rank:

tr(Z) =

d∑
i=1

λi (Z) = #{i ∈ [d] : λi (Z) 6= 0} = rank(Z). (32)

From the properties of pseudo-inverse it follows that rank(A†A) = rank(A†) = rank(A) for any
matrix A. Hence

rank(Z) = rank(S†BS) = rank

(
B−

1/2
(
SB−

1/2
)†

S

)
= rank

((
SB−

1/2
)†

SB−
1/2

)
= rank

(
SB−

1/2
)

= rank (S) = r.

Combining with (32) we get tr(Z) = r. The purpose of expressing the rank as a trace is that in
contrast to rank, trace and expectation operators are commutative, which basically follows from the
linearity of the expectation:

tr (ED[Z]) = ED [tr(Z)] . (33)
Using (32), (33) and tr(Z) = r, we conclude

λmin (ED [Z]) ≤ 1

d

d∑
i=1

λi (ED [Z]) =
tr (ED [Z])

d
=

ED [tr (Z)]

d
=

ED[r]

d
,

which completes the proof.

F.3 Optimal sketches

With the knowledge of this new lower bound, here we construct a distribution D of sketches that
will achieve equality in (30). Let B = QΛQ> be the eigendecomposition of the symmetric matrix
B, where Λ is diagonal with eigenvalues and Q is orthogonal with eigenvectors as columns. Let
C be the diagonal sketch of size d × d corresponding to random sparsification with probabilities
p = (pi)

d
i=1, namely

C = Diag(c), ci =

{
1 with prob. pi,

0 with prob. 1− pi.
Define a distribution D = Dp of sketches as S = CQ> and notice that

ED [rank(S)] = ED [rank(C)] = ED [#{i ∈ [d] : ci = 1}] = ED

[
d∑
i=1

ci

]
=

d∑
i=1

ED [ci] =

d∑
i=1

pi.

Therefore, ED [r/d] = 1
d

∑
pi. With decoder D(x) = Qx we get a compression operator C(x) =

QSx. Next, we compute α(D) as follows
α(D) = sup

‖x‖B=1

E
[
‖C(x)− x‖2B

]
= sup

‖x‖B=1

E
[
‖QSx− x‖2B

]
= sup

x>Bx=1

E
[
x>(I−QS)>B(I−QS)x

]
= sup

x>QCQ>x=1

x>E
[
(I−QCQ>)B(I−QCQ>)

]
x

= sup
(Q>x)>Λ(Q>x)

(Q>x)>E
[
(I−C)Q>BQ(I−C)

]
(Q>x)

y=Q>x
= sup

y>Λy=1

y>E [(I−C)Λ(I−C)] y

= sup
y>Λy=1

(Λ
1/2y)>E

[
(I−C)2

]
(Λ

1/2y)

z=Λ
1/2y

= sup
‖z‖=1

z> ·Diag(1− p) · z

= max
1≤i≤d

(1− pi) = 1− min
1≤i≤d

pi.
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Hence

1 ≤ α(D) + ED [r/d] = 1− min
1≤i≤d

pi +
1

d

d∑
i=1

pi,

and equality occurs if and only if all probabilities pi are equal to some q ∈ [0, 1]. Thus, the
optimal sketches are obtained by rotating the coordinate basis to the basis of eigenvectors of Q
(i.e. x → Q>x), and then randomly sparsify coordinates with diagonal sketch matrix C (i.e.
Q>x→ CQ>x = Sx). We summarize this result in the following theorem.
Theorem 15. Let B = QΛQ> be the eigendecomposition of B of induced norm, q ∈ [0, 1] and
C be random diagonal sketch corresponding to the random q-sparsifer. Then sketches S = CQ>

are optimal with respect to variance against rank trade-off (30) with squared error α = 1− q and
expected rank E[r] = qd.

F.4 Random sketches with linear constraints

In this part we extend the theory of compressing vectors x ∈ Rd with an additional linear constraint
x ∈ Range(A) for some d× d′ matrix A. Such scenarios occur when to-be-compressed vectors are
the gradients of f(w) = φ(A>w), for which∇f(w) = A∇φ(A>w) ∈ Range(A). Without loss of
generality, we may assume that A is of full column rank and consequently d′ = dim Range(A) =
rank(A). The constraint x ∈ Range(A) then can be equivalently written as x = Ax′ for some
x′ ∈ Rd′ . The induced inner product and norm on Range(A) is then given by the matrix A>BA as

〈x, y〉B = 〈Ax′,Ay′〉B = 〈x′, y′〉A>BA , x = Ax′, y = Ay′.

Notice that, since Sx = SAx′, communication of x ∈ Rd with sketches S reduces to communication
of x′ ∈ Rd′ with sketches SA. Thus, the additional constraint x ∈ Range(A) ⊂ Rd reduces the
problem to lower d′-dimension with sketches SA,S ∼ D and norm induced by A>BA.

F.5 Variance against communication trade-off

The obtained lower bound (30) can be easily translated in terms of the number of bits. Assuming
each float takes 32 bits to encode and there is no redundant row in S (i.e. s = r), then Sx ∈ Rr can
be communicated with up to b = 32r bits. Therefore, the lower bound (30) can be written as

α+
E [b]

32d
≥ 1, (34)

which (ignoring the expectation) is exponentially stronger than the lower bound α · 4b/d ≥ 1 obtained
for general compressors in [Safaryan et al., 2020]. We visualize the comparison of these two lower
bounds in Figure 7. Furthermore, denote by β := E [b] /32d the expected communication reduction
factor and recall that α is the portion of the expected lost of information. With this notation the above
lower bound (34) turns to the following simple inequality

α+ β ≥ 1,

showing the trade-off between information lost and communication reduction for linear compressors;
namely more reduction in communication leads to bigger information loss and vice versa. In one
extreme, when all 32d bits are sent, no reduction in communication is made (β = 1) and no
information is lost (α = 0). In other extreme, when no bits gets transferred (β = 0) we loose all
information (α = 1).

To conclude this section, let us investigate the optimality of random q-sparsifier with respect to the
lower bound (34). Recall that random q-sparsifier is optimal with respect to (30). Let q ∈ (0, 1), and
k be the (random) number of non-zero entries of sparsified vector. Clearly, E [k] = qd and to encode
any k-sparse vector one needs b = 32k + log2

(
d
k

)
bits. As we know from Theorem 15, the squared

error α = 1− q. Therefore

α+β = 1−q+ 1

32d
E
[
32k + log2

(
d

k

)]
= 1+

1

32d
E
[
log2

(
d

k

)]
≤ 1+

1

32
E
[
H2

(
k

d

)]
≤ 1+

H2(q)

32
.

The first inequality follows from the following estimate (only upper bound) for binomial coefficients

2dH2(τ)√
8dτ(1− τ)

≤
(
d

τd

)
≤ 2dH2(τ)√

2πdτ(1− τ)
, 0 < τ < 1,
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where H2(τ) = −τ log2 τ − (1− τ) log2(1− τ) is the binary entropy function in bits. The second
inequality follows from concavity H2 function and the Jensen’s inequality. Because of the symmetry
around τ = 1/2 (namely H2(1− τ) = H2(τ)) and concavity of the function H2, one can show that
the maximum is achieved at τ = 1/2 and H2(1/2) = 1. Thus, in the worst case we have α+β ≤ 33/32

upper bound, when roughly half of the entries are chosen uniformly at random. For other values of q,
it is even closer to the optimum; numerically H2 (τ) ≈ (4τ (1− τ))

3/4
, 0 ≤ τ ≤ 1.
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Figure 7: Comparison of general uncertainty principle α · 4b/d ≥ 1 (dashed red line) of Safaryan
et al. [2020] against the new linear version (34) (dashed blue line). Each color represents one
compression method: yellow for usual random sparsification with uniform probabilities and orange
for greedy sparsification (a.k.a Top-k sparsification). Each triangle marker indicates one particular
d = 103 dimensional vector randomly generated from Gaussian distribution, which subsequently
gets compressed by the compression operator mentioned in the legend.
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G Proofs

G.1 Proof of Theorem 8

Using smoothness of f , we have

Ef(xk+1) = Ef(xk − γC∇f(xk))

≤ f(xk)− γ
〈
∇f(xk),E

[
C∇f(xk)

]〉
+
γ2

2
E
[
‖C∇f(xk)‖2L

]
= f(xk)− γ‖∇f(xk)‖2 +

γ2

2
‖∇f(xk)‖2E[CLC]

≤ f(xk)− γ (2− γλmax (E [CLC])) · 1

2
‖∇f(xk)‖2.

