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Abstract

This paper focuses on training implicit models of infinite layers. Specifically,
previous works employ implicit differentiation and solve the exact gradient for
the backward propagation. However, is it necessary to compute such an exact
but expensive gradient for training? To this end, we propose a novel gradient
estimate for implicit models, named phantom gradient, that 1) forgoes the costly
computation of the exact gradient; and 2) provides an update direction empirically
preferable to the implicit model training. We theoretically analyze the condition
under which an ascent direction of the loss landscape could be found, and provide
two specific instantiations of the phantom gradient based on the damped unrolling
and Neumann series. Experiments on large-scale tasks demonstrate that these
lightweight phantom gradients significantly accelerate the backward passes in
training implicit models by roughly 1.7×, and even boost the performance over
approaches based on the exact gradient on ImageNet.

1 Introduction

Conventional neural networks are typically constructed by explicitly stacking multiple linear and
non-linear operators in a feed-forward manner. Recently, the implicitly-defined models [1, 2, 3, 4, 5]
have attracted increasing attentions and are able to match the state-of-the-art results by explicit
models on several vision [3, 6], language [2] and graph [4] tasks. These works treat the evolution of
the intermediate hidden states as a certain form of dynamics, such as fixed-point equations [2, 3] or
ordinary differential equations (ODEs) [1, 7], which represents infinite latent states. The forward
passes of implicit models are therefore formulated as solving the underlying dynamics, by either black-
box ODE solvers [1, 7] or root-finding algorithms [2, 3]. As for the backward passes, however, directly
differentiating through the forward pass trajectories could induce a heavy memory overhead [8, 9]. To
this end, researchers have developed memory-efficient backpropagation via implicit differentiation,
such as solving a Jacobian-based linear fixed-point equation for the backward pass of deep equilibrium
models (DEQs) [2], which eventually makes the backpropagation trajectories independent of the
forward passes, allowing one to train implicit models with essentially constant memory consumption,
as we only need to store the final output and the layer itself without saving any intermediate states.
However, in order to estimate the exact gradient promised by the implicit differentiation, implicit
models have to rely on black-box solvers for backward passes, e.g., ODE solvers or root-solving
algorithms, whose iterative nature usually makes the gradient computation very costly in practice,
even involving over 30 steps for large-scale DEQ models.

This work investigates fast approximate gradients for training implicit models. We found that a
first-order oracle that produces good gradient estimates is enough to efficiently and effectively train
implicit models, circumventing laboriously computing the exact gradient as in prior arts [2, 3, 4,
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10, 11]. We develop a framework in which a balanced trade-off is made between the precision and
conditioning of the gradient estimate. Specifically, we provide the general condition under which
the phantom gradient can provide an ascent direction of the loss landscape. We further propose
two instantiations of phantom gradients in the context of DEQ models, which are based on the the
damped fixed-point unrolling and the Neumann series, respectively. Importantly, we show that our
proposed instantiations satisfy the theoretical condition, and that the stochastic gradient descent
(SGD) algorithm based on the phantom gradient enjoys a sound convergence property as long as
the relevant hyperparameters, e.g., the damping factor, are wisely selected. Note that our proposed
method only directly affects, and thus accelerates, the backward formulation of these implicit models,
leaving the forward pass formulation (i.e., the root-solving process) and inference-time behavior
mostly intact. We conduct an extensive set of synthetic, ablation, and large-scale experiments to both
analyze the theoretical properties of the phantom gradient and validate its performances on various
tasks, such as ImageNet [12] classification and Wikitext-103 [13] language modeling.

Overall, our results suggest that: 1) the phantom gradient estimates an ascent direction; 2) it is
applicable to large-scale tasks and is capable of achieving a strong performance which is comparable
with or even better than using exact gradients; and 3) it significantly shortens the total training time
needed for implicit models roughly by a factor of 1.4 ∼ 1.7×, and even accelerates the backward
passes by astonishing 12× on ImageNet. We believe that our results provide strong evidence for
effectively training implicit models with the lightweight phantom gradient.

2 Method

2.1 Inspection of Implicit Differentiation

In this work, we primarily focus on the formulation of implicit models based on root-solving,
represented by the DEQ models [2]. The table of notations is arranged in the Appendix. Specifically,
given an equilibrium module F , the output of the implicit model is characterized as the solution h∗
to the following fixed-point equation:

h∗ = F(h∗, z), (1)

where z ∈ Rdu+dθ is the union of the module’s input u ∈ Rdu and parameters θ ∈ Rdθ , i.e., z> =
[u>,θ>]. Here, u is usually the projection of the original data point x ∈ Rdx , e.g., u =M(x). In
this section, we assume F is a contraction mapping w.r.t. h so that its Lipschitz constant Lh w.r.t. h
is less than one, i.e., Lh < 1, a setting that has been analyzed in recent works [14, 15]1.

