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Abstract

In this paper, we study the Combinatorial Pure Exploration problem with the
Bottleneck reward function (CPE-B) under the fixed-confidence (FC) and fixed-
budget (FB) settings. In CPE-B, given a set of base arms and a collection of subsets
of base arms (super arms) following a certain combinatorial constraint, a learner
sequentially plays a base arm and observes its random reward, with the objective
of finding the optimal super arm with the maximum bottleneck value, defined as
the minimum expected reward of the base arms contained in the super arm. CPE-B
captures a variety of practical scenarios such as network routing in communication
networks, and its unique challenges fall on how to utilize the bottleneck property to
save samples and achieve the statistical optimality. None of the existing CPE studies
(most of them assume linear rewards) can be adapted to solve such challenges,
and thus we develop brand-new techniques to handle them. For the FC setting,
we propose novel algorithms with optimal sample complexity for a broad family
of instances and establish a matching lower bound to demonstrate the optimality
(within a logarithmic factor). For the FB setting, we design an algorithm which
achieves the state-of-the-art error probability guarantee and is the first to run
efficiently on fixed-budget path instances, compared to existing CPE algorithms.
Our experimental results on the top-k, path and matching instances validate the
empirical superiority of the proposed algorithms over their baselines.

1 Introduction

The Multi-Armed Bandit (MAB) problem [25, 30, 4, 2] is a classic model to solve the exploration-
exploitation trade-off in online decision making. Pure exploration [3, 21, 7, 26] is an important
variant of the MAB problem, which aims to identify the best arm under a given confidence or
a given sample budget. There are various works studying pure exploration, such as top-k arm
identification [17, 21, 7, 24], top-k arm under matriod constraints [9] and multi-bandit best arm
identification [18, 7].

The Combinatorial Pure Exploration (CPE) framework, firstly proposed by Chen et al. [11], encom-
passes a rich class of pure exploration problems [3, 21, 9]. In CPE, there are a set of base arms, each
associated with an unknown reward distribution. A subset of base arms is called a super arm, which
follows a certain combinatorial structure. At each timestep, a learner plays a base arm and observes a
random reward sampled from its distribution, with the objective to identify the optimal super arm
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with the maximum expected reward. While Chen et al. [11] provide this general CPE framework,
their algorithms and analytical techniques only work under the linear reward function and cannot be
applied to other nonlinear reward cases.1

However, in many real-world scenarios, the expected reward function is not necessarily linear. One of
the common and important cases is the bottleneck reward function, i.e., the expected reward of a super
arm is the minimum expected reward of the base arms contained in it. For example, in communication
networks [5], the transmission speed of a path is usually determined by the link with the lowest rate,
and a learner samples the links in order to find the optimal transmission path which maximizes its
bottleneck link rate. In traffic scheduling [31], a scheduling system collects the information of road
segments in order to plan an efficient route which optimizes its most congested (bottleneck) road
segment. In neural architecture search [32], the overall efficiency of a network architecture is usually
constrained by its worst module, and an agent samples the available modules with the objective to
identify the best network architecture in combinatorial search space.

In this paper, we study the Combinatorial Pure Exploration with the Bottleneck reward function
(CPE-B) which aims to identify the optimal super arm with the maximum bottleneck value by
querying the base arm rewards, where the bottleneck value of a super arm is defined as the minimum
expected reward of its containing base arms. We consider two popular settings in pure exploration, i.e,
fixed-confidence (FC), where given confidence parameter δ, the learner aims to identify the optimal
super arm with probability 1� δ and minimize the number of used samples (sample complexity), and
fixed-budget (FB), where the learner needs to use a given sample budget to find the optimal super arm
and minimize the error probability.

Figure 1: Illustrating example.

Challenges of CPE-B. Compared to prior CPE works [11,
10, 20], our CPE-B aims at utilizing the bottleneck prop-
erty to save samples and achieve the statistical optimality.
It faces with two unique challenges, i.e., how to (i) achieve
the tight base-arm-gap dependent sample complexity and
(ii) avoid the dependence on unnecessary base arms in
the results, while running in polynomial time. We use a
simple example in Figure 1 to illustrate our challenges.
In Figure 1, there are six edges (base arms) and three s-t
paths (super arms), and the base arm reward w(ei), base
arm gap �ei;ej and super arm gap �M�;Msub are as shown
in the figure. In order to identify the optimal path, all we
need is to pull e1, e2, e4 to determine that e1 is worse than e2 and e4, and e3, e5, e6 are useless for
revealing the sub-optimality of M1 and M2. In this case, the optimal sample complexity should be
O(( 2

�2
e2;e1

+ 1
�2

e4;e1

) ln δ�1), which depends on the tight base arm gaps and only includes the critical
base arms (e1, e2, e4). However, if one naively adapts existing CPE algorithms [11, 12, 16] to work
with bottleneck reward function, an inferior sample complexity of O(

P
ei;i2[6]

1
�2

M�;Msub

ln δ�1) is

incurred, which depends on the loose super arm gaps and contains a summation over all base arms
(including the unnecessary e3, e5, e6). Hence, our challenge falls on how to achieve such efficient
sampling in an online environment, where we do not know which are critical base arms e1, e2, e4 but
want to gather just enough information to identify the optimal super arm. We remark that, none of
existing CPE studies can be applied to solve the unique challenges of CPE-B, and thus we develop
brand-new techniques to handle them and attain the optimal results (up to a logarithmic factor).