(35)

Computing the expectation inside, we get

E [CLC] = E
[
(cicjLij)

d
i,j=1

]
=

(
pijLij
pipj

)d
i,j=1

= (Diag(1/p)PDiag(1/p)) ◦L = P ◦L. (36)

Therefore, using the bound for the step size γ and strong convexity of f , we get

E
[
f(xk+1)− f(x∗)

]
≤
(
f(xk)− f(x∗)

)
− γ

(
2− γλmax

(
P ◦ L

))
· 1

2
‖∇f(xk)‖2

≤
(
f(xk)− f(x∗)

)
− γ

2
‖∇f(xk)‖2

≤ (1− γµ)
(
f(xk)− f(x∗)

)
,

(37)

repeated application of which completes the proof.

G.2 Proof of Theorem 12

The following lemmas will be useful to handle the computation with pseudo-inverses.
Lemma 16 (Lemma E.2 and E.3 [Hanzely and Richtárik, 2019b]). If f is convex and L-smooth, then
for any x, y ∈ Rd

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2
‖∇f(x)−∇f(y)‖2L† . (38)

If, in addition, f is bounded below, then∇f(x) ∈ Range(L†) = Range(L) for all x ∈ Rd.
Lemma 17. With C = L1/2CL†1/2, the following holds

E
[
L

1/2
(
C− I

)> (
C− I

)
L

1/2
]

= L
1/2L†

1/2
(
P̃ ◦ L

)
L†

1/2L
1/2. (39)

Proof. Using the property L1/2L†1/2L1/2 = L1/2 of pseudoinverse, we have

E
[
L

1/2
(
C− I

)> (
C− I

)
L

1/2
]

= E
[
L

1/2
(
L†

1/2CL
1/2 − I

)(
L

1/2CL†
1/2 − I

)
L

1/2
]

= E
[
L

1/2
(
L†

1/2CLCL†
1/2 − L†

1/2CL
1/2 − L

1/2CL†
1/2 + I

)
L

1/2
]

(36)
= L

1/2
(
L†

1/2
(
P ◦ L

)
L†

1/2 − L†
1/2L

1/2 − L
1/2L†

1/2 + I
)

L
1/2

= L
1/2
(
L†

1/2
(
P ◦ L

)
L†

1/2 − L†
1/2LL†

1/2
)

L
1/2

+L
1/2
(
L†

1/2LL†
1/2 − L†

1/2

L
1/2 − L

1/2L†
1/2

+ I
)

L
1/2

= L
1/2L†

1/2
(
P ◦ L− L

)
L†

1/2L
1/2 + L

1/2
(
I− L†

1/2L
1/2
)(

I− L
1/2L†

1/2
)

L
1/2

= L
1/2L†

1/2
(
P̃ ◦ L

)
L†

1/2L
1/2 +

(
L

1/2 − L
1/2L†

1/2L
1/2
)(

L
1/2 − L

1/2L†
1/2L

1/2
)

= L
1/2L†

1/2
(
P̃ ◦ L

)
L†

1/2L
1/2.
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For convenience we skip iteration count k, and write x, x+ instead of xk, xk+1. Using non-
expansiveness of the prox operator we get

E
[
‖x+ − x∗‖2

]
≤ E

[
‖x− x∗ − γ

(
L

1/2CL†
1/2
)
∇f(x) + γ∇f(x∗)‖2

]
= ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉+ γ2E

[
‖
(
L

1/2CL†
1/2
)
∇f(x)−∇f(x∗)‖2

]
≤ ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉

+ 2γ2E
[
‖L1/2CL†

1/2 (∇f(x)−∇f(x∗)) ‖2
]

+ 2γ2E
[
‖
(
L

1/2CL†
1/2 − I

)
∇f(x∗)‖2

]
≤ ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉

+ 2γ2λmax(E [CLC])‖L†1/2 (∇f(x)−∇f(x∗)) ‖2 + 2γ2E
[
‖
(
L

1/2CL†
1/2 − I

)
∇f(x∗)‖2

]
(36),(40)

≤ ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉
+ 2γ2λmax(P ◦ L)‖∇f(x)−∇f(x∗)‖2L† + 2γ2λmax(P̃ ◦ L)‖∇f(x∗)‖2L†

= ‖x− x∗‖2 − 2γ〈x− x∗,∇f(x)−∇f(x∗)〉+ 2γ2L‖∇f(x)−∇f(x∗)‖2L† + 2γ2L̃‖∇f(x∗)‖2L† ,

where we used E [CLC] = P ◦L based on (36) and for the last term we used Lemma 16 to represent
∇f(x∗) = L1/2g∗ and then applied Lemma 17

E
[∥∥∥(L

1/2CL†
1/2 − I

)
∇f(x∗)

∥∥∥2
]

= E
[
g>∗ L

1/2
(
L†

1/2CL
1/2 − I

)(
L

1/2CL†
1/2 − I

)
L

1/2g∗

]
= ∇f(x∗)>

(
L†

1/2
(
P̃ ◦ L

)
L†

1/2
)
∇f(x∗)

≤ λmax(P̃ ◦ L)‖∇f(x∗)‖2L† .
(40)

Using the bound on step size γ ≤ 1/2L̃, strong convexity of f and (38), we continue as follows

E
[
‖x+ − x∗‖2

]
≤ ‖x− x∗‖2 − γ〈x− x∗,∇f(x)−∇f(x∗)〉

−γ
(
〈x− x∗,∇f(x)−∇f(x∗)〉 − ‖∇f(x)−∇f(x∗)‖2L†

)
+2γ2L̃‖∇f(x∗)‖2L†

(38)

≤ (1− γµ) ‖x− x∗‖2 + 2γ2L̃‖∇f(x∗)‖2L† .

Telescoping the above inequality, we complete the proof.

G.3 Proof of Theorem 2

Proof technique. First we show the unbiasedness of gk. As smoothness matrices Li are not
necessarily invertible, terms like L

1/2
i L

†1/2
i show up in the analysis and block chains of cancellations.

This part is handled by the fact that gradients ∇fi(x) of an Li-smooth function are constraint to
remain in Range Li and the mapping associated with the matrix L

1/2
i L

†1/2
i is identity on the subspace

Range(Li). Second part is the tight estimation of Ek‖gk −∇f(x∗)‖2, which describes the progress
of the method in the presence of stochasticity. Key part is getting the decomposition

Ek
[
‖gk −∇f(x∗)‖2

]
= ‖∇f(xk)−∇f(x∗)‖2 + 1

n2

n∑
i=1

∥∥∇fi(xk)
∥∥2

L
†1/2
i (P̃i◦Li)L†

1/2
i

, (41)

which shows the exact interaction between random sketches and local smoothness. We complete the
proof using the unified convergence theory of Gorbunov et al. [2020a].

Proof.
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In this proof we skip the iteration count k to simplify the notation. Define

Mi := L
1/2
i E

[
(Ci − I)>(Ci − I)

]
L

1/2
i

(39)
= L

1/2
i L

†1/2
i (P̃i ◦ Li)L

†1/2
i L

1/2
i

= L
1/2
i L

†1/2
i (Pi ◦ Li − Li)L

†1/2
i L

1/2
i

= L
1/2
i L

†1/2
i (Pi ◦ Li)L

†1/2
i L

1/2
i − L

1/2
i L

†1/2
i LiL

†1/2
i L

1/2
i

= L
1/2
i L

†1/2
i (Pi ◦ Li)L

†1/2
i L

1/2
i − Li

= L
1/2
i

(
E
[
C>i Ci

]
− I
)
L

1/2
i . (42)

We are going to estimate the moment E
[
‖g(x)−∇f(x∗)‖2

]
and show the following bound for the

gradient estimator g(x) = 1
n

∑n
i=1 Ci∇fi(x) (see line 5 of Algorithm 1):

E
[
‖g(x)−∇f(x∗)‖2

]
≤ 2

(
L+

2L̃
n

)
Df (x, x∗) +

2σ∗

n
.

