
Supplementary Material:
Learning State Representations from

Random Deep Action-conditional Predictions

Zeyu Zheng
University of Michigan
zeyu@umich.edu

Vivek Veeriah
University of Michigan
vveeriah@umich.edu

Risto Vuorio
University of Oxford

risto.vuorio@cs.ox.ac.uk

Richard Lewis
University of Michigan
rickl@umich.edu

Satinder Singh
University of Michigan
baveja@umich.edu

A Potential Negative Societal Impact

While all AI advances can have potential negative impact on society through their misuse, this work
advances our understanding of fundamental questions of interest to RL and at least at this point is far
away from potential misuse.

B Source Code

We provide the source code for all experiments presented in the paper. The code can be found in the
./rgvfs_code directory.

C Implementation Details

C.1 Experiments on the Empty Room Environment

Neural Network Architecture. The empty room environment is fully observable and so the state
representation module is a feed-forward neural network that maps the current observation Ot to
a state vector St. It is parameterized by a 3-layer multi-layer perceptron (MLP) with 64 units in
the first two layers and 32 units in the third layer. The RL module has one hidden layer with 32
units and one output head representing the state value. (There is no policy head as the policy was
given). The answer network module also has one hidden layer with 32 units and one output layer.
ReLU activation is applied after every hidden layer. We applied a stop-gradient between the state
representation module and the RL module.

Hyperparameters. Both the value function and the answer network were updated via TD. We used
8 parallel actors to generate data and updated the parameters every 8 steps. We used the Adam
optimizer [6]. We searched the learning rate in {0.01, 0.001, 0.0001, 0.00001} and selected 0.001
for all agents except the end-to-end agent which used 0.0001. The value function updates and the
answer network updates used two separate optimizers with identical hyperparameters.

C.2 Atari Experiments

Neural Network Architecture. We used A2C [7] with a standard neural network architecture for
Atari [8] as our base agent. Specifically, the state representation module consists of 3 convolutional

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

layers. The first layer has 32 8× 8 convolutional kernels with a stride of 4, the second layer has 64
4× 4 kernels with stride 2, and the third layer has 64 3× 3 kernels with stride 1. The RL module has
one dense layer with 512 units and two output heads for the policy and the value function respectively.
The answer network has one hidden dense layer with 512 units followed by the output layer. ReLU
activation is applied after every hidden layer. We stopped the gradient from the RL module to the
state representation module.

Hyperparameters. Following convention [8], we used a stack of the latest 4 frames as the input
to the agent, i.e., the input to the state representation module at step t is (Ot−3, Ot−2, Ot−1, Ot).
We used 16 parallel actors to generate data and updated the agent’s parameters every 20 steps. The
entropy regularization was 0.01 and the discount factor for the A2C loss was 0.99. We used the
RMSProp optimizer with learning rate 0.0007, decay 0.99, and ε = 0.00001. The RL updates and
the answer network updates used two separate optimizers with identical hyperparameters. We used
two separate optimizers because the gradients from the RL loss and the gradients from the auxiliary
loss may have different statistics. The gradient from the A2C loss was clipped by global norm to 0.5.
The values for the above hyperparameters are taken from a well-tuned open-source implementation
of A2C for Atari [3]. These values are used for all methods. When not stopping gradient from the
RL loss, we mixed the RL updates and the answer network updates by scaling the learning rate for
the answer network with a coefficient c. We searched c in {0.1, 0.2, 0.5, 1, 2} on the 6 games in the
main text. c = 1 worked the best for both rGVFs and baseline methods. The mixing coefficient was
applied to the learning rate for the auxiliary loss because we used separate optimizers.

Baseline Methods. For MHVP, we used 10 value predictions following [4]. Each prediction has
a unique discount factor, chosen to be uniform in terms of their effective horizons from 1 to 100
({0, 1 − 1

10 , 1 −
1
20 , . . . , 1 −

1
90}). The architecture for MHVP is the same as rGVFs. We tried

scaling MHVP up to 1024 predictions in the six Atari games but did not observe any significant
performance improvement. Thus we decided to follow the original work. For PC, We followed
the architecture design and hyperparameters used in the original work [5]. Specifically, we center-
cropped the observation image to 80× 80 and used 4× 4 patches which resulted in 400 features. The
discount factor was set to 0.9. The output of the state representation module is first mapped to a 2592-
dimensional vector by a dense layer and then reshaped to a 32×9×9 tensor. A deconvolutional layer
then maps this 3D tensor to |A|×20×20 representing the action-values for each patch. Following [5],
we used the dueling architecture [9]. For CURL, we followed the code accompanying the original
paper 1. We used random crop as the sole data augmentation. The (84, 84, 4) stacked observation was
first randomly cropped in to (80, 80, 4) and then zero-padded to the original size. The output layer
of the answer network has 128 units. The bilinear similarity was computed by a 128× 128 matrix
whose weights were learned together with the agent parameters. The exponential-moving-average
target network used a step size of 0.001.