To backpropagate through the module induced by Eq. (1), we need to calculate the Jacobian matrix
of h∗ w.r.t. the input z. By Implicit Function Theorem (IFT), we have

∂h∗

∂z
=
∂F
∂z

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1
(2)

The equilibrium point h∗ of Eq. (1) is then passed to a post-processing function G to obtain a
prediction ŷ = G(h∗). In the generic learning scenario, the training objective is the following
expected loss:

R(θ) = E(x,y)∼P [L(ŷ(x,θ),y)] , (3)
where y is the groundtruth corresponding to the training example x, and P is the data distribution.
Here, we omit the parameters of G, because given the output h∗ of the implicit module F , training the
post-processing part G is the same as training explicit neural networks. The most crucial component
is the gradient of the loss function L w.r.t. the input vector z> = [u>,θ>], which is used to train
both the implicit module F and the input projection moduleM. Using Eq. (2) with the condition
h = h∗, we have

∂L
∂u

=
∂F
∂u

(
I − ∂F

∂h

)−1
∂L
∂h

,
∂L
∂θ

=
∂F
∂θ

(
I − ∂F

∂h

)−1
∂L
∂h

. (4)

The gradients in Eq. (4) are in the same form w.r.t. u and θ. Without loss of generality, we only
discuss the gradient w.r.t. θ in the following sections.

1Note that the contraction condition could be largely relaxed to the one that the spectral radius of ∂F/∂h∗

on the given data is less than 1, i.e., ρ(∂F/∂h∗) < 1, as indicated by the well-posedness condition in [5].
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2.2 Motivation

The most intriguing part lies in the Jacobian-inverse term, i.e., (I − ∂F/∂h)−1. Computing the
inverse term by brute force is intractable due to the O(n3) complexity. Previous implicit models [2]
approach this by solving a linear system involving a Jacobian-vector product iteratively via a gradient
solver, introducing over 30 Broyden [16] iterations in the backward pass. However, the Jacobian
matrix can exceed 106 × 106 in the real scenarios, leading to a prohibitive cost in computing the
exact gradients. For example, training a small-scale state-of-the-art implicit model on ImageNet can
consume weeks using 8 GPUs while training explicit models usually takes several days, demonstrating
that pursuing the exact gradient severely slows down the training process of implicit models compared
with explicit models.

Secondly, because of the inverse operation, we cast doubt on the conditioning of the gradient and
further the stability of training process from the numerical aspect. The Jacobian-inverse can be
numerically unstable when encountering the ill-conditioned issue. The conditioning problem might
lead to the training stability issues studied in the recent work [17] as well.

Plus, the Jacobian-inverse is calculated to update model parameters with their gradients, but the exact
gradient is not always optimal in model training. For example, previous research has used a moderate
gradient noise as a regularization approach [18], which has been shown to play a central role in
escaping poor local minima and improving generalization ability [19, 20, 21].

The concerns and observations motivate us to rethink the possibility of replacing the Jacobian-inverse
term in the standard implicit differentiation with a cheaper and more stable counterpart. We believe
that a precise gradient estimate is not always required, especially for a black-box layer like those in
the implicit models. Hence this work designs an inexact, theoretically sound, and practically efficient
gradient estimate for training implicit models under various settings. We name the proposed gradient
estimate as the phantom gradient.

Suppose the Jacobian ∂h∗/∂θ is replaced with a matrixA, and the corresponding phantom gradient
is defined as

∂̂L
∂θ

:= A
∂L
∂h

. (5)

Next, we give the general condition on A so that the phantom gradient can be guaranteed valid
for optimization (Sec. 2.3), and provide two concrete instantiations of A based on either damped
fixed-point unrolling or the Neumann series (Sec. 2.4).

2.3 General Condition on the Phantom Gradient

The following theorem formulates a sufficient condition that the phantom gradient gives an ascent
direction of the loss landscape. Please refer to the Appendix for the proof.