Due to Lemma 16, we have∇fi(x) = L
1/2
i ri for some ri. Therefore

E
[
Ci∇fi(x)

]
= E

[
L

1/2
i CiL

†1/2
i L

1/2
i ri

]
= L

1/2
i L

†1/2
i L

1/2
i ri = L

1/2
i ri = ∇fi(x), (43)

which implies unbiasedness of the estimator g(x), namely E [g(x)] = ∇f(x). Next, note that

E
[
‖g(x)−∇f(x∗)‖2

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci∇fi(x)−∇f(x∗)

∥∥∥∥∥
2


=
1

n2

n∑
i=1

E
[∥∥Ci∇fi(x)−∇f(x∗)

∥∥2
]

+
1

n2

∑
i 6=j

E
〈
Ci∇fi(x)−∇f(x∗),Cj∇fj(x)−∇f(x∗)

〉
=

1

n2

n∑
i=1

E
[∥∥Ci∇fi(x)

∥∥2
]

+ ‖∇f(x∗)‖2 − 2E
〈
Ci∇fi(x),∇f(x∗)

〉
+

1

n2

∑
i 6=j

〈∇fi(x)−∇f(x∗),∇fj(x)−∇f(x∗)〉

=
1

n2

n∑
i=1

‖∇fi(x)‖2E[C>i Ci] + ‖∇f(x∗)‖2 − 2 〈∇fi(x),∇f(x∗)〉+ ‖∇f(x)−∇f(x∗)‖2 − 1

n2

n∑
i=1

‖∇fi(x)−∇f(x∗)‖2

=
1

n2

n∑
i=1

∥∥∥L1/2
i ri

∥∥∥2

E[C>i Ci]−I
+

1

n2

n∑
i=1

‖∇fi(x)‖2 + ‖∇f(x∗)‖2 − 2 〈∇fi(x),∇f(x∗)〉

+ ‖∇f(x)−∇f(x∗)‖2 − 1

n2

n∑
i=1

‖∇fi(x)−∇f(x∗)‖2

= ‖∇f(x)−∇f(x∗)‖2 +
1

n2

n∑
i=1

‖ri‖2Mi

= ‖∇f(x)−∇f(x∗)‖2 +
1

n2

n∑
i=1

‖ri‖2L1/2
i L

†1/2
i (P̃i◦Li)L†

1/2
i L

1/2
i

= ‖∇f(x)−∇f(x∗)‖2 +
1

n2

n∑
i=1

∥∥∥L†1/2i ∇fi(x)
∥∥∥2

P̃i◦Li
,

which gives as the following decomposition

E
[
‖g(x)−∇f(x∗)‖2

]
= ‖∇f(x)−∇f(x∗)‖2 +

1

n2

n∑
i=1

∥∥∥L†1/2i ∇fi(x)
∥∥∥2

P̃i◦Li
. (44)
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For the first term it can be bounded using convexity and smoothness of f , namely ‖∇f(x) −
∇f(x∗)‖2 ≤ 2LDf (x, x∗). For the second term we proceed as follows

1

n2

n∑
i=1

∥∥∥L†1/2i ∇fi(x)
∥∥∥2

P̃i◦Li
≤ 1

n2

n∑
i=1

λmax(P̃i ◦ Li)‖L†
1/2
i ∇fi(x)‖2

=
1

n2

n∑
i=1

L̃i‖∇fi(x)‖2
L†i

≤ 2

n2

n∑
i=1

L̃i‖∇fi(x)−∇fi(x∗)‖2L†i +
2

n2

n∑
i=1

L̃i‖∇fi(x∗)‖2L†i

≤ 2

n2

n∑
i=1

2L̃iDfi(x, x
∗) +

2σ∗

n

=
4L̃max

n
Df (x, x∗) +

2σ∗

n
.

(45)

Combining these two estimates, we get

E
[
‖g(x)−∇f(x∗)‖2

]
≤ 2

(
L+

2L̃max

n

)
Df (x, x∗) +

2σ∗

n
.

It remains to apply the result of Gorbunov et al. [2020a].

G.4 Proof of Theorem 3

Proof technique. The structure of the proof resembles the one for DCGD+. With the introduced
shift vectors, the unbiasedness of gk additionally requires hki ∈ Range(Li). This is resolved by
the initialization h0

i ∈ Range(Li) and linear update rule for hk+1
i in line 5. The proof develops a

decomposition similar to (41) with modified second term σk := 1
n

∑n
i=1 ‖hki −∇f(x∗)‖2

L†i
involving

shifts hki . To avoid the neighborhood term in (10) and guarantee a linear convergence for xk, we make
σk converge linearly too. Key technical part of the proof is to establish contracting recurrence relation
for σk which boils down to E[C>i L†iCi] � (ωi + 1)L†i . The latter bound justifies the structure of
Ci as it filters the interaction between compression and smoothness mixed in the expectation and
separates variance ωi of compression from smoothness matrix Li.

Proof. First, we show the unbiasedness of the estimator g(xk). In (43), we showed unbiasedness
of Ck

i∇fi(xk) using inclusion ∇fi(xk) ∈ Range(Li). Assume for a moment that we also have
hki ∈ Range(Li). Hence, in the same way we can show Ek

[
Ck
i h

k
i

]
= hki , which implies the

unbiasedness of gk as

Ek
[
gk
]

=
1

n

n∑
i=1

Ek
[
Ck
i∇fi(xk)

]
− Ek

[
Ck
i h

k
i

]
+ hki =

1

n

n∑
i=1

∇fi(xk) = ∇f(xk).

The inclusion hki ∈ Range(Li) follows from the initialization h0
i ∈ Range(Li) (see line 1 of

Algorithm 2) and linear update rule of hk+1
i = hki + αL

1/2
i ∆k

i (see line 5 of Algorithm 2). As both
∇fi(xk) and hki belong to Range(Li), denote ∇fi(xk)− hki = L

1/2
i rki . Next we bound
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E
[
‖gk −∇f(x∗)‖2

]
= ‖∇f(xk)−∇f(x∗)‖2 + E

[
‖gk −∇f(xk)‖2

]
≤ 2LDf (xk, x∗) + E

∥∥∥∥∥ 1

n

n∑
i=1

Ck
i (∇fi(xk)− hki ) + hki −∇fi(xk)

∥∥∥∥∥
2


= 2LDf (xk, x∗) +
1

n2

n∑
i=1

E
[∥∥∥(Ck

i − I)L
1/2
i rki

∥∥∥2
]

= 2LDf (xk, x∗) +
1

n2

n∑
i=1

∥∥rki ∥∥2

E
[
L

1/2
i (Ck

i−I)>(Ck
i−I)L

1/2
i

]
(42)
= 2LDf (xk, x∗) +

1

n2

n∑
i=1

∥∥rki ∥∥2

L
1/2
i L

†1/2
i (P̃i◦Li)L†

1/2
i L

1/2
i

= 2LDf (xk, x∗) +
1

n2

n∑
i=1

∥∥∥L†1/2i (∇fi(xk)− hki )
∥∥∥2

P̃i◦Li

≤ 2LDf (xk, x∗) +
L̃max

n2

n∑
i=1

∥∥∇fi(xk)− hki
∥∥2

L†i

≤ 2LDf (xk, x∗) +
2L̃max

n2

n∑
i=1

∥∥∇fi(xk)− fi(x∗)
∥∥2

L†i
+

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

≤ 2LDf (xk, x∗) +
4L̃max

n
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

= 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

(46)

Then we deduce a recurrence relation for the last term σk := 1
n

∑n
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i
. For that

we will need the following bounds

0 � L
1/2
i L†iL

1/2
i � I, (47)

which can be proved via SVD and eigenvalue decompositions. Since Li is square, symmetric and
positive semidefinite, we know that singular value decomposition and eigenvalue decompositions
are the same. Let L

1/2
i = UiDiU

>
i , where Di is diagonal and Ui is orthogonal so that U>i = U−1

i .
Then

L
1/2
i L†iL

1/2
i = UiDiU

>
i UiD

†2
i U>i UiDiU

>
i = Ui

(
DiD

†2
i Di

)
U>i = Ui

(
DiD

†
i

)
U>i ,

which can admit eigenvalues only in [0, 1] since the matrix DiD
†
i is diagonal with entries either 0 or

1. Denote

ωi = λmax

(
E
[
(Ck

i )2
])
− 1 = max

1≤j≤d

1

pi;j
− 1. (48)
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and bound each summand of σk+1 as follows

Ek
[∥∥hk+1

i −∇fi(x∗)
∥∥2

L†i

]
= Ek

[∥∥hki −∇fi(x∗) + α∆k
i

∥∥2

L†i

]
=
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α2E
[∥∥Ck

i (∇fi(xk)− hki )
∥∥2

L†i

]
=
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α2
∥∥∇fi(xk)− hki

∥∥2

E[(Ck
i )>L†iC

k
i ]

≤
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α2
∥∥∇fi(xk)− hki

∥∥2

L
†1/2
i E[(Ck

i )2]L†
1/2
i

≤
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α2(1 + ωi)
∥∥∇fi(xk)− hki

∥∥2

L†i

≤
∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2α

〈
hki −∇fi(x∗),∇fi(xk)− hki

〉
L†i

+ α
∥∥∇fi(xk)− hki

∥∥2

L†i

≤ (1− α)
∥∥hki −∇fi(x∗)∥∥2

L†i
+ α

∥∥∇fi(xk)−∇fi(x∗)
∥∥2

L†i
,

where we used bounds α ≤ 1
1+ωi

and

E
[
(Ck

i )>L†iC
k
i

]
= L

†1/2
i E

[
Ck
i L

1/2
i L†iL

1/2
i Ck

i

]
L
†1/2
i � L

†1/2
i E

[
(Ck

i )2
]
L
†1/2
i .

