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Abstract

In this paper, we study the Combinatorial Pure Exploration problem with the
Bottleneck reward function (CPE-B) under the fixed-confidence (FC) and fixed-
budget (FB) settings. In CPE-B, given a set of base arms and a collection of subsets
of base arms (super arms) following a certain combinatorial constraint, a learner
sequentially plays a base arm and observes its random reward, with the objective
of finding the optimal super arm with the maximum bottleneck value, defined as
the minimum expected reward of the base arms contained in the super arm. CPE-B
captures a variety of practical scenarios such as network routing in communication
networks, and its unique challenges fall on how to utilize the bottleneck property to
save samples and achieve the statistical optimality. None of the existing CPE studies
(most of them assume linear rewards) can be adapted to solve such challenges,
and thus we develop brand-new techniques to handle them. For the FC setting,
we propose novel algorithms with optimal sample complexity for a broad family
of instances and establish a matching lower bound to demonstrate the optimality
(within a logarithmic factor). For the FB setting, we design an algorithm which
achieves the state-of-the-art error probability guarantee and is the first to run
efficiently on fixed-budget path instances, compared to existing CPE algorithms.
Our experimental results on the top-k, path and matching instances validate the
empirical superiority of the proposed algorithms over their baselines.

1 Introduction

The Multi-Armed Bandit (MAB) problem [25, 30, 4, 2] is a classic model to solve the exploration-
exploitation trade-off in online decision making. Pure exploration [3, 21, 7, 26] is an important
variant of the MAB problem, which aims to identify the best arm under a given confidence or
a given sample budget. There are various works studying pure exploration, such as top-k arm
identification [17, 21, 7, 24], top-k arm under matriod constraints [9] and multi-bandit best arm
identification [18, 7].

The Combinatorial Pure Exploration (CPE) framework, firstly proposed by Chen et al. [11], encom-
passes a rich class of pure exploration problems [3, 21, 9]. In CPE, there are a set of base arms, each
associated with an unknown reward distribution. A subset of base arms is called a super arm, which
follows a certain combinatorial structure. At each timestep, a learner plays a base arm and observes a
random reward sampled from its distribution, with the objective to identify the optimal super arm
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with the maximum expected reward. While Chen et al. [11] provide this general CPE framework,
their algorithms and analytical techniques only work under the linear reward function and cannot be
applied to other nonlinear reward cases.!

However, in many real-world scenarios, the expected reward function is not necessarily linear. One of
the common and important cases is the bottleneck reward function, i.e., the expected reward of a super
arm is the minimum expected reward of the base arms contained in it. For example, in communication
networks [5], the transmission speed of a path is usually determined by the link with the lowest rate,
and a learner samples the links in order to find the optimal transmission path which maximizes its
bottleneck link rate. In traffic scheduling [31], a scheduling system collects the information of road
segments in order to plan an efficient route which optimizes its most congested (bottleneck) road
segment. In neural architecture search [32], the overall efficiency of a network architecture is usually
constrained by its worst module, and an agent samples the available modules with the objective to
identify the best network architecture in combinatorial search space.

In this paper, we study the Combinatorial Pure Exploration with the Bottleneck reward function
(CPE-B) which aims to identify the optimal super arm with the maximum bottleneck value by
querying the base arm rewards, where the bottleneck value of a super arm is defined as the minimum
expected reward of its containing base arms. We consider two popular settings in pure exploration, i.e,
fixed-confidence (FC), where given confidence parameter J, the learner aims to identify the optimal
super arm with probability 1 ~ § and minimize the number of used samples (sample complexity), and
fixed-budget (FB), where the learner needs to use a given sample budget to find the optimal super arm

and minimize the error probability.
w(ey)=0.2 - wi(eq)=0.4

Challenges of CPE-B. Compared to prior CPE works [11, S ¢ Me=lexeql (optimal)

10, 20], our CPE-B aims at utilizing the bottleneck prop- \% M'if; S(}L
erty to save samples and achieve the statistical optimality. (=01 W(e)=05

It faces with two unique challenges, i.c., how to (i) achieve ()03
the tight base-arm-gap dependent sample complexity and ~ “1°"™"5F |

(ii) avoid the dependence on unnecessary base arms in Avpo, = 04—-0.1=03
the results, while running in polynomial time. We use a  Super arm gap:
simple example in Figure 1 to illustrate our challenges. A ary = min{0.2, 0.4} — min{0.1, 0.6} = 0.1

A, v, =min{0.2, 0.4} —min{0.1, 0.3, 0.5} =0.1

In Figure 1, there are six edges (base arms) and three s-¢ o
Let A, v, = Anrvn = Aar

paths (super arms), and the base arm reward w(e;), base
arm gap e;;e; and super arm gap m ;m,,, are as shown
in the figure. In order to identify the optimal path, all we
need is to pull e, ez, e4 to determine that e is worse than e, and e4, and ez, es, eg are useless for
revealing the sub-optimality of M7 and M>. In this case, the optimal sample complexity should be

O((—2— + —2—)In§ 1), which depends on the tight base arm gaps and only includes the critical
ep;eq esieq

base arms (e, ez, €4). However, if one naively adapts existing CPE algesithms [11, 12, 16] to work
with bottleneck reward function, an inferior sample complexity of O(' iz —1—1Ind Yis
" M ;M

Figure 1: Illustrating example.