Contributions. For CPE-B in the FC setting, (i) we first develop a novel algorithm BLUCB, which
employs a bottleneck-adaptive sample strategy and achieves the tight base-arm-gap dependent sample
complexity. (ii) We further propose an improved algorithm BLUCB-Parallel in high confidence
regime, which adopts an efficient “bottleneck-searching” offline procedure and a novel “check-near-
bottleneck” stopping condition. The sample complexity of BLUCB-Parallel drops the dependence
on unnecessary base arms and achieves the optimality (within a logarithmic factor) under small
enough δ. (iii) A matching sample complexity lower bound for the FC setting is also provided, which
demonstrates the optimality of our algorithms. For the FB setting, (iv) we propose a novel algorithm
BSAR with a special acceptance scheme for the bottleneck identification task. BSAR achieves the
state-of-the-art error probability and is the first to run efficiently on fixed-budget path instances,

1The algorithmic designs and analytical tools (e.g., symmetric difference and exchange set) in [11] all rely
on the linear property and cannot be applied to nonlinear reward cases, e.g, the bottleneck reward problem.
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compared to existing CPE algorithms. All our proposed algorithms run in polynomial time.2 The
experimental results demonstrate that our algorithms significantly outperform the baselines. Due to
space limit, we defer all the proofs to the supplementary material.

1.1 Related Work

In the following we briefly review the related work in the CPE literature. Chen et al. [11] firstly
propose the CPE model and only consider the linear reward function (CPE-L), and their results for
CPE-L are further improved by [19, 10]. Huang et al. [20] investigate the continuous and separable
reward functions (CPE-CS), but their algorithm only runs efficiently on simple cardinality constraint
instances. All these works consider directly sampling base arms and getting their feedback. There
are also several CPE studies which consider other forms of sampling and feedback. Chen et al. [12]
propose the CPE for dueling bandit setting, where at each timestep the learner pulls a duel between
two base arms and observes their comparison outcome. Kuroki et al. [23] study an online densest
subgraph problem, where the decision is a subgraph and the feedback is the reward sum of the edges
in the chosen subgraph (i.e., full-bandit feedback). Du et al. [16] investigate CPE with the full-bandit
or partial linear feedback. All of the above studies consider the pure exploration setting, while in
combinatorial bandits there are other works [13, 15, 14] studying the regret minimization setting
(CMAB). In CMAB, the learner plays a super arm and observes the rewards from all base arms
contained in it, with goal of minimizing the regret, which is significantly different from our setting.
Note that none of the above studies covers our CPE-B problem or can be adapted to solve the unique
challenges of CPE-B, and thus CPE-B demands a new investigation.

2 Problem Formulation

In this section, we give the formal formulation of CPE-B. In this problem, a learner is given n
base arms numbered by 1, 2, . . . , n. Each base arm e 2 [n] is associated with an unknown reward
distribution with the mean of w(e) and an R-sub-Gaussian tail, which is a standard assumption
in bandits [1, 11, 26, 29]. Let w = (w(1), . . . , w(n))> be the expected reward vector of base
arms. The learner is also given a decision class M � 2[n], which is a collection of super arms
(subsets of base arms) and generated from a certain combinatorial structure, such as s-t paths,
maximum cardinality matchings, and spanning trees. For each super arm M 2 M, we define its
expected reward (also called bottleneck value) as MinW(M,w) = mine2M w(e),3 i.e., the minimum
expected reward of its constituent base arms, which is so called bottleneck reward function. Let
M� = argmaxM2M MinW(M,w) be the optimal super arm with the maximum bottleneck value, and
OPT = MinW(M�,w) be the optimal value. Following the pure exploration literature [17, 11, 10, 12],
we assume that M� is unique, and this assumption can be removed in our extension to the PAC
learning setting (see the supplementary material).

At each timestep, the learner plays (or samples) a base arm pt 2 [n] and observes a random reward
sampled from its reward distribution, where the sample is independent among different timestep t.
The learner’s objective is to identify the optimal super arm M� fromM.

For this identification task, we study two common metrics in pure exploration [21, 7, 26, 10], i.e.,
fixed-confidence (FC) and fixed-budget (FB) settings. In the FC setting, given a confidence parameter
δ 2 (0, 1), the learner needs to identify M� with probability at least 1� δ and minimize the sample
complexity, i.e., the number of samples used. In the FB setting, the learner is given a fixed sample
budget T , and needs to identify M� within T samples and minimize the error probability, i.e., the
probability of returning a wrong answer.

3 Algorithms for the Fixed-Confidence Setting

In this section, we first propose a simple algorithm BLUCB for the FC setting, which adopts a novel
bottleneck-adaptive sample strategy to obtain the tight base-arm-gap dependent sample complexity.

2Here “polynomial time” refers to polynomial time in the number of base arms n (which is equal to the
number of edges E in our considered instances such as s-t paths, matchings and spanning trees).