Therefore

Ek
[
σk+1

]
=

1

n

n∑
i=1

Ek
[∥∥hk+1

i −∇fi(x∗)
∥∥2

L†i

]
≤ 1− α

n

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i
+
α

n

n∑
i=1

∥∥∇fi(xk)−∇fi(x∗)
∥∥2

L†i

≤ (1− α)σk +
2α

n

n∑
i=1

Dfi(x
k, x∗)

= (1− α)σk + 2αDf (xk, x∗).

Thus, with α ≤ 1
1+ωmax

, the estimator gk of Algorithm 2 satisfies

Ek
[
gk
]

= ∇f(xk)

Ek
[
‖gk −∇f(x∗)‖2

]
≤ 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n
σk

Ek
[
σk+1

]
≤ (1− α)σk + 2αDf (xk, x∗).

It remains to apply Theorem 4.1 [Gorbunov et al., 2020a] with parameters A = L+ 2
n L̃max, B =

2
n L̃max, ρ = α, C = α and M = 4

αn L̃max, A+ CM = L+ 6
n L̃max, 1 + B

M − ρ = 1− α
2 .

G.5 Proof of Theorem 4

Proof technique. The additional difficulty that acceleration brings on top of variance reduction is
the modified term Hk := 1

n

∑n
i=1 ‖hki −∇fi(wk)‖2

L†i
controlling variance reduction process. The

subtlety of Hk in contrast to σk is gradients∇fi(wk) which are not fixed. Key technical part is to
reduce contracting property of Hk into upper bounding E[(I− αCi)

>L†i (I− αCi)] by (1− α)L†i
as quadratic forms in the subspace Range(Li).

Proof. Following the analysis of Li et al. [2020], define
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Zk := ‖zk − x∗‖2, Y k := F (yk)− F (x∗), W k := F (wk)− F (x∗),

Hk :=
1

n

n∑
i=1

‖∇fi(wk)− hki ‖2L†i .

Lemma 18 (Lemma 2, [Li et al., 2020]). Let η ≤ 1
2L , θ1 ≤ 1

4 , θ2 = 1
2 , γ = η

2(θ1+ηµ) and
β = 1− γµ. Then

E
[
Zk+1

]
+

2γβ

θ1
E
[
Y k+1

]
≤βZk + (1− θ1 − θ2)

2γβ

θ1
Y k + 2γβ

θ2

θ1
W k +

γη

θ1
E
[
‖gk −∇f(xk)‖2

]
− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i
.

Proof. Proof is the same as for the original lemma except we use Li-smoothness of fi via (38).

fi(u) ≥ fi(xk) +
〈
∇fi(xk), u− xk

〉
+

1

2
‖∇fi(u)−∇fi(xk)‖2

L†i
.

Lemma 19 (Lemma 3, [Li et al., 2020]).

E
[
W k+1

]
= (1− q)W k + qY k.

Lemma 20 (Lemma 4, [Li et al., 2020]).

E
[
‖gk −∇f(xk)‖2

]
≤ 2L̃max

n2

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

+
2L̃max

n
Hk.

Proof. Let ∇fi(xk)− hki = L
1/2
i rki . Then

E
[
‖gk −∇f(xk)‖2

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

Ck
i (∇fi(xk)− hki )− (∇fi(xk)− hki )

∥∥∥∥∥
2


=
1

n2
E

∥∥∥∥∥
n∑
i=1

(Ck
i − I)(∇fi(xk)− hki )

∥∥∥∥∥
2
 =

1

n2

n∑
i=1

E
[∥∥∥(Ck

i − I)L
1/2
i rki

∥∥∥2
]

=
1

n2

n∑
i=1

∥∥rki ∥∥2

L
1/2
i E[(Ck

i−I)>(Ck
i−I)]L

1/2
i

(42)
=

1

n2

n∑
i=1

∥∥rki ∥∥2

L
1/2
i L

†1/2
i (P̃i◦Li)L†

1/2
i L

1/2
i

=
1

n2

n∑
i=1

∥∥∥L†1/2i (∇fi(xk)− hki )
∥∥∥2

P̃i◦Li
≤ L̃max

n2

n∑
i=1

∥∥∇fi(xk)− hki
∥∥2

L†i

≤ 2L̃max

n2

n∑
i=1

∥∥∇fi(xk)−∇fi(wk)
∥∥2

L†i
+

2L̃max

n2

n∑
i=1

∥∥∇fi(wk)− hki
∥∥2

L†i
.

Lemma 21 (Lemma 5, [Li et al., 2020]). If α ≤ 1
1+ωmax

, where ωmax = max1≤i≤n ωi and ωi =

max1≤j≤d
1
pi;j
− 1, then

E
[
Hk+1

]
≤
(

1− α

2

)
Hk+

(
1 +

2q

α

)
2q

n

(
n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

+

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

)
.
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Proof. We start bounding the summands of Hk+1. Let ∇fi(wk)− hki = L
1/2
i rki .

Ek
[∥∥∇fi(wk+1)− hk+1

i

∥∥2

L†i

]
= qEk

[∥∥∇fi(yk)− hk+1
i

∥∥2

L†i

]
+ (1− q)Ek

[∥∥∇fi(wk)− hk+1
i

∥∥2

L†i

]
≤ q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+

(
1− q +

(
1 +

α

2q

)
q

)
E
[∥∥∇fi(wk)− hk+1

i

∥∥2

L†i

]
= q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)
E
[∥∥∇fi(wk)− hk+1

i

∥∥2

L†i

]
= q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)
E
[∥∥(I− αCk

i )(∇fi(wk)− hki )
∥∥2

L†i

]
= q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)∥∥rki ∥∥2

L
1/2
i E[(I−αCk

i )>L†i (I−αCk
i )]L

1/2
i

.

Next, we simplify the matrix of the second term.

L
1/2
i E

[
(I− αCk

i )>L†i (I− αCk
i )
]

L
1/2
i

= E
[
L

1/2
i (I− αL

†1/2
i Ck

i L
1/2
i )L†i (I− αL

1/2
i Ck

i L
†1/2
i )L

1/2
i

]
= E

[
(L

1/2
i − αL

1/2
i L

†1/2
i Ck

i L
1/2
i )L†i (L

1/2
i − αL

1/2
i Ck

i L
†1/2
i L

1/2
i )
]

= E
[
L

1/2
i L†iL

1/2
i − αL

1/2
i L†iL

1/2
i Ck

i L
†1/2
i L

1/2
i

− αL
1/2
i L

†1/2
i Ck

i L
1/2
i L†iL

1/2
i + α2L

1/2
i L

†1/2
i Ck

i L
1/2
i L†iL

1/2
i Ck

i L
†1/2
i L

1/2
i

]
(47)

� E
[
L

1/2
i L†iL

1/2
i − αL

1/2
i L†iL

1/2
i Ck

i L
†1/2
i L

1/2
i

− αL
1/2
i L

†1/2
i Ck

i L
1/2
i L†iL

1/2
i + α2L

1/2
i L

†1/2
i (Ck

i )2L
†1/2
i L

1/2
i

]
= L

1/2
i L†iL

1/2
i − αL

1/2
i L†iL

1/2
i L

†1/2
i L

1/2
i − αL

1/2
i L

†1/2
i L

1/2
i L†iL

1/2
i + α2L

1/2
i L

†1/2
i E

[
(Ck

i )2
]
L
†1/2
i L

1/2
i

(48)

� L
1/2
i L†iL

1/2
i − 2αL

1/2
i L†iL

1/2
i + α2(ωi + 1)L

1/2
i L

†1/2
i L

†1/2
i L

1/2
i

= (1− 2α+ α2(ωi + 1))L
1/2
i L†iL

1/2
i

� (1− α)L
1/2
i L†iL

1/2
i ,

where in the last step we make use of the bound α ≤ 1
1+ωmax

= min1≤i≤n
1

1+ωi
. Then we finish the

recurrence as follows

Ek
[∥∥∇fi(wk+1)− hk+1

i

∥∥2

L†i

]
≤ q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)∥∥rki ∥∥2

L
1/2
i E[(I−αCk

i )>L†i (I−αCk
i )]L

1/2
i

≤ q
(

1 +
2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)
(1− α)

∥∥rki ∥∥2

L
1/2
i L†iL

1/2
i

= q

(
1 +

2q

α

)∥∥∇fi(wk)−∇fi(yk)
∥∥2

L†i
+
(

1 +
α

2

)
(1− α)

∥∥∇fi(wk)− hki
∥∥2

L†i

≤ 2q

(
1 +

2q

α

)(∥∥∇fi(wk)−∇fi(xk)
∥∥2

L†i
+
∥∥∇fi(yk)−∇fi(xk)

∥∥2

L†i

)
+
(

1− α

2

)∥∥∇fi(wk)− hki
∥∥2

L†i
.