Theorem 1. Suppose the exact gradient and the phantom gradient are given by Eq. (4) and (5),
respectively. Let σmax and σmin be the maximal and minimal singular value of ∂F/∂θ. If∥∥∥∥A(I − ∂F

∂h

)
− ∂F
∂θ

∥∥∥∥ ≤ σ2
min

σmax
, (6)

then the phantom gradient provides an ascent direction of the function L, i.e.,〈
∂̂L
∂θ

,
∂L
∂θ

〉
≥ 0. (7)

Remark 1. Suppose only the (I − ∂F/∂h)−1 term is replaced with a matrix D, namely, A =
(∂F/∂θ)D. Then, the condition in (6) can be reduced into∥∥∥∥D(I − ∂F

∂h

)
− I

∥∥∥∥ ≤ 1

κ2
, (8)

where κ is the condition number of ∂F/∂θ. The derivation can be found in the Appendix.
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2.4 Instantiations of the Phantom Gradient

In this section, we present two practical instantiations of the phantom gradient. We also verify that
the general condition in Theorem 1 can be satisfied if the hyperparameters in our instantiations are
wisely selected.

Suppose we hope to differentiate through an implicit dynamic, e.g., either a root-solving process or
an optimization problem. In the context of hyperparameter optimization (HO), previous solutions
include differentiating through the unrolled steps of the dynamics [22] or employing the Neumann
series of the Jacobian-inverse [9]. In our case, if we solve the root of Eq. (1) via the fixed-point
iteration:

ht+1 = F(ht, z), t = 0, 1, · · · , T − 1, (9)
then by differentiating through the unrolled steps of Eq. (9), we have

∂hT
∂θ

=

T−1∑
t=0

∂F
∂θ

∣∣∣∣
ht

T−1∏
s=t+1

∂F
∂h

∣∣∣∣
hs

. (10)

Besides, the Neumann series of the Jacobian-inverse (I − ∂F/∂h)−1 is

I +
∂F
∂h

+

(
∂F
∂h

)2

+

(
∂F
∂h

)3

+ · · · . (11)

Notably, computing the Jacobian ∂h∗/∂θ using the Neumann series in (11) is equivalent to differen-
tiating through the unrolled steps of Eq. (9) at the exact equilibrium point h∗ and taking the limit of
infinite steps [9].

Without altering the root of Eq. (1), we consider a damped variant of the fixed-point iteration:

ht+1 = Fλ(ht, z) = λF(ht, z) + (1− λ)ht, t = 0, 1, · · · , T − 1. (12)

Differentiating through the unrolled steps of Eq. (12), Eq. (10) is adapted as

∂hT
∂θ

= λ

T−1∑
t=0

∂F
∂θ

∣∣∣∣
ht

T−1∏
s=t+1

(
λ
∂F
∂h

∣∣∣∣
hs

+ (1− λ) I

)
. (13)

The Neumann series of (I − ∂F/∂h)−1 is correspondingly adapted as

λ
(
I +B +B2 +B3 + · · ·

)
, where B = λ

∂F
∂h

+ (1− λ)I. (14)

The next theorem shows that under mild conditions, the Jacobian from the damped unrolling in
Eq. (13) converges to the exact Jacobian and the Neumann series in (14) converges to the Jacobian-
inverse (I − ∂F/∂h)−1 as well. The proof can be found in the Appendix.
Theorem 2. Suppose the Jacobian ∂F/∂h is a contraction mapping. Then,

(i) the Neumann series in (14) converges to the Jacobian-inverse (I − ∂F/∂h)−1; and

(ii) if the function F is continuously differentiable w.r.t. both h and θ, the sequence in Eq. (13)
converges to the exact Jacobian ∂h∗/∂θ as T →∞, i.e.,

lim
T→∞

∂hT
∂θ

=
∂F
∂θ

∣∣∣∣
h∗

(
I − ∂F

∂h

∣∣∣∣
h∗

)−1
. (15)

However, as discussed in Sec. 2.2, it is unnecessary to compute the exact gradient with infinite
terms. In the following context, we introduce two instantiations of the phantom gradient based on the
finite-term truncation of Eq. (13) or (14).

Unrolling-based Phantom Gradient. In the unrolling form, the matrixA is defined as

Aunr
k,λ = λ

k−1∑
t=0

∂F
∂θ

∣∣∣∣
ht

k−1∏
s=t+1

(
λ
∂F
∂h

∣∣∣∣
hs

+ (1− λ) I

)
. (16)
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Neumann-series-based Phantom Gradient. In the Neumann form, the matrixA is defined as

Aneu
k,λ = λ

∂F
∂θ

∣∣∣∣
h∗

(
I +B +B2 + · · ·+Bk−1) , where B = λ

∂F
∂h

∣∣∣∣
h∗

+ (1− λ)I. (17)

Note that both the initial point of the fixed-point iteration (i.e., h0 in Eq. (16)) and the point at which
the Neumann series is evaluated (i.e., h∗ in (17)) are the solution of the root-finding solver.