3In general, the second input of function MinW can be any vector: for any M ∈ M and v ∈ Rn,
MinW(M;v) = mine∈M v(e).
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Algorithm 1 BLUCB, algorithm for CPE-B in the FC setting

1: Input: M , � 2 (0; 1) andMaxOracle.
2: Initialize: play eache 2 [n] once, and update

empirical meanŝwn +1 andTn +1
3: for t = n + 1 ; n + 2 ; : : : do

4: radt (e)  
q

2 ln( 4nt 3

� )=Tt (e); 8e 2 [n]
5: wt (e)  ŵt (e) � radt (e); 8e 2 [n]
6: �wt (e)  ŵt (e) + radt (e); 8e 2 [n]
7: M t  MaxOracle(M ; w t )
8: ~M t  MaxOracle(M n S (M t ); �w t )

9: if MinW(M t ; w t ) � MinW( ~M t ; �w t ) then
10: return M t
11: end if
12: ct  argmine2 M t

wt (e)
13: dt  argmine2 ~M t

wt (e)
14: pt  argmaxe2f ct ;d t g radt (e)
15: Playpt , and observe the reward
16: Update empirical meanŝwt +1 (pt )
17: Update the number of samplesTt +1 (pt )
18: end for

We further develop an improvementBLUCB-Parallel in high con�dence regime, whose sample
complexity drops the dependence on unnecessary base arms for small enough� . Both algorithms
achieve the optimal sample complexity for a family of instances (within a logarithmic factor).

3.1 Algorithm BLUCBwith Base-arm-gap Dependent Results

Algorithm 1 illustrates the proposed algorithmBLUCBfor CPE-B in the FC setting. HereS(M t )
denotes the set of all supersets of super armM t (Line 8). Since the bottleneck reward function is
monotonically decreasing, for anyM 0 2 S(M t ), we haveMinW(M 0; w ) � MinW(M t ; w ). Hence, to
verify the optimality ofM t , we only need to compareM t against super arms inM n S (M t ), and this
property will also be used in the later algorithmBLUCB-Parallel .

BLUCBis allowed to access an ef�cientbottleneck maximization oracleMaxOracle(F ; v),
which returns an optimal super arm fromF with respect tov, i.e., MaxOracle(F ; v) 2
argmaxM 2F MinW(M; v). ForF = M (Line 7), such an ef�cient oracle exists for many decision
classes, such as the bottleneck shortest path [27], bottleneck bipartite matching [28] and minimum
bottleneck spanning tree [8] algorithms. ForF = M n S (M t ) (Line 8), we can also ef�ciently �nd
the best super arm (excluding the supersets ofM t ) by repeatedly removing each base arm inM t and
calling the basic maximization oracle, and then selecting the one with the maximum bottleneck value.

We describe the procedure ofBLUCBas follows: at each timestept, we calculate the lower and
upper con�dence bounds of base arm rewards, denoted byw t and �w t , respectively. Then, we call
MaxOracle to �nd the super armM t with the maximum pessimistic bottleneck value fromM using
w t (Line 7), and the super arm~M t with the maximum optimistic bottleneck value fromM n S (M t )
using �w t (Line 8). M t and ~M t are two critical super arms that determine when the algorithm should
stop or not. If the pessimistic bottleneck value ofM t is higher than the optimistic bottleneck value of
~M t (Line 9), we can determine thatM t has the higher bottleneck value than any other super arm with

high con�dence, and then the algorithm can stop and outputM t . Otherwise, we select two base arms
ct anddt with the minimum lower reward con�dence bounds inM t and ~M t respectively, and play
the one with the larger con�dence radius (Lines 12-14).

Bottleneck-adaptive sample strategy.The “select-minimum” sample strategy in Lines 12-14 comes
from aninsight for the bottleneck problem: to determine thatM t has a higher bottleneck value than
~M t , it suf�ces to �nd a base arm from~M t which is worse than any base arm (the bottleneck base

arm) inM t . To achieve this, base armsct anddt , which have the most potential to be the bottlenecks
of M t and ~M t , are the most necessary ones to be sampled. This bottleneck-adaptive sample strategy
is crucial forBLUCBto achieve the tight base-arm-gap dependent sample complexity. In contrast, the
sample strategy of prior CPE algorithms [11, 12, 16] treats all base arms in critical super arms (M t

and ~M t ) equally and does a uniform choice. If one naively adapts those algorithms with the current
reward functionMinW(M; w), a loose super-arm-gap dependent sample complexity is incurred.