Averaging over i ∈ [n] completes the proof.
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Proof of Theorem 4. Using the 4 lemmas above and θ1 ≤ 1
4 , θ2 = 1

2 , the Lyapunov function Ψk+1

admits the following recurrence

E
[
Ψk+1

]
:= E

[
Zk+1 +

2γβ

θ1
Y k+1 + 2γβ

θ2(1 + θ1)

θ1q
W k+1 +

8γηL̃max

αθ1n
Hk+1

]
Lemma 18
≤ βZk + (1− θ1 − θ2)

2γβ

θ1
Y k + 2γβ

θ2

θ1
W k +

γη

θ1
E
[
‖gk −∇f(xk)‖2

]
− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+ E

[
2γβ

θ2(1 + θ1)

θ1q
W k+1 +

8γηL̃max

αθ1n
Hk+1

]
Lemma 19

= βZk + (1− θ1 − θ2)
2γβ

θ1
Y k + 2γβ

θ2

θ1
W k +

γη

θ1
E
[
‖gk −∇f(xk)‖2

]
− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+ 2γβ
θ2(1 + θ1)

θ1q
(1− q)W k + 2γβ

θ2(1 + θ1)

θ1
Y k + E

[
8γηL̃max

αθ1n
Hk+1

]

≤ βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k

− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+
γη

θ1
E
[
‖gk −∇f(xk)‖2

]
+ E

[
8γηL̃max

αθ1n
Hk+1

]
Lemma 20
≤ βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k

− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+
2γηL̃max

θ1n2
‖∇fi(wk)−∇fi(xk)‖2

L†i
+

2γηL̃max

θ1n
Hk + E

[
8γηL̃max

αθ1n
Hk+1

]
Lemma 21
≤ βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k

− γ

4nθ1

n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i
− γ

8nθ1

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

+
2γηL̃max

θ1n2
‖∇fi(wk)−∇fi(xk)‖2

L†i
+

2γηL̃max

θ1n
Hk +

8γηL̃max

αθ1n

(
1− α

2

)
Hk

+

(
1 +

2q

α

)
16γηL̃maxq

αθ1n2

(
n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

+

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

)

= βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k +

(
1− α

4

) 8γηL̃max

αθ1n
Hk

− γ

nθ1

(
1

8
− 2ηL̃max

n

)
n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

− γ

nθ1

(
1

8
−
(

1 +
2q

α

)
16ηL̃maxq

αn

)(
n∑
i=1

‖∇fi(wk)−∇fi(xk)‖2
L†i

+

n∑
i=1

‖∇fi(yk)−∇fi(xk)‖2
L†i

)
.
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To make the last two lines disappear from the recurrence, we need to make sure

1

8
− 2ηL̃max

n
≥ 0 and

1

8
−
(

1 +
2q

α

)
16ηL̃maxq

αn
≥ 0,

or equivalently

η ≤ n

16L̃max

and η ≤ n

64L̃max

· 1
2q
α

(
2q
α + 1

) .
Since α ≤ 1

ωmax+1 (see Lemma 21) and we also need to have η ≤ 1
2L (see Lemma 18), we can set

η = min

(
1

2L
,

n

64L̃max (2q(ωmax + 1) + 1)
2

)
.

Therefore

E
[
Ψk+1

]
≤ βZk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k +

(
1− α

4

) 8γηL̃max

αθ1n
Hk

≤
(

1− ηµ

4θ1

)
Zk +

(
1− θ1

2

)
2γβ

θ1
Y k +

(
1− θ1q

2

)
2γβ

θ2(1 + θ1)

θ1q
W k +

(
1− α

4

) 8γηL̃max

αθ1n
Hk

≤
(

1−min

{
α

4
,
q

8
,

√
ηµq

4

})
Ψk,

where we set γ = η
2(θ1+ηµ) , β = 1 − γµ ≤ 1 − ηµ

4θ1
due to ηµ ≤ θ1, and θ1 = min

{
1
4 ,
√

ηµ
q

}
.

After telescoping we get an ε-solution E
[
‖zk − x∗‖2

]
≤ ε after

max

4(1 + ωmax),
8

q
, 4

√√√√ 2

µq
max

(
L,

32L̃max (2q(ωmax + 1) + 1)
2

n

) log
Ψ0

ε

iterations. Choosing q = min

{
1,

max
(

1,
√

nL

32L̃max
−1
)

2(1+ωmax)

}
we can simplify the above iteration com-

plexity into

k =



Õ
(
ωmax +

√
L̃max(1+ωmax)

µn

)
if nL ≤ 128L̃max

Õ

(
1 + ωmax +

√
1+ωmax√

n

√
L̃maxL
µ

)
if 128L̃max < nL ≤ 32L̃max(2ωmax + 3)2

Õ
(
ωmax +

√
L
µ

)
if 32L̃max(2ωmax + 3)2 < nL.

Combining last two cases concludes the proof.
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H Improvements Over The Original Methods

In this part we provide detailed derivations skipped in Section 5. Recall parameters ν, νs describing
matrices Li:

ν :=

∑n
i=1 Li

max
1≤i≤n

Li
, νs := max

1≤i≤n

∑d
j=1 L

1/s
i;j

max
1≤j≤d

L
1/s
i;j

, (49)

where Li = λmax(Li) and we will choose s = 1 or s = 2. Let Lmax = max1≤i≤n Li.

H.1 Importance sampling for DCGD+

Let τ = E [|Si|] =
∑d
j=1 pi;j be the expected mini-batch size for the samplings Si. Notice that

convergence rate of DCGD+ depends on L̃max = max1≤i≤n L̃i. Since each node i ∈ [n] generates
its own diagonal sketch Ci independently from others, each node can optimize L̃i = λmax(P̃i ◦ Li)

independently based on local smoothness matrix Li. In general, minimizing λmax(P̃i ◦ Li) with
respect to probability matrix P̃i is hard. However, we can find the optimal probabilities when each
node generates via an independent sampling, namely pi;jl = pi;jpi;l if j 6= l. Then

λmax(P̃i ◦ Li) = max
1≤j≤d

(
1

pi;j
− 1

)
Li;j , (50)

for which we can find the optimal probabilities pi;j . To minimize the maximum term in (50), we
should have (1/pi;j − 1) Li;j = ρi for some ρi ≥ 0. Then the solution is

pi;j =
Li;j

Li;j + ρi
, (51)

where ρi ≥ 0 is the unique solution to
∑d
j=1

Li;j
Li;j+ρi

= τ . The latter does not allow closed form
solution for ρi, but it can be computed numerically using one dimensional solvers. Hence, we can
efficiently compute the optimal probabilities (51). Moreover, we can deduce a simple upper bound
for ρi

τ =

d∑
j=1

Li;j
Li;j + ρi

≤
d∑
j=1

Li;j
ρi

=
1

ρi

d∑
j=1

Li;j , (52)

which gives us an upper bound for L̃i as follows

L̃i = λmax(P̃i ◦ Li) = ρi ≤
1

τ

d∑
j=1

Li;j
(49)

≤ ν1

τ
Lmax. (53)

Proof of Remark 3. Using the following inequalities with respect to matrix order

L � 1

n

n∑
i=1

Li, Li � nL, (54)

we bound L as follows

L = λmax (L)
(54)

≤ λmax

(
1

n

n∑
i=1

Li

)
≤ 1

n

n∑
i=1

λmax (Li) =
1

n

n∑
i=1

Li
(49)

≤ ν

n
Lmax. (55)

Fix τ =
∑d
j=1 pi;j ∈ [0, d] expected mini-batch of coordinates for all nodes i ∈ [n]. Then, with

probabilities (51) we have

L̃max

n
=

1

n
max

1≤i≤n
L̃i =

1

n
max

1≤i≤n
ρi

(53)

≤ ν1

τn
Lmax ≤

ν1

τn
Lmax,
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To get it upper bounded by Lmax, notice that max1≤j≤d Li;j ≤ λmax(Li) = Li, which implies

Lmax = max
1≤i≤n

max
1≤j≤d

Li;j ≤ max
1≤i≤n

Li = Lmax. (56)

Therefore

L+
L̃max

n
≤
(ν
n

+
ν1

τn

)
Lmax.

Remark 7 (Speedup for uniform sampling). For standard sparsification with uniform probabilities,
the term affected by the compression in the complexity (consider the linear rate of DCGD for
simplicity) is ωmaxLmax =

(
d
τ − 1

)
Lmax, where Lmax = maxi∈[n] Li is the largest smoothness

constant over devices. On the other hand, in the proposed sparsification strategy we have probabilities
pi;jl = τ2

d2 if j 6= l, and pi;jl = τ
d if j = l, which implies that P̃i =

(
d
τ − 1

)
I. In this case, the term

affected by the compression in the complexity is

L̃max = maxi∈[n] λmax(P̃i ◦ Li) =
(
d
τ − 1

)
λmax(Diag(Li)) =

(
d
τ − 1

)
Lmax,

where Lmax = maxi∈[n] maxj∈[d] Li;j is the largest diagonal element over all smoothness matrices.
Now notice that Lmax ≤ Lmax ≤ dLmax hold and bounds are tight. Hence, the upper bound
obtained for our sparsification is always better and can be up to d times better depending on the ratio
Lmax

Lmax
∈ [1, d]. Thus, we can make an analogous observation between classical uniform sampling and

our uniform sampling albeit with a different condition on smoothness matrices, i.e. Lmax

Lmax
= Ω(d)

instead of νs = O(1).