C.3 DeepMind Lab Experiments

Neural Network Architecture. For DeepMind Lab, we used the same RL module and answer
network module as Atari but used a different state representation module to address the partial
observability. Specifically, the convolutional layers in the state representation module were followed
by a dense layer with 512 units and a GRU core [1, 2] with 512 units.

Hyperparameters. We used 32 parallel actors to generate data and updated the agent’s pa-
rameters every 20 steps. The discount factor was 0.99. We searched the entropy regulariza-
tion in {0.001, 0.003, 0.01, 0.03, 0.1} for the A2C baseline on explore_goal_locations_small, ex-
plore_object_locations_small, and lasertag_three_opponents_small and selected 0.003. We used the
RMSProp optimizer with decay 0.99 and ε = 10−8 without tuning. We searched the learning rate in
{0.00003, 0.0001, 0.0003, 0.001} for the A2C baseline and selected 0.0003. The gradient from the
A2C loss was clipped by global norm to 0.5. The values for the above hyperparameters are used for all
methods. The RL updates and the answer network updates used two separate optimizers with identical
hyperparameters. We used two separate optimizers because the gradients from the RL loss and the
gradients from the auxiliary loss may have different statistics. For end-to-end (not stop-gradient)
agents, we searched the mixing coefficient c in {0.1, 0.2, 0.5, 1, 2} on explore_goal_locations_small,
explore_object_locations_small, and lasertag_three_opponents_small. c = 1 worked the best for

1https://github.com/aravindsrinivas/curl_rainbow

2

https://github.com/aravindsrinivas/curl_rainbow

both rGVFs and baseline methods. The mixing coefficient was applied to the learning rate for the
auxiliary loss because we used separate optimizers.

C.4 Hardware

Each agent was trained on a single NVIDIA GeForce RTX 2080 Ti in all of our experiments.

C.5 Computational Cost

Like all auxiliary task methods, the additional computation of the GVF predictions introduces an
overhead to the overall training pipeline. In our experiment, we found that the overhead was tiny.
rGVFs was only 6% slower than the A2C baseline because the bottleneck was the agent-environment
interaction rather than the parameter updates.

3

D Pseudocode for The Random Question Network Generator

Algorithm 1 A Random Question Network Generator

Input: number of features np, discount factor γ, action set A, depth D and repeat R
Output: a network G
G← an empty graph
roots← an empty set
leaves← an empty set
for i = 1 to np do

create a new feature node f in G
roots← roots ∪ {f}
leaves← leaves ∪ {f}
create a new prediction node v in G
leaves← leaves ∪ {v}
add edge < v, f, 1 > to G
add edge < v, v, γ > to G

end for
for d = 1 to D do
expanded← an empty set
for a ∈ A do
parent← randomly select R nodes from leaves without replacement
for p ∈ parent do

create a new prediction node v in G
mark v as conditioned on action a
expanded← expanded ∪ {v}
add edge < v, p, 1 > to G
f ← randomly select a node from roots
add edge < v, f, 1 > to G

end for
end for
leaves← expanded

end for

4

E Additional Empirical Results

0 20 40 60 80 100
1 / (1 - γ)

8000

10000

12000

14000

0 4 8 12 16
depth

8000

10000

12000

14000

0 8 16 24 32
repeat

8000

10000

12000

14000

0 8 16 24 32
#features

8000

10000

12000

14000

(a)

0 20 40 60 80 100
1 / (1 - γ)

500

750

1000

1250

1500

1750

0 4 8 12 16
depth

500

750

1000

1250

1500

1750

0 8 16 24 32
repeat

500

750

1000

1250

1500

1750

0 8 16 24 32
#features

500

750

1000

1250

1500

1750

(b)

Figure 1: Scatter plots of scores in (a) BeamRider and (b) SpaceInvaders obtained by rGVFs with
different hyperparameters. x-axis denotes the value of the hyperparameter. y-axis denotes the final
game score after training for 200 million frames. The red line in each panel is the line of best fit. The
dotted horizontal lines denote the performance of the end-to-end A2C baseline. The solid vertical
lines denotes the values we used in our final experiments.

