
Canonical Capsules: Self-Supervised Capsules in Canonical Pose
Supplementary Material

This appendix provides additional architectural details (Section A), and additional ablation stud-
ies (Section B). Note that we also provide code and additional qualitative results as a webpage with
videos alongside this appendix; see README.html.

A Architectural details

We detail our architecture design for the capsule encoder E , the decoder D and the regressor K.

A.1 Capsule Encoder – E

The capsule encoder E takes in input a point cloud P 2 RP⇥D and outputs the K-fold/head attention
map A 2 RP⇥K and the feature map F 2 RP⇥C . Specifically, the encoder E is based on ACNe [47]
and composed of 3 residual blocks where each residual block consists of two hidden MLP layers
with 128 neurons each. Each hidden MLP layer is followed by Attentive Context Normalization
(ACN) [47], batch normalization [26], and ReLU activation. To be able to attend to multiple capsules,
we extend the ACN layer into multi-headed ACN.

Multi-headed ACN. For each MLP layer where we apply ACN, if we denote this layer as i, we
first train a fully-connected layer that creates a K-headed attention map A

i 2 RP⇥K given the
F

i 2 RP⇥C of this layer. This is similar to ACN, but instead of a single attention map, we now
have K. The normalization process is similar to ACN: we utilize the weighted moments of Fi with
A

i, but results in K normalized outcomes instead of one. We them aggregate these K normalization
results into one by summation. In more details, given the F

i
p 2 RP⇥C , if we denote the weights and

biases to be trained for the kth attention head to be W
i
k 2 RC⇥1 and bik 2 R1 we write:

A
i
p,k =

exp(Fi
pW

i
k + bik)P

k exp(Fi
pW

i
k + bik)

. (13)

We then compute the moments that are used to normalize in ACN, but now for each attention head:

µk =
X

p

A
i
p,kF

i
pP

p A
i
p,k

, �k =
X

p

A
i
p,k(F

i
p � µk)2P

p A
i
p,k

, (14)

which we then use to normalize and aggregate (sum) to get our final normalized feature map:

F
i
p =

X

k

A
i
p,k

(Fi
p � µk)p
�k + ✏

, (15)

where ✏ = 0.001 is to avoid numerical instabilities.

A.2 Capsule Decoder – D

The decoder D is composed of K per-capsule decoders Dk. Each per-capsule decoder Dk maps the
kth capsule in canonical frame (R̄✓k+ t̄, �k) to a group of points P̃k 2 RM⇥D that corresponds to a
part of the entire object. We then obtain the auto-encoded (reconstructed) point clouds P̃ by collecting
the outputs of K per-capsule decoders and taking their union as in (4). Specifically, each Dk consists
of 3 hidden MLP layers of (1280, 640, 320) neurons, each followed by batch normalization and a
ReLU activation. At the output layer, we use a fully connected layer, followed by tanh activation to
regress the coordinates for each point. Similarly to AtlasNetV2 [12], Dk additionally receives a set
of trainable grids of size (M ⇥ 10)4 and deforms them into P̃k, based on the shape code �k. Note
that the generated point clouds from Dk lie in the reference frame of the canonicalized pose ✓̄k, so
we rotate and translate the point cloud by ✓̄k in the output layer.

4Note the constant 10 is not related to K here.

15



Input Our capsule
decomposition

Our
reconstruction

3D-PointCapsNet [64]
reconstruction

AtlasNetV2 [12]
reconstruction

Figure 3: Auto-encoding / qualitative – Example decomposition results using Canonical Capsules
on the test set, with the aligned setup; we color each decomposition (capsule) with a unique color.
For 3D-PointCapsNet [64] and AtlasNetV2 [12], rather than capsules, these correspond to “patches”
in the reconstruction network. Our method clearly provides the best qualitative results.

A.3 Regressor– K

The regressor K learns to regress the canonical pose for each capsule ✓̄ 2 RK⇥D from their
descriptors �k. In order to do so, we concatenate the (ordered) set of descriptors {�k} into a single,
global descriptor, which we then feed into a fully connected layer with 128 ⇥ K neurons and a
ReLU activation, followed by an additional fully connected layer with D ⇥K neurons, creating K
D-dimensional outputs (i.e. canonical pose). We do not apply any activation on the second layer. To
make ✓̄ zero-centered in the canonical frame, we further subtract the mean of the outputs.