According to Theorem 2, the matrix A defined by either Eq. (16) or (17) converges to the exact
Jacobian ∂h∗/∂θ as k →∞ for any λ ∈ (0, 1]. Therefore, by Theorem 2, the condition in (6) can
be satisfied if a sufficiently large step k is selected, since∥∥∥∥A(I − ∂F

∂h

)
− ∂F
∂θ

∥∥∥∥ ≤ (1 + Lh)

∥∥∥∥∥A− ∂F
∂θ

(
I − ∂F

∂h

)−1∥∥∥∥∥ . (18)

Next, we characterize the impact of the two hyperparameters, i.e., k and λ, on the precision and
conditioning ofA. Take the Neumann-series-based phantom gradient (Eq. (17)) as an example.

(i) On the precision of the phantom gradient,
• a large k makes the gradient estimate more accurate, as higher-order terms of the

Neumann series are included; while
• a small λ slows down the convergence of the Neumann series because the norm ‖B‖

increases as λ decreases.
(ii) On the conditioning of the phantom gradient,

• a large k impairs the conditioning of A since the condition number of Bk grows
exponentially as k increases; while

• a small λ helps maintain a small condition number ofA because the singular values of
∂F/∂h are “smoothed” by the identity matrix.

In a word, a large k is preferable for a more accurate A, while a small λ contributes to the well-
conditioning of A. Practically, these hyperparameters should be selected in consideration of a
balanced trade-off between the precision and conditioning ofA. See Sec. 3 for experimental results.

2.5 Convergence Theory

In this section, we provide the convergence guarantee of the SGD algorithm using the phantom
gradient. We prove that under mild conditions, if the approximation error of the phantom gradient
is sufficiently small, the SGD algorithm converges to an ε-approximate stationary point in the
expectation sense. Please refer to the Appendix for the proof, where we also discuss the feasibility of
our assumptions.
Theorem 3. Suppose the loss functionR in Eq. (3) is `-smooth, lower-bounded, and has bounded
gradient almost surely in the training process. Besides, assume the gradient in Eq. (4) is an
unbiased estimator of∇R(θ) with a bounded covariance. If the phantom gradient in Eq. (5) is an
ε-approximation to the gradient in Eq. (4), i.e.,∥∥∥∥∥ ∂̂L∂θ − ∂L

∂θ

∥∥∥∥∥ ≤ ε, almost surely, (19)

then using Eq. (5) as a stochastic first-order oracle with a step size of ητ = O(1/
√
τ) to update θ

with gradient descent, it follows after T iterations that

E

[∑T
τ=1 ητ‖∇R(θτ )‖2∑T

τ=1 ητ

]
≤ O

(
ε+

log T√
T

)
. (20)

Remark 2. Consider the condition in (19):∥∥∥∥∥ ∂̂L∂θ − ∂L
∂θ

∥∥∥∥∥ ≤
∥∥∥∥∥A− ∂F

∂θ

(
I − ∂F

∂h

)−1∥∥∥∥∥
∥∥∥∥∂L∂h

∥∥∥∥ . (21)

Suppose the gradient ∂L/∂h is almost surely bounded. By Theorem 2, the condition in (19) can be
guaranteed as long as a sufficiently large k is selected.

5



0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

1

2

3

4

5

6

7

8

De
ns

ity

k = 1
k = 2
k = 3
k = 4
k = 5

0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

2

4

6

8

10

12

14

16

0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

1

2

3

4

5

6

7

8

0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

2

4

6

8

10

12

14

16

(a) Neumann-series-based phantom gradient. (b) Unrolling-based phantom gradient.

λ = 0.5 λ = 1.0 λ = 0.5 λ = 1.0

Figure 1: Cosine similarity between the phantom gradient and the exact gradient in the synthetic
setting.

3 Experiments

In this section, we aim to answer the following questions via empirical results: (1) How precise is
the phantom gradient? (2) What is the difference between the unrolling-based and the Neumann-
series-based phantom gradients? (3) How is the phantom gradient influenced by the hyperparameters
k and λ? (4) How about the computation cost of the phantom gradient compared with implicit
differentiation? (5) Can the phantom gradient work at large-scale settings for various tasks?

We have provided some theoretical analysis and intuitions to (1), (2), and (3) in Sec. 2.4. Now we
answer (1) and (2) and demonstrate the performance curves under different hyperparameters k and λ
on CIFAR-10 [23]. Besides, we also study other factors that have potential influences on the training
process of the state-of-the-art implicit models [2, 3] like pretraining. For (4) and (5), we conduct
experiments on large-scale datasets to highlight the ultra-fast speed and competitive performances,
including image classification on ImageNet [12] and language modeling on Wikitext-103 [13].