To formally state the sample complexity ofBLUCB, we introduce some notation and gap de�nition.
Let N = f e j e =2 M � ; w(e) < OPTg and ~N = f e j e =2 M � ; w(e) � OPTg, which stand for the
necessary andunnecessarybase arms contained in the sub-optimal super arms, respectively. We
de�ne the reward gap for the FC setting as
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Algorithm 2 BLUCB-Parallel , an improved algorithm for the FC setting under small�
1: Input: � 2 (0; 0:01) and sub-algorithmBLUCB-Verify .
2: For k = 0 ; 1; : : : , let BLUCB-Verify k be the sub-algorithmBLUCB-Verify with � k = �

2k +1

3: for t = 1 ; 2; : : : do
4: for eachk = 0 ; 1; : : : such thatt mod2k = 0 do
5: Start or resumeBLUCB-Verify k with one sample, and then suspendBLUCB-Verify k
6: if BLUCB-Verify k returns an answerM out, thenreturn M out
7: end for
8: end for

Algorithm 3 BLUCB-Verify , sub-algorithm ofBLUCB-Parallel

1: Input: M , � V 2 (0; 0:01) andMaxOracle.
2: �  0:01
3:M̂ � ;B̂sub BLUCB-Explore (M ; �; MaxOracle)
4: Initialize: play eache 2 [n] once, and update

empirical meanŝwn +1 andTn +1
5: for t = n + 1 ; n + 2 ; : : : do

6: radt (e)  R
q

2 ln( 4nt 3

� V )=Tt (e); 8e2 [n]
7: wt (e)  ŵt (e) � radt (e); 8e 2 [n]
8: �wt (e)  ŵt (e) + radt (e); 8e 2 [n]
9: ~M t = MaxOracle(M n S (M̂ � ); �w t )

10: if MinW(M̂ � ; w t ) � MinW( ~M t ; �w t ) then
11: return M̂ �
12: end if
13: ct  argmine2 M̂ �

wt (e)

14: Ft  f e 2 B̂sub : �wt (e) > w t (ct )g
15: pt  argmaxe2 F t [f ct g radt (e)
16: Playpt , and observe the reward
17: Update empirical meanŝwt +1 (pt )
18: Update the number of samplesTt +1 (pt )
19: end for

De�nition 1 (Fixed-con�dence Gap).

� C
e =

8
<

:

w(e) � maxM 6= M � MinW(M; w); if e 2 M � ; (a)
w(e) � maxM 2M :e2 M MinW(M; w); if e 2 ~N; (b)
OPT� maxM 2M :e2 M MinW(M; w); if e 2 N:

Now we present the sample complexity upper bound ofBLUCB.

Theorem 1 (Fixed-con�dence Upper Bound). With probability at least1 � � , algorithmBLUCB
(Algorithm 1) for CPE-B in the FC setting returns the optimal super arm with sample complexity

O

0

@
X

e2 [n ]

R2

(� C
e )2 ln

0

@
X

e2 [n ]

R2n
(� C

e )2�

1

A

1

A :

Base-arm-gap dependent sample complexity.Owing to the bottleneck-adaptive sample strategy,
the reward gap� C

e (De�nition 1(a)(b)) is just de�ned as the difference between some critical
bottleneck value andw(e) itself, instead of the bottleneck gap between two super arms, and thus our
result depends on the tight base-arm-level (instead of super-arm-level) gaps. For example, in Figure 1,
BLUCBonly spends~O(( 2

� 2
e2 ;e 1

+
P

i =3 ;4;5;6
1

� 2
e i ;e 1

) ln � � 1) samples, while a naive adaptation of

prior CPE algorithms [11, 12, 16] with the bottleneck reward function will cause a loose super-arm-
gap dependent result~O(

P
ei ;i 2 [6]

1
� 2

M � ;M sub

ln � � 1). Regarding the optimality, Theorem 1 matches

the lower bound (presented in Section 4) for some family of instances (up to a logarithmic factor).
However, in general cases there still exists a gap on those needless base arms~N (e3; e5; e6 in Figure 1),
which are not contained in the lower bound. Next, we show how to bridge this gap.

3.2 Remove Dependence on Unnecessary Base Arms under Small�

Challenges of avoiding unnecessary base arms.Under the bottleneck reward function, in each
sub-optimal super armM sub, only the base arms with rewards lower thanOPT(base arms inN ) can
determine the relationship of bottleneck values betweenM � andM sub (the bottleneck ofM sub is
the most ef�cient choice to do this), and the others (base arms in~N ) are useless for revealing the
sub-optimality ofM sub. Hence, to determineM � , all we need is to sample the base arms inM � and
thebottlenecks from all sub-optimal super arms, denoted byBsub, to see that each sub-optimal super
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Algorithm 4 BLUCB-Explore , sub-algorithm ofBLUCB-Verify , thekey algorithm

1: Input: M , � = 0 :01andMaxOracle.
2: Initialize: play eache 2 [n] once, and update

empirical meanŝwn +1 andTn +1
3: for t = n + 1 ; n + 2 ; : : : do

4: radt (e)  R
q

2 ln( 4nt 3

� )=Tt (e); 8e2 [n]
5: wt (e)  ŵt (e) � radt (e); 8e 2 [n]
6: �wt (e)  ŵt (e) + radt (e); 8e 2 [n]
7: M t  MaxOracle(M ; w t )
8: B̂sub;t  BottleneckSearch (M ; M t ; w t )
9: if �wt (e) � 1

2 (MinW(M t ; w t ) + wt (e)) for
all e 2 B̂sub;t then

10: return M t ; B̂sub;t
11: end if
12: ct  argmine2 M t

wt (e)
13: B̂ 0

sub;t  f e 2 B̂sub;t :
�wt (e) > 1

2 (MinW(M t ; w t ) + wt (e))g
14: pt  argmaxe2 B̂ 0

sub;t [f ct g radt (e)
15: Playpt , and observe the reward
16: Update empirical meanŝwt +1 (pt )
17: Update the number of samplesTt +1 (pt )
18: end for

arm contains at least one base arm that is worse than anyone inM � . However, before sampling, (i)
we do not know which isM � that should be taken as the comparison benchmark, and in eachM sub,
which base arm is its bottleneck (included inBsub). Also, (ii) under combinatorial setting, how to
ef�ciently collect Bsub from all sub-optimal super arms is another challenge.