»Misub

incurred, which depends on the loose super arm gaps and contains a summation over all base arms
(including the unnecessary es, es, €g). Hence, our challenge falls on how to achieve such efficient
sampling in an online environment, where we do not know which are critical base arms ej, €2, e4 but
want to gather just enough information to identify the optimal super arm. We remark that, none of
existing CPE studies can be applied to solve the unique challenges of CPE-B, and thus we develop
brand-new techniques to handle them and attain the optimal results (up to a logarithmic factor).

Contributions. For CPE-B in the FC setting, (i) we first develop a novel algorithm BLUCB, which
employs a bottleneck-adaptive sample strategy and achieves the tight base-arm-gap dependent sample
complexity. (ii) We further propose an improved algorithm BLUCB-Parallel in high confidence
regime, which adopts an efficient “bottleneck-searching” offline procedure and a novel “check-near-
bottleneck” stopping condition. The sample complexity of BLUCB-Paral lel drops the dependence
on unnecessary base arms and achieves the optimality (within a logarithmic factor) under small
enough §. (iii) A matching sample complexity lower bound for the FC setting is also provided, which
demonstrates the optimality of our algorithms. For the FB setting, (iv) we propose a novel algorithm
BSAR with a special acceptance scheme for the bottleneck identification task. BSAR achieves the
state-of-the-art error probability and is the first to run efficiently on fixed-budget path instances,

!The algorithmic designs and analytical tools (e.g., symmetric difference and exchange set) in [11] all rely
on the linear property and cannot be applied to nonlinear reward cases, e.g, the bottleneck reward problem.



compared to existing CPE algorithms. All our proposed algorithms run in polynomial time.> The
experimental results demonstrate that our algorithms significantly outperform the baselines. Due to
space limit, we defer all the proofs to the supplementary material.

1.1 Related Work

In the following we briefly review the related work in the CPE literature. Chen et al. [11] firstly
propose the CPE model and only consider the linear reward function (CPE-L), and their results for
CPE-L are further improved by [19, 10]. Huang et al. [20] investigate the continuous and separable
reward functions (CPE-CS), but their algorithm only runs efficiently on simple cardinality constraint
instances. All these works consider directly sampling base arms and getting their feedback. There
are also several CPE studies which consider other forms of sampling and feedback. Chen et al. [12]
propose the CPE for dueling bandit setting, where at each timestep the learner pulls a duel between
two base arms and observes their comparison outcome. Kuroki et al. [23] study an online densest
subgraph problem, where the decision is a subgraph and the feedback is the reward sum of the edges
in the chosen subgraph (i.e., full-bandit feedback). Du et al. [16] investigate CPE with the full-bandit
or partial linear feedback. All of the above studies consider the pure exploration setting, while in
combinatorial bandits there are other works [13, 15, 14] studying the regret minimization setting
(CMAB). In CMAB, the learner plays a super arm and observes the rewards from all base arms
contained in it, with goal of minimizing the regret, which is significantly different from our setting.
Note that none of the above studies covers our CPE-B problem or can be adapted to solve the unique
challenges of CPE-B, and thus CPE-B demands a new investigation.

2 Problem Formulation

In this section, we give the formal formulation of CPE-B. In this problem, a learner is given n
base arms numbered by 1,2, ..., n. Each base arm e 2 [n] is associated with an unknown reward
distribution with the mean of w(e) and an R-sub-Gaussian tail, which is a standard assumption
in bandits [1, 11, 26, 29]. Let w = (w(1),...,w(n))” be the expected reward vector of base
arms. The learner is also given a decision class M 2"l which is a collection of super arms
(subsets of base arms) and generated from a certain combinatorial structure, such as s-t paths,
maximum cardinality matchings, and spanning trees. For each super arm M 2 M, we define its
expected reward (also called bottleneck value) as MinW(M, W) = Minganm w(e),’ i.e., the minimum
expected reward of its constituent base arms, which is so called bottleneck reward function. Let
M = argmaxy,>n MINW(M, w) be the optimal super arm with the maximum bottleneck value, and
OPT = MinW(M ,w) be the optimal value. Following the pure exploration literature [17, 11, 10, 12],
we assume that M is unique, and this assumption can be removed in our extension to the PAC
learning setting (see the supplementary material).