B Additional ablation studies

Auto-encoding with aligned data – Figure 3 and Table 1. For completeness, we further show
qualitative results for auto-encoding on an aligned dataset, the most common setup of prior works in
the literature. As shown in Figure 3, our method provides best reconstruction performance even in
this case; for quantitative results, please see Table 1. Interestingly, while our decoder architecture is
similar to AtlasNetV2 [12], our reconstructions are of much higher quality; our methods provides
finer details at the propellers on the airplane, at the handle of the firearm, and at the back of the chair.
This further supports the effectiveness of our capsule encoding.

Table 6: Number of points P – Auto-
encoding performance (Chamfer dis-
tance ⇥ 103) as we vary the input point
cloud cardinality; aligned setup for both
training and testing, with all object cate-
gories.

1024 pts 2500 pts

3D-PointCapsNet [64] 2.49 1.49
AtlasNetV2 [12] 2.14 1.22
Our method 1.76 0.97

Number of points P – Table 6. To speed-up experiments
we have mostly used P=1024, but in the table we show
that our findings are consistent regardless of the number of
points used. Note that the results of AtlasNetV2 [12] are
very similar to what is reported in the original paper. The
slight differences exist due to random subsets that were
used in AtlasNetV2.5

Effect of number of capsules – Table 7. To verify how
the number of capsules affect performance, we test with
varying the number of capsules. We keep the represen-
tation power constant by reducing the dimension of de-
scriptors as more capsules are used; for example, with 10

5And to a minor bug in the evaluation code (i.e. non deterministic test set creation) that we have already
communicated to the authors of [19].

16



Table 7: Ablation study on the number of capsules – We
show the reconstruction performance (Chamfer distance
⇥ 103) with varying number of capsules. While they all
perform better than competitors, 10 capsules give best per-
formance. Note the representation power is kept constant
as we vary the number of capsules.

AtlasNetV2 [12] 5 capsules 10 capsules 20 capsules

2.80 1.25 1.11 1.15

Table 8: Number of capsules w/ fixed
descriptor dimension per capsule –
Better reconstruction performance is ob-
tained as number of capsules are in-
creased, since the network capacity ex-
pands proportionally.

Number of capsules 5 10 20

CD 1.51 1.11 1.02

Table 9: One-shot canonicalization – Re-
construction performance of our method
against a naive one-shot alignment, where an
arbitrary point cloud is selected as reference.

Airplane Chair All

One shot alignment 1.10 2.92 2.37
Our method 1.11 2.58 2.22

Table 10: Canonical descriptors – Auto-
encoding performance (Chamfer Distance) of our
method with descriptors �k vs. �̄k. Note the un-
aligned setup is the one of primary interest.

AtlasNetV2 [12] Ours (�k) Ours (�̄k)

Aligned 1.28 0.96 0.99
Unaligned 2.80 2.12 1.08

capsules we use a 128-dimensional descriptor, with 20 we use 64, and with 5, we use 256. Our
experimental results show that representation with 10 capsules achieves the best performance. Note
that our method, even with the sub-optimal number of capsules, still outperforms compared methods
by a large margin.

Increasing the number of capsules w/ fixed descriptor dimension – Table 8. We also report the
performance for the increasing number of capsules while keeping descriptor dimension fixed. Note
this is different from Table 7, as in that setting the overall network capacity was kept fixed, but here it
grows linearly to the number of capsules. As shown in the Table 8, unsurprisingly, more capsules
lead to better reconstruction performance as the network capacity is enhanced.

One-shot canonicalization – Table 9. A naive alternative to our learnt canonicalizer would be to use
one point cloud as a reference to align to. Using the canonicalizer provides improved reconstruction
performance over this naïve approach, removes the dependency on the choice of the reference point
cloud, and allows our method to work effectively when dealing with multi-class canonicalization.

Canonical descriptors – Table 10. We evaluate the effectiveness of the descriptor enhancement
strategy described in Section 3.2. We report the reconstruction performance with and without the
enhancement. Recomputing the descriptor in canonical frame helps when dealing with the unaligned
setup. Note that even without this enhancement, our method still outperforms the state-of-the-art.

Table 11: The impact of Lcanonical on canonical-
ization – Best canonicalization is achieved when
Lcanonical is used; see text for details.

w/o Lrecon w/ Lrecon

w/o Lcanonical w/ Lcanonical w/o Lcanonical w/ Lcanonical

CD - - 1.12 1.11
mStd 16.0 7.747 8.421 8.278

The impact of Lcanonical. Using Lcanonical is re-
quired to achieve the best performance; see the
inset table. However, the reconstruction loss
Lrecon alone is able to guide canonicalization
up to some degree. It is worth noting that ex-
cluding Lrecon, thus training the canonicalization
component in a standalone fashion, unsurpris-
ingly provides best mStd performance. Thus,
this could be an alternative strategy to train our
framework, should one not require end-to-end
differentiability. Nonetheless, our observations still hold and our method delivers the best performance
(including when compared to Compass [45]) with all losses enabled.