We start by introducing two experiment settings. We adopt a single-layer neural network with spectral
normalization [24] as the function F and fixed-point iterations as the equilibrium solver, which is the
synthetic setting. Additionally, on the CIFAR-10 dataset, we use the MDEQ-Tiny model [3] (170K
parameters) as the backbone model, denoted as the ablation setting. Besides, the unrolling-based and
the Neumann-series-based phantom gradients are abbreviated to UPG and NPG, respectively.

Precision of the Phantom Gradient. The precision of the phantom gradient is measured by its
angle against the exact gradient, indicated by the cosine similarity between the two. We discuss its
precision in both the synthetic setting and the ablation setting. The former is under the static and
randomly generated weights, while the latter provides characterization of the training dynamics.

In the synthetic setting, the function F is restricted to be a contraction mapping. Specifically, we
directly set the Lipschitz constant of F as Lh = 0.9, and use 100 fixed-point iterations to solve
the root h∗ of Eq. (1) until the relative error satisfies ‖h−F(h, z)‖/‖h‖ < 10−5. Here, the exact
gradient is estimated by backpropagation through those fixed-point iterations, and cross-validated by
implicit differentiation solved with 20 iterations of the Broyden’s method [16]. In our experiment, the
cosine similarity between these two gradient estimates consistently succeeds 0.9999, indicating the
gradient estimate is quite accurate when the relative errors of forward solver are minor. The cosine
similarity between phantom gradients and exact gradients is shown in Fig. 1. It shows that the cosine
similarity tends to increase as k grows and that a small λ tends to slow down the convergence of
the phantom gradient, allowing it to explore in a wider range regarding the angle against the exact
gradient.

In the ablation setting, the precision of the phantom gradient during the training process is shown
in Fig. 2. The model is trained by implicit differentiation under the official schedule2. It shows that
the phantom gradient still provides an ascent direction in the real training process, as indicated by
the considerable cosine similarity against the exact gradient. Interestingly, the similarity seemingly
slightly decays during the training process, which implies a possibility to construct an adaptive
gradient solver for implicit models.

2Code available at https://github.com/locuslab/mdeq.
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(a) Neumann-series-based phantom gradient. (b) Unrolling-based phantom gradient.

Figure 2: Cosine similarity between the phantom gradient and the exact gradient in the real scenario.
The horizontal axis corresponds to the cosine similarity, and the vertical axis to the training step.

To Pretrain, or not to Pretrain? To better understand the components of the implicit models’
training schedule, we first illustrate a detailed ablation study of the baseline model in the ablation
setting. The average accuracies with standard deviations are reported in Tab. 1.

Table 1: Ablation settings on CIFAR-10.

Method Acc. (%)
Implicit Differentiation 85.0± 0.2
w/o Pretraining 82.3± 1.3
w/o Dropout 83.7± 0.1
Adam→ SGD 84.5± 0.3
SGD w/o Pretraining 82.9± 1.5
UPG (A5,0.5, w/o Dropout) 85.8±0.5
NPG (A5,0.5, w/o Dropout) 85.6± 0.5
UPG (A9,0.5, w/ Dropout) 86.1±0.5

The MDEQ model employs a pretraining stage
in which the model F is unrolled as a recurrent
network. We study the impact of the pretrain-
ing stage, the Dropout [25] operation, and the
optimizer separately. It can be seen that the
unrolled pretraining stabilizes the training of
the MDEQ model. Removing the pretraining
stage leads to a severe performance drop and
apparent training instability among different tri-
als because the solver cannot obtain an accurate
fixed point h∗ when the model is not adequately
trained. This ablation study also suggests that
the MDEQ model is a strong baseline for our
method to compare.

However, pretraining is not always indispensable for training implicit models. It introduces an extra
hyperparameter, i.e., how many steps should be involved in the pretraining stage. Next, we discuss
how the UPG could circumvent this issue.

Trade-offs between Unrolling and Neumann. For an exact fixed point h∗, i.e., h∗ = F(h∗, z),
there is no difference between UPG and NPG. However, when the numerical error exists in solving
h∗, i.e., ‖h∗−F(h∗, z)‖ > 0, these two instatiations of the phantom gradient can behave differently.

Table 2: Complexity comparison. Mem
means the memory cost, and K and k denote
the solver’s steps and the unrolling/Neumann
steps, respectively. Here, K � k ≈ 1.