H.2 Importance sampling for DIANA+

To find optimal probabilities for DIANA+, we minimize ωmax + L̃max

µn part of the complexity (11)

when each node uses an independent sampling as for DCGD+. Definitions of L̃max and ωmax imply

ωmax+
L̃max

µn
= max

ij

(
1

pi;j
− 1

)
+max

ij

(
1

pi;j
− 1

)
Li;j
µn

= Θ

(
max
ij

(
1

pi;j
− 1

)(
Li;j
µn

+ 1

))
.

(57)
Therefore it is equivalent to minimize the following for each node i ∈ [n] independently:

max
1≤j≤d

(
1

pi;j
− 1

)
L′i;j , L′i;j :=

Li;j
µn

+ 1 ≥ 1, (58)

This can be solved in the same way as (50). The optimal probabilities are

pi;j =
L′i;j

L′i;j + ρ′i
=

Li;j
µn + 1

Li;j
µn + 1 + ρ′i

(59)

and an upper bound for ρ′i is analogous to (53)

ρ′i ≤
1

τ

d∑
j=1

L′i;j =
1

τ

d∑
j=1

(
Li;j
µn

+ 1

)
=
d

τ
+

1

nτ

d∑
j=1

Li;j
µ

(49)

≤ d

τ
+
ν1

nτ

Lmax

µ

(56)

≤ d

τ
+
ν1

nτ

Lmax

µ
.

(60)

Proof of Remark 4. With probabilities (59) we can upper bound the complexity (11) as follows

ωmax +
L̃max

µn

(57)

≤ 2 max
1≤i≤n

max
1≤j≤d

(
1

pi;j
− 1

)
L′i;j

(59)
=

2

τ
max

1≤i≤n
ρ′i

(60)

≤ 2d

τ
+

2ν1

τn

Lmax

µ
.

(61)
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Combined with (55), we have

ωmax +
L

µ
+
L̃max

µn
≤ 2d

τ
+

(
ν

n
+

2ν1

τn

)
Lmax

µ
.

Remark 8 (Improvement over standard DGD). Let us estimate how much improvement do we get with
respect to standard Distributed Gradient Descent (DGD), where each node computes full gradients
∇fi(xk) and sends dense updates to the server in each iteration. The iteration complexity of DGD is
Õ(Lµ ). To compare it against the complexity (11) of DIANA+ we use the same setup as in previous
remarks (namely, independent samplings with probabilities (18) and τ = d/n). Since Li � nL, we
have Lmax = maxi∈[n] λmax(Li) ≤ nL. Hence, (19) implies

ωmax +
L

µ
+
L̃max

µn
≤ 2n+

3nL

µ
,

which is O(n) times bigger than the iteration complexity of DGD. However, in case of DGD, each
node sends n times more bits to the server. In total, DIANA+ and DGD have the same communication
complexity in the worst case. To illustrate the best complexity DIANA+ can provide, consider the
special case when Li = L for all i ∈ [n] and ν1 = O(1). Then, clearly Lmax = L and we get
Õ(n+ L

µ ) complexity for DIANA+, yielding up to n times speedup against DGD. Moreover, in case
of diagonal matrices Li, DIANA+ spends n times less local computation on partial derivatives and
guarantees additional n times speedup.

H.3 Independent sampling for ADIANA+

For the accelerated method ADIANA+, we construct probabilities pi;j similar to (51) and (59) as
follows

pi;j :=

(
L′i;j

L′i;j + ρ′′i

)1/2

=

( Li;j
µn + 1

Li;j
µn + 1 + ρ′′i

)1/2

, L′i;j =
Li;j
µn

+ 1 ≥ 1, (62)

where ρ′′i is determined uniquely from
∑d
j=1

(
L′i;j

L′i;j+ρ
′′
i

)1/2

= τ . Notice that

τ =

d∑
j=1

(
L′i;j

L′i;j + ρ′′i

)1/2

≤
d∑
j=1

(
L′i;j
ρ′′i

)1/2

=
1√
ρ′′i

d∑
j=1

√
L′i;j .

Therefore √
ρ′′i ≤

1

τ

d∑
j=1

√
Li;j
µn

+ 1 ≤ 1

τ

d∑
j=1

(√
Li;j
µn

+ 1

)
≤ d

τ
+

1

τ

d∑
j=1

√
Li;j
µn

(49)

≤ d

τ
+
ν2

τ

√
Lmax

µn

(56)

≤ d

τ
+
ν2

τ

√
Lmax

µn

(63)

Proof of Remark 5. We bound terms ωmax and Lmax

µn using probabilities (62) as follows:

ωmax = max
i,j

(
1

pi;j
− 1

)
= max

i,j

(√
ρ′′i
L′i;j

+ 1− 1

)
≤ max

i,j

√
ρ′′i
L′i;j

(62)

≤ max
i,j

√
ρ′′i

(63)

≤ d

τ
+
ν2

τ

√
Lmax

µn
.

(64)

Lmax

µn

(50)
= max

i,j

(
1

pi;j
− 1

)
Li;j
µn

(62)

≤ max
i,j

√
ρ′′i

Li;j
µn√

Li;j
µn + 1

≤ max
i,j

√
ρ′′i

√
Li;j
µn

(63)

≤

(
d

τ
+
ν2

τ

√
Lmax

µn

)√
Lmax

µn
.

(65)
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Let ν and ν2 are O(1). Denote ω = d
τ , κi = Li

µ and κmax = maxi∈[n] κi. Then with this notation
we have

L

µ
≤ ν

n
κmax = O

(κmax

n

)
ωmax ≤ ω +

ν2

τ

√
κmax

n
= ω

(
1 +

ν2

d

√
κmax

n

)
= O

(
ω

(
1 +

√
κmax

d
√
n

))
Lmax

µn
≤
(
ω +

ν2

τ

√
κmax

n

)√
κmax

n
= O

(
ω

(
1 +

√
κmax

d
√
n

) √
κmax√
n

) (66)

Then, in case of nL ≤ L̃max, we have

ωmax +

√
ωmax

L̃max

µn
= O

(
ω

(
1 +

√
κmax

d
√
n

)(
1 +

(κmax

n

)1/4
))

,

which should be compared with O
(
ω
(
1 +

√
κmax

n

))
[Li et al., 2020]. If κmax = O(nd2), then we

get O(
√
d) speedup factor. If nL > L̃max, then

ωmax +

√
L

µ
+

√√√√
ωmax

√
L̃max

µn

√
L

µ

= O

ω(1 +

√
κmax

d
√
n

)
+

√
κmax

n
+

√√√√
ω

(
1 +

√
κmax

d
√
n

)√
κmax

n

√
ω

(
1 +

√
κmax

d
√
n

)√
κmax

n


= O

(
ω

(
1 +

√
κmax

d
√
n

)
+

√
κmax

n
+

[
ω

(
1 +

√
κmax

d
√
n

)√
κmax

n

]3/4
)
,

which should be compared with ω + κmax + ω3/4n1/4
√

κmax

n [Li et al., 2020]. If κmax = O(nd2),
then we get O(

√
n) times smaller second term and O

(
(nd)1/4

)
times smaller third term.
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I Variance Reduction: ISEGA+

In this part we apply our redesign to another variance reduced method called ISEGA [Mishchenko
et al., 2020, Hanzely and Richtárik, 2019b]. At the core of ISEGA, the mechanism for variance
reduction is based on SEGA method [Hanzely et al., 2018]. The key difference between ISEGA
and DIANA is that ISEGA updates the control variates h more aggressively using projection instead
of the mere α-step towards the projection used in DIANA. Adapting our matrix-smoothness-aware
sparsification to ISEGA, we define the update rule of control vectors hki as follows (for now assume
Li is invertible)

hk+1
i = arg min

h∈Range(Li)

Ck
i L
†1/2
i ∇fi(xk)=Ck

i L
†1/2
i h

‖h− hki ‖2L†i

= hki + LiL
†1/2
i Ck

i

(
Ck
i L
†1/2
i LiL

†1/2
i Ck

i

)†
Ck
i L
†1/2
i (∇fi(xk)− hki )

= hki + L
1/2
i Ck

i

(
Ck
iC

k
i

)†
Ck
i L
†1/2
i (∇fi(xk)− hki )

= hki + L
1/2
i Diag(Pi)C

k
i L
†1/2
i (∇fi(xk)− hki ).