At each timestep, the learner plays (or samples) a base arm p¢ 2 [n] and observes a random reward
sampled from its reward distribution, where the sample is independent among different timestep ¢.
The learner’s objective is to identify the optimal super arm M from M.

For this identification task, we study two common metrics in pure exploration [21, 7, 26, 10], i.e.,
fixed-confidence (FC) and fixed-budget (FB) settings. In the FC setting, given a confidence parameter
0 2 (0,1), the learner needs to identify M with probability at least 1 ¢ and minimize the sample
complexity, i.e., the number of samples used. In the FB setting, the learner is given a fixed sample
budget 7', and needs to identify M within 7" samples and minimize the error probability, i.e., the
probability of returning a wrong answer.

3 Algorithms for the Fixed-Confidence Setting

In this section, we first propose a simple algorithm BLUCB for the FC setting, which adopts a novel
bottleneck-adaptive sample strategy to obtain the tight base-arm-gap dependent sample complexity.

Here “polynomial time” refers to polynomial time in the number of base arms n (which is equal to the
number of edges E in our considered instances such as s-t paths, matchings and spanning trees).

*In general, the second input of function MinW can be any vector: for any M € M and v € R",
MinW(M;v) = mincens V(€).



Algorithm 1 BLUCPRalgorithm for CPE-B in the FC setting

1: Input: M, 2 (0;1) andMaxOracle. 9: if MinWM¢;w,) MinWM;w;) then
2: Initialize: play eacte 2 [n] once, and update 10: return M;
empirical meanst,.; andTp+p 11: endif
3: fort= n+1‘d~|+2;::: do 12: ¢ argmingy, W, (€)
4:  rad(e) 2In(4"2)=T;(e); 8e 2 [n] 12: di - argming, y, Wt(e)d( |
. . Dopr argmaXey g .qg,q Fad(e
2: wi(€) Wi (e) rad(e): 8e2 In] 15:  Playp:, and observe the reward
cowi(e)  wy(e)+ rad(e); 8e2 [n] . -
: N 16: Update empirical means;.1 (pt)
7 My MaxOracle(M ;w,) 17:  Update the number of sampl@s.1 (p;)
8 M, MaxOracleMnsS (M);Wo)  1s endior PIE& (P

We further develop an improvemeBt.UCHParallel in high con dence regime, whose sample
complexity drops the dependence on unnecessary base arms for small enBagjn algorithms
achieve the optimal sample complexity for a family of instances (within a logarithmic factor).

3.1 Algorithm BLUCHBvith Base-arm-gap Dependent Results

Algorithm 1 illustrates the proposed algorittBbUCBor CPE-B in the FC setting. Hei®(M;)
denotes the set of all supersets of super Er(Line 8). Since the bottleneck reward function is
monotonically decreasing, for at °2 S(M,), we haveMinWM S w)  MinWM¢; w). Hence, to
verify the optimality ofM, we only need to compaid ; against superarms M n S (M;), and this
property will also be used in the later algoritiBhUCHBParallel

BLUCBIs allowed to access an ef cienbottleneck maximization oracl&axOracle(F ;v),

which returns an optimal super arm frof with respect tov, i.e., MaxOracle(F;v) 2
argmaxy . MinWM; v). ForF = M (Line 7), such an ef cient oracle exists for many decision
classes, such as the bottleneck shortest afhpottleneck bipartite matchin@g] and minimum
bottleneck spanning tre&][algorithms. Fo= = M n S (M) (Line 8), we can also ef ciently nd

the best super arm (excluding the supersetd gf by repeatedly removing each base arnvipnand

calling the basic maximization oracle, and then selecting the one with the maximum bottleneck value.

We describe the procedure BLUCEs follows: at each timestdp we calculate the lower and
upper con dence bounds of base arm rewards, denoted,ndw;, respectively. Then, we call
MaxOracleto nd the super armM; with the maximum pessimistic bottleneck value fréin using

w; (Line 7), and the super arivi; with the maximum optimistic bottleneck value frdwn S (M)
usingw; (Line 8). M andNr; are two critical super arms that determine when the algorithm should
stop or not. If the pessimistic bottleneck valuehdf is higher than the optimistic bottleneck value of
N (Line 9), we can determine thit; has the higher bottleneck value than any other super arm with
high con dence, and then the algorithm can stop and outputOtherwise, we select two base arms
¢ andd; with the minimum lower reward con dence boundshh andM; respectively, and play
the one with the larger con dence radius (Lines 12-14).