To handle these challenges, we propose algorithmBLUCB-Parallel based on the explore-verify-
parallel framework [22, 10]. BLUCB-Parallel (Algorithm 2) simultaneously simulates multiple
BLUCB-Verify k (Algorithm 3) with con�dence� V

k = �=2k+1 for k 2 N. BLUCB-Verify k �rst calls
BLUCB-Explore (Algorithm 4) to guess an optimal super arm̂M � and collect anear bottleneck set
B̂sub with constant con�dence� , and then uses the required con�dence� V

k to verify the correctness
of M̂ � by only sampling base arms in̂M � andB̂sub. Through parallel simulations,BLUCB-Parallel
guarantees the1 � � correctness.

Thekey componentof this framework isBLUCB-Explore (Algorithm 4), which provides a hypothe-
sized answer̂M � and critical base armŝBsub for veri�cation to accelerate its identi�cation process.
Below we �rst describe the procedure ofBLUCB-Explore , and then explicate its twoinnovative
techniques, i.e. of�ine subroutine and stopping condition, developed to handle the challenges (i),(ii).
BLUCB-Explore employs the subroutineBottleneckSearch (M ; M ex; v) to return the set of bot-
tleneck base arms from all super arms inM n S (M ex) with respect to weight vectorv. At each
timestep, we �rst calculate the best super armM t under lower reward con�dence boundw t , and call
BottleneckSearch to collect the bottleneckŝBsub;t from all super arms inM n S (M t ) with respect
to w t (Line 8). Then, we use a stopping condition (Line 9) to examine ifM t is correct andB̂sub;t

is close enough tôBsub (with con�dence� ). If so, M t andB̂sub;t are eligible for veri�cation and
returned; otherwise, we play a base arm fromM t andB̂sub;t , which is most necessary for achieving the
stopping condition. In the following, we explicate the two innovative techniques inBLUCB-Explore .

Ef�cient “bottleneck-searching” of�ine subroutine. BottleneckSearch (M ; M ex; v) (Line 8)
serves as an ef�cient of�ine procedure to collect bottlenecks from all super arms in given decision
classMnS (M ex) with respect tov. To achieve ef�ciency, the main idea behindBottleneckSearch
is to avoid enumerating super arms in the combinatorial space, but only enumerate base armse 2 [n]
to check ife is the bottleneck of some super arm inM n S (M ex). We achieve this by removing all
base arms with rewards lower thanv(e) and examining whether there exists a feasible super armM
that containse in the remaining decision class. If so,e is the bottleneck ofM and added to the output
(more procedures are designed to excludeS(M ex)). This ef�cient of�ine subroutine solves challenge
(ii) on computation complexity (see the supplementary material for its pseudo-codes and details).

Delicate “check-near-bottleneck” stopping condition. The stopping condition (Line 9) aims to
ensure the returned̂Bsub;t = B̂sub to satisfy the following Property (1): for each sub-optimal super
arm M sub, some base arme such thatw(e) � 1

2 (MinW(M � ; w ) + MinW(M sub; w )) is included in
B̂sub, which implies thate is near to the actual bottleneck ofM sub within 1

2 � M � ;M sub, and cannot be
anyone in ~N . Property (1) is crucial forBLUCB-Verify to achieve the optimal sample complexity,
since it guarantees that in veri�cation usinĝBsub to verify M � just costs the same order of samples as

6



usingBsub, which matches the lower bound. In the following, we explain why this stopping condition
can guarantee Property (1).

If the stopping condition (Line 9) holds, i.e.,8e 2 B̂sub;t ; �wt (e) � 1
2 (MinW(M t ; w t ) + wt (e)) , using

the de�nition of BottleneckSearch , we have that for anyM 0 2 M n S (M t ), its bottlenecke0 with
respect tow t is included inB̂sub;t and satis�es that

w(e0) � �wt (e0)
(a)
�

1
2

(MinW(M t ; w t ) + MinW(M 0; w t )) �
1
2

(MinW(M t ; w ) + MinW(M 0; w )) ;

where inequality (a) comes from�wt (e0) � 1
2 (MinW(M t ; w t )+ wt (e

0)) andwt (e
0)) = MinW(M 0; w t ).

Hence, we can defer thatMinW(M 0; w ) � w(e0) � 1
2 (MinW(M t ; w ) + MinW(M 0; w )) for any

M 0 2 M n S (M t ), and thusM t = M � (with con�dence� ). In addition, the returned̂Bsub;t satis�es
Property (1). This stopping condition offers knowledge of a hypothesized optimal super armM̂ �

and a near bottleneck setB̂sub for veri�cation, which solves the challenge (i) and enables the overall
sample complexity to achieve the optimality for small enough� . Note that these two techniques are
new in the literature, which are specially designed for handling the unique challenges of CPE-B.