Note that the update rule in DIANA+ has the form

hk+1
i = hki + αL

1/2
i Ck

i L
†1/2
i (∇fi(xk)− hki )

for some fixed scalar α > 0, and thus is more conservative. Note that we choose the gradient estimator
to be the same gki = hki + L

1/2
i Ck

i L
†1/2
i (∇fi(xk)− hki ). The method is presented as Algorithm 7.

Algorithm 7 ISEGA+
1: Input: Initial point x0 ∈ Rd, initial shifts h0

i ∈ Rd, current point xk, step size parameter γ and
α, sketch Ck

i and Ck
i := L

1/2
i Ck

i L
†1/2
i , current shifts hk1 , . . . , h

k
n and hk := 1

n

∑n
i=1 h

k
i .

2: on each node
3: get xk from the server
4: send sparse update ∆k

i = Ck
i L
†1/2
i (∇fi(xk)− hki )

5: gki = hki + L
1/2
i ∆k

i

6: hk+1
i = hki + L

1/2
i Diag(Pi)∆

k
i

7: on server
8: get sparse updates ∆k

i from each node
9: gk = 1

n

∑n
i=1 g

k
i = hk + 1

n

∑n
i=1 L

1/2
i ∆k

i

10: xk+1 = proxγR(xk − γgk)

11: hk+1 = 1
n

∑n
i=1 h

k+1
i = hk + 1

n

∑n
i=1 L

1/2
i Diag(Pi)∆

k
i

Note that we can not obtain the convergence rate of ISEGA+ directly from the framework of Gorbunov
et al. [2020a]. Instead, to get the tight convergence rate, we shall cast it as an instance of GJS
method [Hanzely and Richtárik, 2019b]. Theorem 22 provides the result – we can see that the worst
case complexity is identical to DIANA+. In terms of the practical performance, we expect ISEGA+
to outperform DIANA+ due to the more aggressive update rule of control variates.
Theorem 22. Suppose that γ ≤ 1

4L̃max
n +2L+µ(ωmax+1)

. Then, we have

E[Ψk] ≤ (1− γµ)Ψ0,

where

Ψk := ‖xk − x∗‖2 +
γ

2n

n∑
i=1

‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

and φki := L
†1/2
i hki . Consequently, the overall complexity of ISEGA+ is

Õ

(
ωmax +

L

µ
+
L̃max

nµ

)
.
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Proof. The proof can be seen as a special case of the generalized Jacobian sketching theory of Hanzely
and Richtárik [2019b]. For the sake of clarity, we provide a specialized proof here.

Note first that by (46),we have

E
[
‖gk −∇f(x∗)‖2

]
≤ 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

.

Similarly, we have

E
[
‖φk+1

i − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

]
= E

[
‖φki + Diag(Pi)C

k
i (L
†1/2
i ∇fi(x

k)− φki )− L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

]
= E

[
‖(I−Diag(Pi)C

k
i )(φki − L

†1/2
i ∇fi(x

∗)) + Diag(Pi)C
k
i L
†1/2
i (∇fi(xk)−∇fi(x∗))‖2Diag(Pi)−1

]
= E

[
‖(I−Diag(Pi)C

k
i )Diag(Pi)

− 1
2 (φki − L

†1/2
i ∇fi(x

∗)) + Diag(Pi)
1/2Ck

i L
†1/2
i (∇fi(xk)−∇fi(x∗))‖2

]
= E

[
‖(I−Diag(Pi)C

k
i )Diag(Pi)

− 1
2 (φki − L

†1/2
i ∇fi(x

∗))‖2
]

+ E
[
‖Diag(Pi)

1/2Ck
i L
†1/2
i (∇fi(xk)−∇fi(x∗))‖2

]
= ‖φki − L

†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I + ‖L†1/2i (∇fi(xk)−∇fi(x∗))‖2

≤ ‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I + 2Dfi(x
k, x∗)

and therefore

E

[
1

n

n∑
i=1

‖φk+1
i − L

†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

]
≤ 1

n

n∑
i=1

‖φki−L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I+2Df (xk, x∗)

(67)

Following the classical analysis of SGD (i.e., proof of Lemma C.1 of Gorbunov et al. [2020a]), we
get

E
[
‖xk+1 − x∗‖2

]
= (1− γµ)|xk − x∗‖2 − 2γDf (xk, x∗) + γ2E

[
‖gk −∇f(x∗)‖2

]
≤ (1− γµ)|xk − x∗‖2 − 2γ

(
1− γ

(
L+

2L̃max

n

))
Df (xk, x∗)

+
2L̃maxγ

2

n2

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

.

Adding γ
2 -multiple of (67) to the above, we get

E
[
‖xk+1 − x∗‖2

]
+
γ

2
E

[
1

n

n∑
i=1

‖φk+1
i − L

†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1

]

≤ (1− γµ)‖xk − x∗‖2 − 2γ

(
1

2
− γ

(
L+

2L̃max

n

))
Df (xk, x∗)

+
2L̃maxγ

2

n2

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

+
γ

2n

n∑
i=1

‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I(68)

Next, note that we have

2L̃maxγ
2

n2

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

+
γ

2n

n∑
i=1

‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1−I

≤ (1− γµ)γ

2n

n∑
i=1

‖φki − L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1 (69)
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since it is equivalent to

4L̃maxγ

n

n∑
i=1

∥∥∥φki − L
†1/2
i ∇fi(x

∗)
∥∥∥2

+γµ

n∑
i=1

‖φki−L
†1/2
i ∇fi(x

∗)‖2Diag(Pi)−1 ≤
n∑
i=1

‖φki−L
†1/2
i ∇fi(x

∗)‖2,

which holds since γ ≤ 1
4L̃max
n +µ(ωmax+1)

.

To finish the proof, it remains to plug (69) into (68), use that γ ≤ 1
4L̃max
n +2L

and unroll the recurrence.
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J Variance Reduction with Bi-directional Compression: DIANA++

In this method, the master server applies compression in its turn with sketch C independently. Thus,
we maintain an additional control vector Hk, which helps to reduce the variance coming from the
master’s sparsification. Moreover, nodes keep track of Hk just like the central server.

Algorithm 8 DIANA++
1: Input: Initial point x0 ∈ Rd, initial shifts h0

i ∈ Range(Li), H
0 ∈ Range(L), current point xk,

step size parameter γ, α and β, sketch Ck
i and Ck

i := L
1/2
i Ck

i L
†1/2
i , current shifts hk1 , . . . , h

k
n, H

k

and hk := 1
n

∑n
i=1 h

k
i .

2: on each node
3: send sparse update ∆k

i = Ck
i L
†1/2
i (∇fi(xk)− hki )

4: ∆k
i = L

1/2
i ∆k

i , g
k
i = hki + ∆k

i , h
k+1
i = hki + α∆k

i
5: on server
6: get sparse updates ∆k

i from each node
7: ∆k = 1

n

∑n
i=1 ∆k

i = 1
n

∑n
i=1 L

1/2
i ∆k

i

8: gk = ∆k + hk = 1
n

∑n
i=1 Ck

i

(
∇fi(xk)− hki

)
+ hki

9: send sparse update δk = CkL†1/2(gk −Hk)
10: δk = L1/2δk, ĝk = Hk + δk = Hk + Ck

(
gk −Hk

)
11: xk+1 = proxγR(xk − γĝk)

12: hk+1 = hk + α∆k

13: Hk+1 = Hk + βδk

14: on each node
15: get δk from the server
16: reconstruct δk = L1/2δk, ĝk = Hk + δk = Hk + Ck

(
gk −Hk

)
17: xk+1 = proxγR(xk − γĝk)

18: Hk+1 = Hk + βδk

Theorem 23. Let Assumptions 1 and 2 hold and assume that each node generates its own diagonal
sketch Ci independently from others. The master server, in its turn, generates C independently from
the nodes. Then, Algorithm 8 has the following iteration complexity

O

(
1

min (α− βθ′, β)
+

α+ βθ + βθ′

min (α− βθ′, β)

(
L

µ
+
L̃
µ

+
L̃L̃′max

nµ
+
L̃max

nµ

))
,

where we made the following notations

θ :=
nL̃

L̃max + 2L̃L̃′max

≤ n

2L̃′max

, θ′ :=
2θ

n
L̃′max ≤ 1 ∈ [0, 1]

L̃′max := max
1≤i≤n

λmax

(
P̃i ◦ (L

1/2
i L†L

1/2
i )
)
, L̃ := λmax

(
P̃ ◦ L

)
with bounds α ≤ 1

1+ωmax
= maxi∈[n] maxj∈[d]

1
pi;j

and β ≤ 1
1+ω = maxj∈[d]

1
pj

.

Remark 9. Note that, when master does not compress the messages, then we have P̃ = 0. This
implies the same complexity we had for DIANA+ as quantities L̃, θ, θ′ are all become zeros.