Bottleneck-adaptive sample strategyThe “select-minimum” sample strategy in Lines 12-14 comes
from aninsightfor the bottleneck problem: to determine tihét has a higher bottleneck value than

NT¢, it suf ces to nd a base arm fronWt; which is worse than any base arm (the bottleneck base
arm) inM¢. To achieve this, base arrasandd;, which have the most potential to be the bottlenecks

of My andM, are the most necessary ones to be sampled. This bottleneck-adaptive sample strategy
is crucial forBLUCBo achieve the tight base-arm-gap dependent sample complexity. In contrast, the
sample strategy of prior CPE algorithnisl] 12, 16] treats all base arms in critical super arriv; (

andNMr;) equally and does a uniform choice. If one naively adapts those algorithms with the current
reward functiorMinWM; w), a loose super-arm-gap dependent sample complexity is incurred.

To formally state the sample complexity BEUCPBwe introduce some notation and gap de nition.
LetN = feje2zM ;w(e) < OPGandN = feje2M ;w(e) OPT, which stand for the
necessary andnnecessarypase arms contained in the sub-optimal super arms, respectively. We
de ne the reward gap for the FC setting as



Algorithm 2 BLUCBrarallel , an improved algorithm for the FC setting under small
1: Input: 2 (0;0:01) and sub-algorithnBLUCB/erify .

2: Fork =0;1;:::, letBLUC®/erify | be the sub-algorithrBLUCB/erify with ¢ = 5=
3:fort=1;2;::: do

4: for eachk =0;1;::: such thatt mod2 =0 do

5: Start or resum8LUCB/erify , with one sample, and then suspeldUCB/erify
6: if BLUCB/erify |, returns an answeM o, thenreturn Mgy

7:  end for

8: end for

Algorithm 3 BLUCHB/erify , sub-algorithm oBLUCHarallel

1: Input: M, Y 2(0;0:01) andMaxOracle.  10:  if MinWM ;w,)  MinWN; w;) then

2: 0:01 11: return M
3M :Bsww BLUCHExplore (M ; ; MaxOracle)12:  end if

4: Initia_li_ze: play eacte 2 [n] once, and update 13: ¢, argming,y W, (€)

. Smpirical meansy.a andTn. 14 Fo t e2 Bop: wi(e) >w,(c)g
Sfort=n+1.4 LSRR ° 15: P argmaXer o qrad(e)
rad(e) R 2In(*%)=Ti(e);8e2[n] 16: Playp, and observe the reward

6:

7. wi(e) W(e) rad(e); 8e2 [n] 17:  Update empirical mean.; (pt)

8  wi(e) W(e)+ rad(e); 8e2 [n] 18:  Update the number of sampl&g.; (pr)
9: N, = MaxOracleMn S (M );w;) 19: end for

De nition 1 (Fixed—céon dence Gap)

< w(e) maxyem MINWM; w); ife2 M ; (@)
S=. w(e) maxuom :e2m MINVWM; w); if €2 N; (b)
* OPT maxwmam :e2m MII’]V(/M, W); if e2 N:

Now we present the sample complexity upper bounBIldfCB

Theorem 1 (Fixed-con dence Upper Bound)With probability at leastl , algorithm BLUCB

(Algorithm 1) for CPE-B in the FC setting returns the optimal super arm with sample complexity
0 0 1

X
0@

e2[n]

R @
—= in
C)2

€ o

Base-arm-gap dependent sample complexityDwing to the bottleneck-adaptive sample strategy,

the reward gap $ (De nition 1(a)(b)) is just de ned as the difference between some critical
bottleneck value andi(e) itself, instead of the bottleneck gap between two super arms, and thus our
result depends on the tight baseFarm-IeveI (instead of super-arm-level) gaps. For example, in Figure 1,

BLUCRNly spendO(( —2— + i=3:4:5:6 %) In 1) samples, while a naive adaptation of

prior CPE algorithms [JP1,2:112, 16] with the bottleneck reward function will cause a loose super-arm-
gap dependentresu@t( ., —2L —In 1). Regarding the optimality, Theorem 1 matches
" M M gup

the lower bound (presented in Section 4) for some family of instances (up to a logarithmic factor).

However, in general cases there still exists a gap on those needless bakk @gs;; es in Figure 1),
which are not contained in the lower bound. Next, we show how to bridge this gap.

3.2 Remove Dependence on Unnecessary Base Arms under Small

Challenges of avoiding unnecessary base arm&lnder the bottleneck reward function, in each
sub-optimal super aril 5, Only the base arms with rewards lower tl@RT(base arms ifN ) can
determine the relationship of bottleneck values betwderandM g, (the bottleneck oM gy is
the most ef cient choice to do this), and the others (base arnit)iare useless for revealing the
sub-optimality ofM gy, Hence, to determink! , all we need is to sample the base armblinand
thebottlenecks from all sub-optimal super arndenoted byB ¢p, to See that each sub-optimal super