We formally state the sample complexity ofBLUCB-Parallel in Theorem 2.
Theorem 2(Improved Fixed-con�dence Upper Bound). For any� < 0:01, with probability at least
1 � � , algorithmBLUCB-Parallel (Algorithm 2) for CPE-B in the FC setting returnsM � and takes
the expected sample complexity

O

 
X

e2 M � [ N

R2

(� C
e )2 ln

 
1
�

X

e2 M � [ N

R2n
(� C

e )2

!

+
X

e2 ~N

R2

(� C
e )2 ln

 
X

e2 ~N

R2n
(� C

e )2

!!

:

Results without dependence on~N in the dominant term. Let HV =
P

e2 M � [ N
R 2

(� C
e )2 and

HE =
P

e2 [n ]
R 2

(� C
e )2 denote the veri�cation and exploration hardness, respectively. Compared to

BLUCB(Theorem 1), the sample complexity ofBLUCB-Parallel removes the redundant dependence
on ~N in the ln � � 1 term, which guarantees better performance whenln � � 1 � H E

H E � H V
, i.e., � �

exp(� H E
H E � H V

). This sample complexity matches the lower bound (within a logarithmic factor)

under small enough� . For the example in Figure 1,BLUCB-Parallel only requires~O(( 2
� 2

e2 ;e 1
+

1
� 2

e4 ;e 1
) ln � � 1) samples, which are just enough efforts (optimal) for identifyingM � .

The condition� < 0:01in Theorem 2 is due to that the used explore-verify-parallel framework [22, 10]
needs a small� to guarantee thatBLUCB-Parallel can maintain the same order of sample complexity
as its sub-algorithmBLUCB-Verify k . Prior pure exploration works [22, 10] also have such condition
on � .

Time Complexity. All our algorithms can run in polynomial time, and the running time mainly
depends on the of�ine oracles. For example, ons-t path instances withE edges andV vertices, the
used of�ine proceduresMaxOracle andBottleneckSearch only spendO(E) andO(E 2(E + V))
time, respectively. See the supplementary material for more time complexity analysis.

4 Lower Bound for the Fixed-Con�dence Setting

In this section, we establish a matching sample complexity lower bound for CPE-B in the FC
setting. To formally state our results, we �rst de�ne the notion of� -correct algorithmas follows.
For any con�dence parameter� 2 (0; 1), we call an algorithmA a � -correct algorithm if for the
�xed-con�dence CPE-B problem,A returns the optimal super arm with probability at least1 � � .
Theorem 3 (Fixed-con�dence Lower Bound). There exists a family of instances for the �xed-
con�dence CPE-B problem, for which given any� 2 (0; 0:1), any � -correct algorithm has the
expected sample complexity




 
X

e2 M � [ N

R2

(� C
e )2 ln

�
1
�

� !

:

This lower bound demonstrates that the sample complexity ofBLUCB-Parallel (Theorem 2) is
optimal (within a logarithmic factor) under small enough� , since itsln � � 1 (dominant) term does
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Algorithm 5 BSAR, algorithm for CPE-B in the FB setting

1: Input: budgetT, M , andAR� Oracle .
2: ~log(n)  

P n
i =1

1
i . ~T0  0. A1; R1  ? .

3: for t = 1 ; : : : ; n do
4: ~Tt  

l
T � n

~log( n )( n � t +1)

m

5: Ut  [n] n (A t [ Rt )
6: Play eache 2 Ut for ~Tt � ~Tt � 1 times
7: Update empirical mean̂wt (e), 8e2 Ut
8: ŵt (e)  1 for all e 2 A t
9: M t  AR-Oracle (? ; Rt ; ŵ t )

10: for eache 2 Ut do
11: if e 2 M t then
12: ~M t;e  AR-Oracle (? ; Rt [f eg; ŵ t )
13: else
14: ~M t;e  AR-Oracle (e; Rt ; ŵ t )

15: end if
16: // AR-Oracle returns? if the calculated

feasible set is empty
17: end for
18: pt  argmax

e2 Ut

MinW(M t ;ŵ t) � MinW( ~M t;e ;ŵ t)

19: // MinW(? ; ŵ t ) = �1
20: if pt 2 M t then
21: A t +1  A t [ f pt g; Rt +1  Rt
22: else
23: A t +1  A t ; Rt +1  Rt [ f pt g
24: end if
25: end for
26: return An +1

not depend on unnecessary base arms~N either. In addition, if we impose some constraint on the
constructed instances, the sample complexity ofBLUCB(Theorem 1) can also match the lower bound
up to a logarithmic factor (see the supplementary material for details). The condition� < 0:1 comes
from the lower bound analysis, which ensures that the binary entropy of �nding a correct or wrong
answer can be lower bounded byln � � 1. Existing pure exploration works [11, 10] also have such
condition on� in their lower bounds.

Notice that, both our lower and upper bounds depend on the tight base-arm-level (instead of super-
arm-level) gaps, and capture thebottleneck insight: different base arms in one super arm play distinct
roles in determining its (sub)-optimality and impose different in�uences on the problem hardness.