Proof. The proof follows the same structure as for DIANA+, with additional variance reduction
process introduced for the master server. Analogously, we start bounding the following second
moment:

E
[
‖ĝk −∇f(x∗)‖2

]
= E

[
‖ĝk − gk‖2

]
+ E

[
‖gk −∇f(x∗)‖2

]
. (70)

We can bound the second term as it was done in (46):

E
[
‖gk −∇f(x∗)‖2

]
≤ 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i
.
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Then we decompose the first term E
[
‖ĝk − gk‖2

]
into two as follows:

E
[
‖ĝk − gk‖2

]
= E

[
‖Ck(gk −Hk)− (gk −Hk)‖2

]
= ‖gk −Hk‖2E[(I−Ck)>(I−Ck)]

= ‖gk −Hk‖2
L†1/2(P̃◦L)L†1/2

≤ L̃‖gk −Hk‖2L†
≤ 2L̃‖gk −∇f(x∗)‖2L† + 2L̃‖Hk −∇f(x∗)‖2L† .

(71)

To bound each of the two summands in (71), we derive the analogue of (39).

E
[
L

1/2
i

(
Ci − I

)>
L†
(
Ci − I

)
L

1/2
i

]
= E

[
L

1/2
i

(
L
†1/2
i CiL

1/2
i − I

)
L†
(
L

1/2
i CiL

†1/2
i − I

)
L

1/2
i

]
= E

[
L

1/2
i

(
L
†1/2
i Ci(L

1/2
i L†L

1/2
i )CiL

†1/2
i − L

†1/2
i CiL

1/2
i L† − L†L

1/2
i CiL

†1/2
i + L†

)
L

1/2
i

]
(36)
= L

1/2
i

(
L
†1/2
i

(
Pi ◦ (L

1/2
i L†L

1/2
i )
)

L
†1/2
i − L

†1/2
i L

1/2
i L† − L†L

1/2
i L

†1/2
i + L†

)
L

1/2
i

= L
1/2
i L

†1/2
i

(
Pi ◦ (L

1/2
i L†L

1/2
i )
)

L
†1/2
i L

1/2
i − L

1/2
i L†L

1/2
i

= L
1/2
i L

†1/2
i

(
P̃i ◦ (L

1/2
i L†L

1/2
i )
)

L
†1/2
i L

1/2
i .

(72)

Then we bound them as follows. First, we have

E
[
‖gk −∇f(x∗)‖2L†

]
= ‖∇f(xk)−∇f(x∗)‖2L† + E

[
‖gk −∇f(xk)‖2L†

]
≤ 2Df (xk, x∗) + E

∥∥∥∥∥ 1

n

n∑
i=1

Ck
i (∇fi(xk)− hki ) + hki −∇fi(xk)

∥∥∥∥∥
2

L†


= 2Df (xk, x∗) +

1

n2

n∑
i=1

E
[∥∥∥(Ck

i − I)L
1/2
i rki

∥∥∥2

L†

]

= 2Df (xk, x∗) +
1

n2

n∑
i=1

∥∥rki ∥∥2

E
[
L

1/2
i (Ck

i−I)>L†(Ck
i−I)L

1/2
i

]
(72)
= 2Df (xk, x∗) +

1

n2

n∑
i=1

∥∥rki ∥∥2

L
1/2
i L

†1/2
i (P̃i◦(L

1/2
i L†L

1/2
i ))L

†1/2
i L

1/2
i

= 2Df (xk, x∗) +
1

n2

n∑
i=1

∥∥∥L†1/2i (∇fi(xk)− hki )
∥∥∥2

P̃i◦(L
1/2
i L†L

1/2
i )

≤ 2Df (xk, x∗) +
L̃′max

n2

n∑
i=1

∥∥∇fi(xk)− hki
∥∥2

L†i

≤ 2Df (xk, x∗) +
2L̃′max

n2

n∑
i=1

∥∥∇fi(xk)− fi(x∗)
∥∥2

L†i
+

2L̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

≤ 2Df (xk, x∗) +
4L̃′max

n
Df (xk, x∗) +

2L̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

= 2

(
1 +

2L̃′max

n

)
Df (xk, x∗) +

2L̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

(73)
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Then, for the control vectors Hk at the master, we have

Ek
[∥∥Hk+1 −∇f(x∗)

∥∥2

L†

]
= Ek

[∥∥Hk −∇f(x∗) + βδk
∥∥2

L†

]
=
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βE

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ β2Ek

[∥∥Ck(gk −Hk)
∥∥2

L†

]
=
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βEk

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ β2Ek

[∥∥gk −Hk
∥∥2

E[(Ck)>L†Ck]

]
≤
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βEk

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ β2Ek

[∥∥gk −Hk
∥∥2

L†1/2E[(Ck)2]L†1/2

]
≤
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βEk

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ β2(1 + ω)Ek

[∥∥gk −Hk
∥∥2

L†

]
≤
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βEk

[〈
Hk −∇f(x∗), gk −Hk

〉
L†

]
+ βEk

[∥∥gk −Hk
∥∥2

L†

]
= (1− β)

∥∥Hk −∇f(x∗)
∥∥2

L†
+ βEk

[∥∥gk −∇f(x∗)
∥∥2

L†

]
≤ (1− β)

∥∥Hk −∇f(x∗)
∥∥2

L†
+ 2β

(
1 +

2L̃′max

n

)
Df (xk, x∗) +

2βL̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

Now, for some θ (to be defined later), let

σk :=
1

n

n∑
i=1

‖hki −∇fi(x∗)‖2L†i + θ‖Hk −∇f(x∗)‖2L† .

Then, we have

E
[
‖ĝk −∇f(x∗)‖2

]
(70)
= E

[
‖ĝk − gk‖2

]
+ E

[
‖gk −∇f(x∗)‖2

]
(71)

≤ 2L̃E
[
‖gk −∇f(x∗)‖2L†

]
+ 2L̃‖Hk −∇f(x∗)‖2L† + E

[
‖gk −∇f(x∗)‖2

]
(73)

≤ 4L̃

(
1 +

2L̃′max

n

)
Df (xk, x∗) +

4L̃L̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

+ 2

(
L+

2L̃max

n

)
Df (xk, x∗) +

2L̃max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

+ 2L̃‖Hk −∇f(x∗)‖2L†

= 2

(
L+ 2L̃+

4L̃L̃′max

n
+

2L̃max

n

)
Df (xk, x∗)

+

(
4L̃L̃′max

n
+

2L̃max

n

)
1

n

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i
+ 2L̃‖Hk −∇f(x∗)‖2L†

= 2

(
L+ 2L̃+

4L̃L̃′max

n
+

2L̃max

n

)
Df (xk, x∗) +

(
4L̃L̃′max

n
+

2L̃max

n

)
σk,

with the following choice of θ:

θ :=
nL̃

L̃max + 2L̃L̃′max

≤ n

2L̃′max

, θ′ :=
2θ

n
L̃′max ≤ 1.
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For the control vectors hki and Hk, we deduce

E
[
σk+1

]
≤ (1− α)

1

n

n∑
i=1

‖hki −∇fi(x∗)‖2L†i + 2αDf (xk, x∗)

+ (1− β)θ
∥∥Hk −∇f(x∗)

∥∥2

L†
+ 2βθ

(
1 +

2L̃′max

n

)
Df (xk, x∗) +

2βθL̃′max

n2

n∑
i=1

∥∥hki −∇fi(x∗)∥∥2

L†i

=

(
1− α+

2βθL̃′max

n

)
1

n

n∑
i=1

‖hki −∇fi(x∗)‖2L†i + (1− β)θ
∥∥Hk −∇f(x∗)

∥∥2

L†

+ 2

(
α+ βθ

(
1 +

2L̃′max

n

))
Df (xk, x∗)

≤ max

(
1− α+

2βθL̃′max

n
, 1− β

)
σk + 2

(
α+ βθ

(
1 +

2L̃′max

n

))
Df (xk, x∗)

= max (1− α+ βθ′, 1− β)σk + 2 (α+ βθ + βθ′)Df (xk, x∗).

Thus the constants from [Gorbunov et al., 2020a] are as follows

A = L+ 2L̃+
4L̃L̃′max

n
+

2L̃max

n

B =
4L̃L̃′max

n
+

2L̃max

n
=

2L̃
θ

C = α+ βθ + βθ′

ρ = min (α− βθ′, β) .

Let M = 2B
ρ , and note that Bθ = 2L̃ and Bθ′ =

4L̃L̃′max

n . Then

A+ CM = A+ 2B
α+ βθ + βθ′

min (α− βθ′, β)

= O

(
α+ βθ + βθ′

min (α− βθ′, β)

(
L+ L̃+

L̃L̃′max

n
+
L̃max

n

))
.

1 +
B

M
− ρ = 1− ρ

2
= 1− 1

2
min (α− βθ′, β) .

53