5

500

1000

1500

2000

2500

Alien

0

200

400

600

800

1000
Amidar

0

2000

4000

6000

8000

10000
Assault

0

50000

100000

150000

200000

Asterix

1250

1500

1750

2000

2250

2500

Asteroids

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e6 Atlantis

0

200

400

600

800

1000

1200

BankHeist

2500

5000

7500

10000

12500

15000
BattleZone

0

2000

4000

6000

8000

10000

12000
BeamRider

25

30

35

Bowling

0

20

40

60

80

100
Boxing

0

200

400

600

Breakout

3000

4000

5000

6000
Centipede

800

900

1000

1100
ChopperCommand

20000

40000

60000

80000

100000

120000

CrazyClimber

0

100000

200000

300000

400000
DemonAttack

−15

−10

−5

DoubleDunk

−0.04

−0.02

0.00

0.02

0.04

Enduro

−100

−80

−60

−40

−20

0

20

FishingDerby

0

2

4

6

8

10

Freeway

175

200

225

250

275

300
Frostbite

0

10000

20000

30000

40000
Gopher

200

300

400

500

600
Gravitar

10000

20000

30000

Hero

−10

−9

−8

−7

−6

−5

−4
IceHockey

100

200

300

400

500
Jamesbond

0

500

1000

1500

Kangaroo

4000

6000

8000

10000
Krull

10000

20000

30000

KungFuMaster

0.0

0.5

1.0

1.5

2.0
MontezumaRevenge

1000

2000

3000

MsPacman

2000

4000

6000

8000

10000

NameThisGame

−20

−10

0

10

20
Pong

−100

0

100

200

300

PrivateEye

0

5000

10000

15000

20000

Qbert

2500

5000

7500

10000

12500

15000

17500
Riverraid

0

10000

20000

30000

RoadRunner

2

4

6

8

10

Robotank

500

750

1000

1250

1500

1750
Seaquest

500

1000

1500

2000

SpaceInvaders

0

20000

40000

60000

80000

100000
StarGunner

−22.5

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5 Tennis

3000

4000

5000

6000

7000

8000

TimePilot

100

150

200

250

Tutankham

0

100000

200000

300000

UpNDown

0.0

0.2

0.4

0.6

Venture

100000

200000

300000

VideoPinball

1000

2000

3000

4000

WizardOfWor

0 50 100 150 200
Millions of frames

0

2500

5000

7500

10000

12500

Zaxxon

A2C
A2C + rGVFs
A2C + MHVP
A2C + PC
A2C + CURL

A2C
A2C + rGVFs
A2C + MHVP
A2C + PC
A2C + CURL

end-to-end
stop-gradient

Figure 2: Learning curves in 49 Atari games. The x-axis denotes the number of frames. Each dark
curve is averaged over 5 independent runs with different random seeds. The shaded area shows the
standard error.

6

0

10

20

30

40

explore_goal_locations_large

0

50

100

150

200
explore_goal_locations_small

10

15

20

25

30

explore_object_locations_large

10

20

30

40

50
explore_object_locations_small

0.4

0.6

0.8

1.0

1.2

1.4
explore_object_rewards_few

1.0

1.5

2.0

2.5

explore_object_rewards_many

2

4

6

8

10

explore_obstructed_goals_large

0

20

40

60

80

100

explore_obstructed_goals_small

−0.20

−0.15

−0.10

−0.05

0.00
lasertag_one_opponent_large

−0.15

−0.10

−0.05

0.00
lasertag_one_opponent_small

0 50 100 150 200
Millions of frames

−0.2

−0.1

0.0

0.1

0.2

lasertag_three_opponents_large

0

5

10

15

20

lasertag_three_opponents_small

A2C
A2C + rGVFs
A2C + MHVP
A2C + PC

A2C
A2C + rGVFs
A2C + MHVP
A2C + PC

end-to-end
stop-gradient

Figure 3: Learning curves in 12 DeepMind Lab environments. The x-axis denotes the number of
frames. Each dark curve is averaged over 5 independent runs with different random seeds. The
shaded area shows the standard error.

7

References
[1] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the

properties of neural machine translation: Encoder-decoder approaches. In Dekai Wu, Marine
Carpuat, Xavier Carreras, and Eva Maria Vecchi, editors, Proceedings of SSST@EMNLP 2014,
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 25
October 2014, pages 103–111. Association for Computational Linguistics, 2014.

[2] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.

[3] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[4] William Fedus, Carles Gelada, Yoshua Bengio, Marc G. Bellemare, and Hugo Larochelle.
Hyperbolic discounting and learning over multiple horizons. CoRR, abs/1902.06865, 2019.

[5] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[6] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[7] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 1928–1937.
JMLR.org, 2016.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nat., 518(7540):529–533, 2015.

[9] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In Maria-Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop
and Conference Proceedings, pages 1995–2003. JMLR.org, 2016.

8

https://github.com/openai/baselines

	Potential Negative Societal Impact
	Source Code
	Implementation Details
	Experiments on the Empty Room Environment
	Atari Experiments
	DeepMind Lab Experiments
	Hardware
	Computational Cost

	Pseudocode for The Random Question Network Generator
	Additional Empirical Results