Algorithm 4 BLUCHEXxplore , sub-algorithm oBLUCH/erify , thekey algorithm

1: Input: M, =0:01andMaxOracle. 10: return MI;B\SUm
2: Initialize: play eacte 2 [n] once, and update11: end if
empirical meanst,.; andTp+ 12: argming, W, (€)
3 fort:n+1qn+2;:::3do 13: ggum f e2 Bou
4: rad(e) R 2In(*™=)=Ti(e); 8e2[n] wi(€) > Z(MinWM; w,) + w,(e))g
5 w(e) wW(e) rad(e); 8e2 [n] 14 pargmax,go r oqfad(e)
6: wi(e) wWi(e)+ rad(e); 8e2 [n] 15:  Playp, and observe the reward
7. M{ MaxOracle(M ;w,) 16: Update empirical mean.1 (pt)
8: Bsuy BottleneckSearch (M ;M;w,) 17: Update the number of sampl&s.s (p;)
o ifwi(e) L(MINVGMw,)+ w(e) for 18 endfor

alle 2 Bgyy then

arm contains at least one base arm that is worse than anydhe iHowever, before sampling, (i)
we do not know which i81 that should be taken as the comparison benchmark, and irvkagh
which base arm is its bottleneck (includeddg,). Also, (ii) under combinatorial setting, how to
ef ciently collect B, from all sub-optimal super arms is another challenge.

To handle these challenges, we propose algorBitdCBParallel based on the explore-verify-
parallel framework 22, 10]. BLUCHBParallel (Algorithm 2) simultaneously simulates multiple
BLUCHB/erify , (Algorithm 3) with con dence / = =2¢*1 fork 2 N. BLUCB/erify , rst calls

BLUCHExplore (Algorithm 4) to guess an optimal super akh and collect anear bottleneck set
Bup With constant con dence, and then uses the required con dengeto verify the correctness

of M by only sampling base arms M andB,, Through parallel simulation&LUCHParallel
guarantees thé  correctness.

Thekey componenrtf this framework iBLUCHEXxplore (Algorithm 4), which provides a hypothe-
sized answekt and critical base armi8,, for veri cation to accelerate its identi cation process.
Below we rst describe the procedure BLUCHExplore , and then explicate its twimnovative
techniquesi.e. of ine subroutine and stopping condition, developed to handle the challenges (i), (ii).
BLUCHExplore employs the subroutinBottleneckSearch (M ; Mgy; v) to return the set of bot-
tleneck base arms from all super armsMm S (M¢y) with respect to weight vector. At each
timestep, we rst calculate the best super dvtp under lower reward con dence boumd,, and call
BottleneckSearch to collect the bottlenecldé\sum from all super arms iMnS (M) with respect
tow, (Line 8). Then, we use a stopping condition (Line 9) to examirifis correct andé\sum

is close enough t8 s, (with con dence ). If so, M, andBgyy, are eligible for veri cation and

returned; otherwise, we play a base arm fﬂdmand@sum , Which is most necessary for achieving the
stopping condition. In the following, we explicate the two innovative techniquét.IdCHExplore .

Ef cient “bottleneck-searching” of ine subroutine. BottleneckSearch (M ;Mgy; v) (Line 8)
serves as an ef cient of ine procedure to collect bottlenecks from all super arms in given decision
classMnS (M) with respect tos. To achieve ef ciency, the main idea behiBattleneckSearch

is to avoid enumerating super arms in the combinatorial space, but only enumerate bas@ drhs

to check ife is the bottleneck of some super armim S (M¢,). We achieve this by removing all
base arms with rewards lower thafe) and examining whether there exists a feasible superm
that containg in the remaining decision class. If sis the bottleneck oM and added to the output
(more procedures are designed to excl8@® .)). This ef cient of ine subroutine solves challenge

(ii) on computation complexity (see the supplementary material for its pseudo-codes and details).

Delicate “check-near-bottleneck” stopping condition. The stopping condition (Line 9) aims to
ensure the return@sum = B to satisfy the following Property (1): for each sub-optimal super
armM g, some base arra such thatw(e) %(MinWM ;W) + MinWM gy, W)) is included in
Beur, Which implies thak is near to the actual bottleneck Mg, within % M M. @nd cannot be
anyone inN'. Property (1) is crucial foBLUCB/erify to achieve the optimal sample complexity,
since it guarantees that in veri cation usifiy, to verify M just costs the same order of samples as



usingB sup, Which matches the lower bound. In the following, we explain why this stopping condition
can guarantee Property (1).

If the stopping condition (Line 9) holds, i.8¢ 2 Bsun; wi(€)  2(MinWM; w,) + w,(€)), using
the de nition of BottleneckSearch , we have that foraniy °2 Mn S (M), its bottlenecke® with
respect taw, is included in@sum and satis es that

() W€ L(MIVEM ) + MIVEM Gw)) 2 (MInVQM w) + Minvg & w);

where inequality (a) comes from (€)  (MinWM ¢; w, )+ w, (%)) andw, (¢9)) = MinWM % w,).
Hence, we can defer thatinfM %w)  w(e®)  Z(MinWM;w) + MinWM %w)) for any
MO2MnS (M), and thusM; = M (with con dence ). In addition, the returneé\sum satis es
Property (1). This stopping condition offers knowledge of a hypothesized optimal sup&t arm
and a near bottleneck sBt,, for veri cation, which solves the challenge (i) and enables the overall

sample complexity to achieve the optimality for small enougNote that these two techniques are
new in the literature, which are specially designed for handling the unique challenges of CPE-B.