5 Algorithm for the Fixed-Budget Setting

For CPE-B in the FB setting, we design a novel algorithmBSARthat adopts a special acceptance
scheme for bottleneck identi�cation. We allowBSARto access an ef�cient accept-reject oracle
AR-Oracle , which takes an accepted base arme or ? , a rejected base arm setR and a weight vector
v as inputs, and returns an optimal super arm from the decision classM (e; R) = f M 2 M : e 2
M; R \ M = ? g with respect tov, i.e.,AR-Oracle 2 argmaxM 2M (e;R ) MinW(M; w). If M (e; R)
is empty,AR-Oracle simply returns? . Such an ef�cient oracle exists for many decision classes, e.g.,
paths, matchings and spanning trees (see the supplementary material for implementation details).

BSARallocates the sample budgetT to n phases adaptively, and maintains the accepted setA t ,
rejected setRt and undetermined setUt . In each phase, we only sample base arms inUt and set
the empirical rewards of base arms inA t to in�nity (Line 8). Then, we callAR-Oracle to compute
the empirical best super armM t . For eache 2 Ut , we forbidRt and constraine inside/outside the
calculated super arms and �nd the empirical best super arm~M t;e from the restricted decision class
(Lines 12,14). Then, we accept or reject the base armpt that maximizes the empirical reward gap
betweenM t and ~M t;e , i.e., the one that is most likely to be in or out ofM � (Line 18).

Special acceptance scheme for bottleneck and polynomial running time.The acceptance scheme
ŵt (e)  1 for all e 2 A t (Line 8) is critical to the correctness and computation ef�ciency ofBSAR.
SinceA t andRt are not pulled in phaset and their estimated rewards are not accurate enough, we
need to avoid them to disturb the following calculation of empirical bottleneck values (Lines 9-18).
By setting the empirical rewards ofA t to in�nity, the estimation of bottleneck values for sub-optimal
super armsM sub avoids the disturbance ofA t , because eachM sub has at least one base arm with
reward lower thanOPTand this base arm will never be included inA t (conditioned on high probability
events). As forM � , its empirical bottleneck value can be raised, but this only enlarges the empirical
gap betweenM � andM sub and does not affect the correctness of the choicept (Line 18). Hence, this
acceptance scheme guarantees the correctness ofBSARin bottleneck identi�cation task.

Compared to existing CPE-L algorithmCSAR[11], they force the whole setA t inside the calcu-
lated super arms in the oracle, i.e., replacing Lines 12,14 withAR-Oracle (A t ; Rt [ f eg; ŵ t ) and
AR-Oracle (A t [ f eg; Rt ; ŵ t ), and deleting Line 8. Such acceptance strategy incursexponential-time
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complexity ons-t path instances,4 andonly worksfor the linear reward function, where the common
partA t between two compared super arms can be canceled out. If one naively applies their acceptance
strategy to our bottleneck problem, the common partA t is possible to drag down (dominate) the
empirical bottleneck values of all calculated super arms (Lines 9,12,14) and their empirical gaps will
become all zeros (Line 18), which destroys the correctness of the choicept in theoretical analysis.

BSARis the �rst to run inpolynomial timeon �xed-budgets-t path instances among existing CPE
algorithms, owing to its skillful acceptance scheme and the simpli�edAR-Oracle (only work with
one accepted base arm instead ofA t ). Speci�cally, for E edges andV vertices, the time complexity
of AR-Oracle is O(E(E + V)) andBSARonly spendsO(E 2(E + V)) time in decision making.

Now we give the de�nitions of �xed-budget reward gap and problem hardness, and then formally
state the error probability result ofBSAR. Fore 2 M � , � B

e = OPT� maxM 2M :e=2 M MinW(M; w),
and fore =2 M � , � B

e = OPT� maxM 2M :e2 M MinW(M; w). Let � B
(1) ; : : : ; � B

(n ) be the permutation
of � B

1 ; : : : ; � B
n such that� B

(1) � � � � � � B
(n ) , and the �xed-budget problem hardness is de�ned as

H B = max i 2 [n ]
i

(� B
( i ) )2 . Let ~log(n) =

P n
i =1

1
i .

Theorem 4(Fixed-budget Upper Bound). For anyT > n , algorithmBSAR(Algorithm 5) for CPE-B
in the FB setting uses at mostT samples and returns the optimal super arm with the error probability
bounded by

O
�

n2 exp
�

�
T � n

~log(n)R2H B

��
:

Compared to the uniform sampling algorithm, which plays all base arms equally and has
O(n exp(� T

R 2 n � � 2
min

)) error probability with� min = OPT� maxM 6= M � MinW(M; w), Theorem 4

achieves a signi�cantly better correctness guarantee (when� B
e > � min for moste 2 [n]). In

addition, when our CPE-B problem reduces to conventionalK -armed pure exploration problem [7],
Theorem 4 matches existing state-of-the-art result in [7]. To our best knowledge, the lower bound for
the �xed-budget setting in the CPE literature [11, 20, 23, 16] remains open.