Method Time Mem Peak Mem
Implicit O(K) O(1) O(k)
UPG O(k) O(k) O(k)
NPG O(k) O(1) O(1)

We note that a particular benefit of the UPG is its
ability to automatically switch between the pretrain-
ing and training stages for implicit models. When
the model is not sufficiently trained and the solver
converges poorly (see [3]), the UPG defines a for-
ward computational graph that is essentially equiv-
alent to a shallow weight-tied network to refine the
coarse equilibrium states. In this stage, the phan-
tom gradient serves as a backpropagation through
time (BPTT) algorithm and hence behaves as in the
pretraining stage. Then, as training progresses, the
solver becomes more stable and converges to the fixed point h∗ better. This makes the UPG behave
more like the NPG. Therefore, the unrolled pretraining is gradually transited into the regular training
phase based on implicit differentiation, and the hyperparameter tuning of pretraining steps can be
waived. We argue that such an ability to adaptively switch training stages is benign to the implicit
models’ training protocol, which is also supported by the performance gain in Tab. 1.

Although the UPG requires higher memory than implicit differentiation or the NPG, it does not
surpass the peak memory usage in the entire training process of implicit differentiation due to
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Figure 3: Ablation studies on (a) the hyperparameters λ and k, and (b) two forms of phantom gradient.

the pretraining stage. In the ablation setting, the MDEQ model employs a 10-layer unrolling for
pretraining, which actually consumes double memory compared with a 5-step unrolling scheme,
e.g.,A5,0.5 in Tab. 1. In Tab. 2, we also demonstrate the time and memory complexity for implicit
differentiation and the two forms of phantom gradient.

In addition, leaving the context of approximate and exact gradients aside, we also develop insights
into understanding the subtle differences between UPG and NPG in terms of the state-dependent and
state-free gradients. Actually, UPG is state-dependent, which means it is the “exact” gradient of a
computation sub-graph, although it serves as an approximation to the whole gradient. Both the NPG
and the gradient solved by implicit differentiation, however, do not exactly match the gradient of a
forward computation graph unless the numerical errors are entirely eliminated in both the forward
and backward passes for implicit differentiation or the one-step gradient [26, 27, 28, 29] is used for
the NPG. Interestingly, we observe that models trainde on the state-dependent gradients demonstrate
an additional training stability regarding the Jacobian spectral radius, compared with the state-free
ones when numerical errors exist (IFT) or approximate gradients are applied (NPG). We empirically
note that it can be seen as certain form of implicit Jacobian regularization for implicit models as the
supplement to the explicit Jacobian regularization [17], indicated by the stable estimated Jacobian
spectral radius along the training, e.g., ρ(∂Fλ/∂h) ≈ 1.

The experimental results also agree with our insight. The performance curves in Fig. 3 demonstrate
the influences of λ and k and further validate that the UPG is more robust to a wide range of
steps k than the NPG. When the Jacobian spectral radius ρ(∂F/∂h) increases freely and lacks of
regularization, the exploding high-order terms in NPG can ruin the training dynamics, leading to
performance degradation in the large k realms of Fig. 3(b), also detected by the surging estimated
radius and gradient explosion in our experiments, while UPG can circumvent this issue through its
implicit Jacobian regularization.

Table 3: Experiments using DEQ [2] and MDEQ [3] on vision and language tasks. Metrics stand
for accuracy(%)↑ for image classification on CIFAR-10 and ImageNet, and perplexity↓ for language
modeling on Wikitext-103. JR stands for Jacobian Regularization [17]. † indicates additional
iterations in the forward equilibrium solver.

Datasets Model Method Params Metrics Speed
CIFAR-10 MDEQ Implicit 10M 93.8± 0.17 1.0×
CIFAR-10 MDEQ UPGA5,0.5 10M 95.0± 0.16 1.4×
ImageNet MDEQ Implicit 18M 75.3 1.0×
ImageNet MDEQ UPGA5,0.6 18M 75.7 1.7×
Wikitext-103 DEQ (PostLN) Implicit 98M 24.0 1.0×
Wikitext-103 DEQ (PostLN) UPGA5,0.8 98M 25.7 1.7×
Wikitext-103 DEQ (PreLN) JR + Implicit 98M 24.5 1.7×
Wikitext-103 DEQ (PreLN) JR + UPGA5,0.8 98M 24.4 2.2×
Wikitext-103 DEQ (PreLN) JR + UPGA5,0.8 98M 24.0† 1.7×
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Phantom Gradient at Scale. We conduct large-scale experiments to verify the advantages of the
phantom gradient on vision, graph, and language benchmarks. We adopt the UPG in the large-scale
experiments. The results are illustrated in Tab. 3 and Tab. 4. Our method matches or surpasses
the implicit differentiation training protocol on the state-of-the-art implicit models with a visible
reduction on the training time. When only considering the backward pass, the acceleration for MDEQ
can be remarkably 12× on ImageNet classification.