We formally state the sample complexityBEUCHParallel in Theorem 2.

Theorem 2 (Improved Fixed-con dence Upper BoundlFor any < 0:01, with probability at least
1 , algorithmBLUCHParallel (Algorithm 2) for CPE-B in the FC setting returdd and takes

the expected sample complexity | |
X R2 1 X R X R? X R2n
O ( 92 In = ( 92 + ( 92 In ( 92

€ e2M [N € e2N € e2N €

P
Results without dependence ol in the dominant term. LetHy =,y [y % and

He = e % denote the veri cation and exploration hardness, respectively. Compared to
BLUCHTheorem 1), the sample complexity BEUCBParallel removes the redundant dependence
onN intheln ! term, which guarantees better performance when * HEH o ie.,

exp( HEH e ). This sample complexity matches the lower bound (within a logarithmic factor)

under small enough. For the example in Figure BLUCBParallel only requiresO(( —2— +
€1

2
€2

~—)In 1) samples, which are just enough efforts (optimal) for identifyihg.

eg:e1
The condition < 0:01in Theorem 2 is due to that the used explore-verify-parallel framevz K[
needs a small to guarantee th@&LUCHRParallel can maintain the same order of sample complexity
as its sub-algorithrBLUCB/erify . Prior pure exploration work2P, 10 also have such condition
on .

Time Complexity. All our algorithms can run in polynomial time, and the running time mainly
depends on the of ine oracles. For example sshpath instances witk edges an/ vertices, the
used of ine procedureMaxOracle andBottleneckSearch only spendO(E) andO(E?(E + V))
time, respectively. See the supplementary material for more time complexity analysis.

4 Lower Bound for the Fixed-Con dence Setting

In this section, we establish a matching sample complexity lower bound for CPE-B in the FC
setting. To formally state our results, we rst de ne the notion edorrect algorithmas follows.

For any con dence parameter2 (0; 1), we call an algorithnA a -correct algorithm if for the
xed-con dence CPE-B problemA returns the optimal super arm with probability at lehst .

Theorem 3 (Fixed-con dence Lower Bound)There exists a family of instances for the xed-
con dence CPE-B problem, for which given any2 (0;0:1), any -correct algorithm has the
expected sample complexity |

X R2 1

———1In
C)2
e2M [N( 8)

This lower bound demonstrates that the sample complexiBLafCBParallel (Theorem 2) is
optimal (within a logarithmic factor) under small enougtsince itsin ' (dominant) term does



Algorithm 5 BSARalgorithm for CPE-B in the FB setting

1: Input: blfgjgetT, M , andAR Oracle. 15: end if
2: 169(n) in:1 Il To O0.A;;R; 2. 16: /I AROracle returns? if the calculated
3g:fort=1;:::;ndo feasible set is empty
4 T T n 17: end for
Co log(n)(n t+1) 18: py argmaxMinWM ;W)  MinWNE e ;W)
5 U [nIn(Ac[ Ry) e2 U
6: Playeacke2 U;forT;y T; 1times 19:  /IMinW? ;W)= 1
7:  Update empirical meaw, (e), 8e2 U, 20: if py 2 My then
8 Wi(e) 1 foralle2 A; 21: At+1 At [T ptg; Rier Ry
9: M. AROracle (?;R¢; W) 22: else
10: for eache 2 U; do 23: At At Res Re[f pig
11: if e2 M then 24:  endif
12: Mte AROracle (?;R¢[f eg;w) 25: end for
13: else 26: return Ap+1
14: Mte AROracle (e; R;; W)

not depend on unnecessary base affmsither. In addition, if we impose some constraint on the
constructed instances, the sample complexitglof CBTheorem 1) can also match the lower bound
up to a logarithmic factor (see the supplementary material for details). The conditidhl comes

from the lower bound analysis, which ensures that the binary entropy of nding a correct or wrong
answer can be lower bounded oy . Existing pure exploration workd [, 10] also have such
condition on in their lower bounds.

Notice that, both our lower and upper bounds depend on the tight base-arm-level (instead of super-
arm-level) gaps, and capture thettleneck insightdifferent base arms in one super arm play distinct
roles in determining its (sub)-optimality and impose different in uences on the problem hardness.