Supervising the attention’s invariance. Since ✓ is inferred by weighted averaging of P with the
attention map A in (2), we also considered directly adding a loss on A that enforces invariance instead
of a loss on ✓. This variant degrades only slightly in terms reconstruction (CD=1.13, where ours
provides CD=1.11) but performs very poorly when canonicalizing (mStd=94.906 vs mStd=8.278

17



(a) (b) (c)

Figure 4: Random sampling of rotations – (a) Sampling Euler angles uniformly results in a non-
uniform coverage of SO(3); note we visualize only one-eighth of a sphere for ease of visualization on
paper. (b) Non uniform sampling results in auto-encoding error to be biased w.r.t rotations (we use a
cold-warm colormap to visualize the Chamfer distance error). (c) By properly sampling rotations [41],
this bias can be alleviated.

of ours). We hypothesize that this is because Lequivariance directly supervises the end-goal (capsule
pose equivariance) whereas supervising A is an indirect one.

Random sampling of rotations – Figure 4. Lastly, we revisit how rotations are randomly sampled
to generate the augmentations used by Siamese training. Uniform sampling of Euler angles (i.e.,
yaw,pitch,roll) leads to a non-uniform coverage of the SO(3) manifold as shown in Figure 4 (a).
Due to this non-uniformity, the reconstruction quality is biased with respect to test-time rotations;
see Figure 4 (b). Instead, by properly sampling [41] the reconstruction performance is much more
uniform across the manifold; see see Figure 4 (c) In our experiments, this leads to a significant
difference in auto-encoding performance; CD=1.11 with proper uniform sampling vs CD=1.19
with the Euclidean random sampling.

Table 12: Large range of random transla-
tions – The performance changes are negligi-
ble as the magnitude of random translations
increases.

Range of translation [�0.2, 0.2] [�0.4, 0.4] [�0.8, 0.8] [�1.6, 1.6]

CD 1.11 1.12 1.1 1.1

Large range of random translations – Table 12.
We increase the range of random translations
([�0.2, 0.2] in the original paper). As shown in the
Table 12, we observe the negligible changes in re-
construction performance (CD) with larger random
translations.

C Per-class results for auto-encoding

In addition to the auto-encoding results in Table 1, we provide per-class performance for the models
trained with multiple categories. As shown in Table 13, we achieve the best performance for all classes.

Table 13: Auto-encoding / per-class quantitative – Performance in terms of Chamfer distance with
1024 points per point cloud – metric is multiplied by 103 as in [12].

Method Bench Cabinet Car Cellphone Chair Couch Firearm Lamp Monitor Airplane Speaker Table Watercraft All

A
lig

ne
d 3D-PointCapsNet [64] 2.06 3.23 2.64 2.25 2.64 2.99 0.93 3.40 2.85 1.36 4.26 2.56 2.05 2.49

AtlasNetV2 [12] 1.67 2.81 2.42 2.00 2.26 2.63 0.78 2.68 2.52 1.18 3.80 2.16 1.73 2.14
Our method 1.44 2.37 2.10 1.77 1.90 2.26 0.59 1.61 2.09 0.99 3.04 1.80 1.31 1.76

U
na

lig
ne

d 3D-PointCapsNet [64] 4.34 5.20 4.57 3.87 5.55 5.33 2.00 4.97 4.30 3.24 6.05 5.17 3.38 4.66
AtlasNetV2 [12] 2.93 3.65 3.46 2.46 3.53 3.72 1.28 2.91 3.06 2.17 4.42 3.20 2.27 3.08

AtlasNetV2 [12] w/ STN 2.44 3.30 3.10 2.17 2.93 3.28 0.96 2.56 2.70 1.60 3.96 2.67 1.86 2.60
Our method 1.84 2.72 2.45 1.86 2.72 2.70 0.67 2.20 2.46 1.30 3.55 2.36 1.53 2.22

18


	Introduction
	Related works
	Method
	Losses
	Network Architectures

	Results
	Experimental setup
	Auto-encoding – Figure 2 and Table 1
	Canonicalization – Table 2
	Unsupervised classification – Table 3
	Ablation study

	Conclusions
	Architectural details
	Capsule Encoder – E
	Capsule Decoder – D
	Regressor– K

	Additional ablation studies
	Per-class results for auto-encoding