Table 4: Experiments using IGNN [4] on graph tasks. Metrics stand for accuracy(%)↑ for graph
classification on COX2 and PROTEINS, Micro-F1(%)↑ for node classification on PPI.

Datasets Model Method Params Metrics (%)
COX2 IGNN Implicit 38K 84.1± 2.9
COX2 IGNN UPGA5,0.5 38K 83.9± 3.0
COX2 IGNN UPGA5,0.8 38K 83.9± 2.7
COX2 IGNN UPGA5,1.0 38K 83.0± 2.9
PROTEINS IGNN Implicit 34K 78.6± 4.1
PROTEINS IGNN UPGA5,0.5 34K 78.4± 4.2
PROTEINS IGNN UPGA5,0.8 34K 78.6± 4.2
PROTEINS IGNN UPGA5,1.0 34K 78.8± 4.2
PPI IGNN Implicit 4.7M 97.6
PPI IGNN UPGA5,0.5 4.7M 98.2
PPI IGNN UPGA5,0.8 4.7M 97.4
PPI IGNN UPGA5,1.0 4.7M 96.2

4 Related Work

Implicit Models. Implicit models generalize the recursive forward/backward rules of neural net-
works and characterize their internal mechanism by some pre-specified dynamics. Based on the
dynamics, the implicit mechanisms can be broadly categorized into three classes: ODE-based [1, 7],
root-solving-based [2, 3, 4, 5, 10], and optimization-based [30, 31, 32] implicit models.

The ODE-based implicit models [1, 7] treat the iterative update rules of residual networks as the Euler
discretization of an ODE, which could be solved by any black-box ODE solver. The gradient of the
differential equation is calculated using the adjoint method [33], in which the adjoint state is obtained
by solving another ODE. The root-solving-based implicit models [2, 5, 3, 4, 6, 10, 29] characterize
layers of neural networks by solving fixed-point equations. The equations are solved by either the
black-box root-finding solver [2, 3] or the fixed-point iteration [4, 29]. The optimization-based
implicit models [30, 31, 32, 34, 26, 27, 35, 36] leverage the optimization programs as layers of
neural networks. Previous works have studied differentiable layers of quadratic programming [30],
submodular optimization [31], maximum satisfiability (MAXSAT) problems [32], and structured
decomposition [27]. As for the backward passes, implicit differentiation is applied to the problem-
defining equations of the root-solving-based models [2, 3] or the KKT conditions of the optimization-
based models [30]. As such, the gradient can be obtained from solving the backward linear system.

In this work, we focus on the root-solving-based implicit models. Theorectical works towards
root-solving-based implicit models including the well-posedness [5, 4], monotone operators [10],
global convergence [37, 36], and Lipschitz analysis [15]. We look into the theoretical aspect of the
gradient-based algorithm in training implicit models and the efficient practice guidance. With these
considerations, we show that implicit models of the same architecture could enjoy faster training
speed and strong generalization ability in practical applications.

Non-End-to-End Optimization in Deep Learning. Non-end-to-end optimization aims to replace
the standard gradient-based training of deep architectures with modular or weakly modular training
without the entire forward and backward passes. Currently, there are mainly three research directions
in this field, namely, the auxiliary variable methods [38, 39, 40, 41, 42, 43, 44], target propagation
[45, 46, 47], and synthetic gradient [48, 49, 50]. The auxiliary variable methods [38, 39, 40, 41,
42, 43, 44] formulate the optimization of neural networks as constrained optimization problems, in
which the layer-wise activations are considered as trainable auxiliary variables. Then, the equality
constraints are relaxed as penalty terms added to the objectives so that the parameters and auxiliary
variables can be divided into blocks and thus optimized in parallel. The target propagation method
[45, 46, 47] trains each module by having its activations regress to the pre-assigned targets, which are
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propagated backwards from the downstream modules. Specifically, the auto-encoder architecture is
used to reconstruct targets at each layer. Finally, the synthetic gradient method [48, 49, 50] estimates
the local gradient of neural networks using auxiliary models, and employ the synthetic gradient in
place of the exact gradient to perform parameter update. In this way, the forward and backward
passes are decoupled and can be executed in an asynchronous manner.

Our work is in line with the non-end-to-end optimization research since we also aims to decouple
the forward and backward passes of neural networks. However, we show that finding a reasonable
“target” or a precise gradient estimate is not always the first principle in training deep architectures.
Our paper paves a path that an inexact but well-conditioned gradient estimate can contribute to both
training and generalization of implicit models.