5 Algorithm for the Fixed-Budget Setting

For CPE-B in the FB setting, we design a novel algoritB8ARhat adopts a special acceptance
scheme for bottleneck identi cation. We alloBSARo access an ef cient accept-reject oracle
AROracle , which takes an accepted base a&or ?, a rejected base arm detand a weight vector

v as inputs, and returns an optimal super arm from the decisionMlgssR) = fM 2 M :e2

M;R\ M = ?gwith respect tos, i.e.,AROracle 2 argmaxy ou (e;r) MinWM; w). If M (e;R)

is empty,AROracle simply returns? . Such an ef cient oracle exists for many decision classes, e.g.,
paths, matchings and spanning trees (see the supplementary material for implementation details).

BSARallocates the sample budggtto n phases adaptively, and maintains the accepted set
rejected seR; and undetermined s&k. In each phase, we only sample base arnid;iand set
the empirical rewards of base armsAinto in nity (Line 8). Then, we callAROracle to compute
the empirical best super ariwh;. For eacte 2 Uy, we forbidR; and constrair inside/outside the
calculated super arms and nd the empirical best superMgm from the restricted decision class
(Lines 12,14). Then, we accept or reject the basemrthat maximizes the empirical reward gap
betweerM andMr., i.e., the one that is most likely to be in or outMf (Line 18).

Special acceptance scheme for bottleneck and polynomial running tim&he acceptance scheme
wWi(e) 1 foralle2 A; (Line 8)is critical to the correctness and computation ef ciencB8AR
SinceA; andR; are not pulled in phasteand their estimated rewards are not accurate enough, we
need to avoid them to disturb the following calculation of empirical bottleneck values (Lines 9-18).
By setting the empirical rewards éf; to in nity, the estimation of bottleneck values for sub-optimal
super armd ¢, avoids the disturbance &f;, because eadd g, has at least one base arm with
reward lower that©®PTand this base arm will never be includediip (conditioned on high probability
events). As foM , its empirical bottleneck value can be raised, but this only enlarges the empirical
gap betweetM andM g and does not affect the correctness of the chpidéine 18). Hence, this
acceptance scheme guarantees the correctn&3Adn bottleneck identi cation task.

Compared to existing CPE-L algorith@SAR11], they force the whole sé; inside the calcu-
lated super arms in the oracle, i.e., replacing Lines 12,14 ARDracle (A¢; R; [f eg; W) and
AROracle (A; [f eg; R;; W), and deleting Line 8. Such acceptance strategy inexpsnential-time



complexity ons-t path instance$andonly worksfor the linear reward function, where the common
partA; between two compared super arms can be canceled out. If one naively applies their acceptance
strategy to our bottleneck problem, the common parts possible to drag down (dominate) the
empirical bottleneck values of all calculated super arms (Lines 9,12,14) and their empirical gaps will
become all zeros (Line 18), which destroys the correctness of the ghdit¢heoretical analysis.

BSARs the rst to run inpolynomial timeon xed-budgets-t path instances among existing CPE
algorithms, owing to its skillful acceptance scheme and the simplB®Dracle (only work with
one accepted base arm instead\gf. Speci cally, for E edges and/ vertices, the time complexity
of AROracle is O(E (E + V)) andBSARNly spend$D(E?(E + V)) time in decision making.

Now we give the de nitions of xed-budget reward gap and problem hardness, and then formally
state the error probability result 8SARFore2 M , B = OPT maxy oy :cam MiNWM; W),

andfore2M , 5= OPT maxuom :e2m MinWM; w). Let (Bl);:::; ?n) be the permutation
of %;:::; f§suchthat g, tny» and the xed-budget problem hardness is de ned as
HB =maxin (ﬁ'w Letlog(n)= ., 1.

(i)

Theorem 4 (Fixed-budget Upper Bound)or anyT > n, algorithmBSARAIlgorithm 5) for CPE-B

in the FB setting uses at moBtsamples and returns the optimal super arm with the error probability
bounded by

T n

O nexp —M
l6g(n)R2H B

Compared to the uniform sampling algorithm, which plays all base arms equally and has

O(nexp( ——-)) error probability with min = OPT maxuem MinWM; w), Theorem 4

2
min

achieves a signi cantly better correctness guarantee (whgn> i, for moste 2 [n]). In
addition, when our CPE-B problem reduces to conventinalrmed pure exploration probler][
Theorem 4 matches existing state-of-the-art resulfjnTo our best knowledge, the lower bound for
the xed-budget setting in the CPE literature [11, 20, 23, 16] remains open.