Our error probability analysis falls on taking advantage of the bottleneck property to handle the
disturbance from the accepted arm set (which are not pulled suf�ciently) and guaranteeing the
estimation accuracy of bottleneck rewards. The differences between our analysis and prior analysis
for CSAR[11] are highlighted as follows: (i) Prior analysis [11] relies on the linear property to
cancel out the common part between two super arms when calculating their reward gap, in order
to avoid the disturbance of accepted arms. In contrast, to achieve this goal, we utilize the special
acceptance scheme ofBSARto exclude all accepted arms in the calculation of bottleneck rewards,
which effectively addresses the perturbation of inaccurate estimation on accepted arms. (ii) Prior
analysis [11] mainly uses the “exchange sets” technique, which only works for the linear reward
function and leads to the dependence on the parameter of decision class structures. Instead, our
analysis exploits the bottleneck property to establish con�dence intervals in the base arm level, and
effectively avoids the dependence on the parameter of decision class structures.

6 Experiments

In this section, we conduct experiments for CPE-B in FC/FB settings on synthetic and real-world
datasets. The synthetic dataset consists of thes-t path and matching instances. For thes-t path
instance, the number of edges (base arms)n = 85, and the expected reward of edgesw(e) =
[0; 10:5] (e 2 [n]). The minimum reward gap of any two edges (which is also the minimum gap
of bottleneck values between two super arms) is denoted by� min 2 [0:4; 0:7]. For the matching
instances, we use a5 � 3 complete bipartite graph, wheren = 15, w(e) = [0 :1; 1:08] and� min 2
[0:03; 0:07]. We change� min to generate a series of instances with different hardness (plotted points
in Figures 2(a),2(b),2(e)). In terms of the real-world dataset, we use the data of American airports
and the number of available seats of �ights in 2002, provided by the International Air Transportation
Association database (www.iata.org ) [6]. Here we regard an airport as a vertex and a direct �ight
connecting two airports as an edge (base arm), and also consider the number of available seats of a
�ight as the expected reward of an edge. Our objective is to �nd an air route connecting the starting
and destination airports which maximizes the minimum number of available seats among its passing

4Finding as-t path which contains a given edge set is NP-hard. See the supplementary material for its proof.
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(a) FC,s-t path, large� (b) FC,s-t path, small� (c) FC, real-world, small�

(d) FB, matching (e) FB, matching (f) FB, real-world

Figure 2: Experiments for CPE-B in the FC/FB setting on synthetic and real-world datasets.

�ights. In this instance,n = 9 andw(e) 2 [0:62; 1:84]. We present the detailed graphs with speci�c
values ofw(e) for thes-t path, matching and real-world air route instances in the supplementary
material.

In the FC setting, we set a large� = 0 :005and a small� = exp( � 1000), and perform50independent
runs to plot average sample complexity with95%con�dence intervals. In the FB setting, we set
sample budgetT 2 [6000; 15000], and perform3000independent runs to show the error probability
across runs. For all experiments, the random reward of each edgee 2 [n] is i.i.d. drawn from
Gaussian distributionN (w(e); 1).

Experiments for the FC setting. We compare ourBLUCB/BLUCB-Parallel with three baselines.
BLUCB� is an ablation variant ofBLUCB, which replaces the sample strategy (Lines 12-14) with the
one that uniformly samples a base arm in critical super arms.CLUCB-B[11] is the state-of-the-art �xed-
con�dence CPE-L algorithm run with bottleneck reward function.UniformFC is a �xed-con�dence
uniform sampling algorithm. As shown in Figures 2(a)-2(c),BLUCBandBLUCB-Parallel achieve
better performance than the three baselines, which validates the statistical ef�ciency of our bottleneck-
adaptive sample strategy. Under small� , BLUCB-Parallel enjoys lower sample complexity than
BLUCBdue to its careful algorithmic design to avoid playing unnecessary base arms, which matches
our theoretical results.

Experiments for the FB setting.Our BSARis compared with four baselines. As an ablation variant
of BSAR, BSRremoves the special acceptance scheme ofBSAR. CSAR-B [11] is the state-of-the-art
�xed-budget CPE-L algorithm implemented with bottleneck reward function.CUCB-B[14] is a regret
minimization algorithm allowing nonlinear reward functions, and in pure exploration experiments we
let it return the empirical best super arm afterT (sample budget) timesteps.UniformFB is a �xed-
budget uniform sampling algorithm. One sees from Figures 2(d)-2(f) that,BSARachieves signi�cantly
better error probability than all the baselines, which demonstrates that its special acceptance scheme
effectively guarantees the correctness for the bottleneck identi�cation task.

7 Conclusion and Future Work
In this paper, we study the Combinatorial Pure Exploration with the Bottleneck reward function
(CPE-B) problem in FC/FB settings. For the FC setting, we propose two novel algorithms, which
achieve the optimal sample complexity for a broad family of instances (within a logarithmic factor),
and establish a matching lower bound to demonstrate their optimality. For the FB setting, we propose
an algorithm whose error probability matches the state-of-the-art result, and it is the �rst to run
ef�ciently on �xed-budget path instances among existing CPE algorithms. The empirical evaluation
also validates the superior performance of our algorithms. There are several interesting directions
worth further research. One direction is to derive a lower bound for the FB setting, and another
direction is to investigate the general nonlinear reward functions.
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