Differentiation through Implicit Dynamics. Differentiation through certain implicit dynamics is
an important aspect in a wide range of research fields, including bilevel optimization [22, 9], meta-
learning [51, 52, 28], and sensitivity analysis [53]. Since the gradient usually cannot be computed
analytically, researchers have to implicitly differentiate the dynamics at the converged point. The
formula of the gradient typically contains a term of Jacobian-inverse (or Hessian-inverse), which
is computationally prohibitive for large-scale models. (See Eq. (2) in our case.) Herein, several
techniques have been developed to approximate the matrix inverse in the previous literature.

An intuitive solution is to differentiate through the unrolled steps of a numerical solver of the dynamics
[54, 55, 8]. In particular, if a single step is unrolled, it reduces to the well-known one-step gradient
[56, 51, 57, 26, 28, 27], in which the inverse of Jacobian/Hessian is simply approximated by an
identity matrix. On the contrary, unrolling a small number of steps may induce a bias [9], while the
memory and computation cost grows linearly as the number of unrolled steps increases. Towards this
issue, Shaban et al. [22] propose to truncate the long-term dependencies and differentiate through
only the last L steps. In fact, if the dynamics has converged to a stationary point, the finite-term
truncation in Shaban et al. [22] is exactly the Neumann approximation of the Jacobian-inverse with
the first L terms. Based on this, Lorraine et al. [9] directly use the truncated Neumann series as an
approximation of the Jacobian-inverse. Besides the unrolling-based methods, optimization-based
approaches [58, 52] have been studied in this field as well. Since the Jacobian-inverse-vector product
can be viewed as solution of a linear system, algorithms like the conjugate gradient method can be
used to solve it.

5 Limitation and Future Work

The main limitation of this work lies in the hyperparameter tuning of phantom gradients, especially
for the damping factor λ, which directly controls the gradient’s precision and conditioning, the
implicit Jacobian regularization for UPG, the stability for NPG, and the final generalization behaviors.
However, it has not been a hindrance to the application of phantom gradients in training implicit
models as one can tune the hyperparameter according to the validation loss in the early training stage.

Regarding future works, we would like to highlight the following aspects: (1) eliminating the
structured bias in the current phantom gradient, (2) constructing an adaptive gradient solver for
implicit models, (3) analyzing the damping factor to provide practical guidance, (4) investigating
the implicit Jacobian regularization, and (5) understanding how different noises in the gradients can
impact the training of implicit models under different loss landscapes.

6 Conclusion

In this work, we explore the possibility of training implicit models via efficient approximate phantom
gradients. We systematically analyze the general condition of a gradient estimate so that the implicit
model can be guaranteed to converge to an approximate stationary point of the loss function. Specif-
ically, we give a sufficient condition under which a first-order oracle could always find an ascent
direction of the loss landscape in the training process. Moreover, we introduce two instantiations of
the proposed phantom gradient, based on either the damped fixed-point unrolling or the Neumann se-
ries. The proposed method shows a 1.4 ∼ 1.7× acceleration with comparable or better performances
on large-scale benchmarks. Overall, this paper provides a practical perspective on training implicit
models with theoretical guarantees.
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[49] Wojciech Marian Czarnecki, Grzegorz Świrszcz, Max Jaderberg, Simon Osindero, Oriol Vinyals,
and Koray Kavukcuoglu. Understanding Synthetic Gradients and Decoupled Neural Interfaces.
In International Conference on Machine Learning (ICML), pages 904–912, 2017. 9, 10

[50] Benjamin James Lansdell, Prashanth Ravi Prakash, and Konrad Paul Kording. Learning to
solve the credit assignment problem. In International Conference on Learning Representations
(ICLR), 2020. 9, 10

[51] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks. In International Conference on Machine Learning (ICML),
pages 1126–1135, 2017. 10

13



[52] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-Learning with
Implicit Gradients. In Neural Information Processing Systems (NeurIPS), 2019. 10

[53] J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization problems.
Springer Science & Business Media, 2013. 10

[54] Justin Domke. Generic Methods for Optimization-Based Modeling. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 318–326, 2012. 10

[55] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based Hyperparameter
Optimization through Reversible Learning. In International Conference on Machine Learning
(ICML), pages 2113–2122, 2015. 10

[56] Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable Gradient-Based
Tuning of Continuous Regularization Hyperparameters. In International Conference on Machine
Learning (ICML), pages 2952–2960, 2016. 10

[57] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search.
International Conference on Learning Representations (ICLR), 2018. 10

[58] Fabian Pedregosa. Hyperparameter Optimization with Approximate Gradient. In International
Conference on Machine Learning (ICML), pages 737–746, 2016. 10

14