Our error probability analysis falls on taking advantage of the bottleneck property to handle the
disturbance from the accepted arm set (which are not pulled suf ciently) and guaranteeing the
estimation accuracy of bottleneck rewards. The differences between our analysis and prior analysis
for CSAR11] are highlighted as follows: (i) Prior analysi&]] relies on the linear property to
cancel out the common part between two super arms when calculating their reward gap, in order
to avoid the disturbance of accepted arms. In contrast, to achieve this goal, we utilize the special
acceptance scheme BSARo exclude all accepted arms in the calculation of bottleneck rewards,
which effectively addresses the perturbation of inaccurate estimation on accepted arms. (ii) Prior
analysis 11] mainly uses the “exchange sets” technique, which only works for the linear reward
function and leads to the dependence on the parameter of decision class structures. Instead, our
analysis exploits the bottleneck property to establish con dence intervals in the base arm level, and
effectively avoids the dependence on the parameter of decision class structures.

6 Experiments

In this section, we conduct experiments for CPE-B in FC/FB settings on synthetic and real-world
datasets. The synthetic dataset consists ofthpath and matching instances. For #ie path
instance, the number of edges (base aims) 85, and the expected reward of edgee) =

[0;20:5] (e 2 [n]). The minimum reward gap of any two edges (which is also the minimum gap
of bottleneck values between two super arms) is denoted gy 2 [0:4; 0:7]. For the matching
instances, we usem 3 complete bipartite graph, whene= 15, w(e) = [0:1; 1:08]and yin 2

[0:03; 0:07]. We change min to generate a series of instances with different hardness (plotted points
in Figures 2(a),2(b),2(e)). In terms of the real-world dataset, we use the data of American airports
and the number of available seats of ights in 2002, provided by the International Air Transportation
Association databasevw.iata.org ) [6]. Here we regard an airport as a vertex and a direct ight
connecting two airports as an edge (base arm), and also consider the number of available seats of a
ight as the expected reward of an edge. Our objective is to nd an air route connecting the starting
and destination airports which maximizes the minimum number of available seats among its passing

“Finding as-t path which contains a given edge set is NP-hard. See the supplementary material for its proof.



(a) FC,s-t path, large (b) FC,s-t path, small (c) FC, real-world, small

(d) FB, matching (e) FB, matching (f) FB, real-world

Figure 2: Experiments for CPE-B in the FC/FB setting on synthetic and real-world datasets.

ights. In this instancen = 9 andw(e) 2 [0:62; 1:84] We present the detailed graphs with speci c
values ofw(e) for the s-t path, matching and real-world air route instances in the supplementary
material.

In the FC setting, we set a large= 0:005and a small = exp( 1000), and perfornb0independent
runs to plot average sample complexity w&th% con dence intervals. In the FB setting, we set
sample budget 2 [600Q 15000] and perfornr8000independent runs to show the error probability
across runs. For all experiments, the random reward of eachee@gp] is i.i.d. drawn from
Gaussian distributioM (w(e); 1).

Experiments for the FC setting. We compare ouBLUCHBLUCHarallel  with three baselines.
BLUCSB is an ablation variant dBLUCBwhich replaces the sample strategy (Lines 12-14) with the
one that uniformly samples a base arm in critical super aGh&ICHB[11] is the state-of-the-art xed-

con dence CPE-L algorithm run with bottleneck reward functitmiformFCis a xed-con dence
uniform sampling algorithm. As shown in Figures 2(a)-2@)JUCBndBLUCBrarallel achieve

better performance than the three baselines, which validates the statistical ef ciency of our bottleneck-
adaptive sample strategy. Under smalBLUCBParallel enjoys lower sample complexity than
BLUCHIue to its careful algorithmic design to avoid playing unnecessary base arms, which matches
our theoretical results.

Experiments for the FB setting. Our BSARs compared with four baselines. As an ablation variant

of BSARBSRremoves the special acceptance scheni@SKRCSARB[11] is the state-of-the-art
xed-budget CPE-L algorithm implemented with bottleneck reward funct@oCH [14] is a regret
minimization algorithm allowing nonlinear reward functions, and in pure exploration experiments we
let it return the empirical best super arm affe(sample budget) timestepdniformFB is a xed-

budget uniform sampling algorithm. One sees from Figures 2(d)-2(f) B&ARchieves signi cantly

better error probability than all the baselines, which demonstrates that its special acceptance scheme
effectively guarantees the correctness for the bottleneck identi cation task.

7 Conclusion and Future Work

In this paper, we study the Combinatorial Pure Exploration with the Bottleneck reward function
(CPE-B) problem in FC/FB settings. For the FC setting, we propose two novel algorithms, which
achieve the optimal sample complexity for a broad family of instances (within a logarithmic factor),
and establish a matching lower bound to demonstrate their optimality. For the FB setting, we propose
an algorithm whose error probability matches the state-of-the-art result, and it is the rst to run
ef ciently on xed-budget path instances among existing CPE algorithms. The empirical evaluation
also validates the superior performance of our algorithms. There are several interesting directions
worth further research. One direction is to derive a lower bound for the FB setting, and another
direction is to investigate the general nonlinear reward functions.
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