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A Potential Negative Societal Impact

While all AI advances can have potential negative impact on society through their misuse, this work
advances our understanding of fundamental questions of interest to RL and at least at this point is far
away from potential misuse.

B Source Code

We provide the source code for all experiments presented in the paper. The code can be found in the
./rgvfs_code directory.

C Implementation Details

C.1 Experiments on the Empty Room Environment

Neural Network Architecture. The empty room environment is fully observable and so the state
representation module is a feed-forward neural network that maps the current observation Ot to
a state vector St. It is parameterized by a 3-layer multi-layer perceptron (MLP) with 64 units in
the first two layers and 32 units in the third layer. The RL module has one hidden layer with 32
units and one output head representing the state value. (There is no policy head as the policy was
given). The answer network module also has one hidden layer with 32 units and one output layer.
ReLU activation is applied after every hidden layer. We applied a stop-gradient between the state
representation module and the RL module.

Hyperparameters. Both the value function and the answer network were updated via TD. We used
8 parallel actors to generate data and updated the parameters every 8 steps. We used the Adam
optimizer [6]. We searched the learning rate in {0.01, 0.001, 0.0001, 0.00001} and selected 0.001
for all agents except the end-to-end agent which used 0.0001. The value function updates and the
answer network updates used two separate optimizers with identical hyperparameters.

C.2 Atari Experiments

Neural Network Architecture. We used A2C [7] with a standard neural network architecture for
Atari [8] as our base agent. Specifically, the state representation module consists of 3 convolutional
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layers. The first layer has 32 8× 8 convolutional kernels with a stride of 4, the second layer has 64
4× 4 kernels with stride 2, and the third layer has 64 3× 3 kernels with stride 1. The RL module has
one dense layer with 512 units and two output heads for the policy and the value function respectively.
The answer network has one hidden dense layer with 512 units followed by the output layer. ReLU
activation is applied after every hidden layer. We stopped the gradient from the RL module to the
state representation module.

Hyperparameters. Following convention [8], we used a stack of the latest 4 frames as the input
to the agent, i.e., the input to the state representation module at step t is (Ot−3, Ot−2, Ot−1, Ot).
We used 16 parallel actors to generate data and updated the agent’s parameters every 20 steps. The
entropy regularization was 0.01 and the discount factor for the A2C loss was 0.99. We used the
RMSProp optimizer with learning rate 0.0007, decay 0.99, and ε = 0.00001. The RL updates and
the answer network updates used two separate optimizers with identical hyperparameters. We used
two separate optimizers because the gradients from the RL loss and the gradients from the auxiliary
loss may have different statistics. The gradient from the A2C loss was clipped by global norm to 0.5.
The values for the above hyperparameters are taken from a well-tuned open-source implementation
of A2C for Atari [3]. These values are used for all methods. When not stopping gradient from the
RL loss, we mixed the RL updates and the answer network updates by scaling the learning rate for
the answer network with a coefficient c. We searched c in {0.1, 0.2, 0.5, 1, 2} on the 6 games in the
main text. c = 1 worked the best for both rGVFs and baseline methods. The mixing coefficient was
applied to the learning rate for the auxiliary loss because we used separate optimizers.

Baseline Methods. For MHVP, we used 10 value predictions following [4]. Each prediction has
a unique discount factor, chosen to be uniform in terms of their effective horizons from 1 to 100
({0, 1 − 1

10 , 1 −
1
20 , . . . , 1 −

1
90}). The architecture for MHVP is the same as rGVFs. We tried

scaling MHVP up to 1024 predictions in the six Atari games but did not observe any significant
performance improvement. Thus we decided to follow the original work. For PC, We followed
the architecture design and hyperparameters used in the original work [5]. Specifically, we center-
cropped the observation image to 80× 80 and used 4× 4 patches which resulted in 400 features. The
discount factor was set to 0.9. The output of the state representation module is first mapped to a 2592-
dimensional vector by a dense layer and then reshaped to a 32×9×9 tensor. A deconvolutional layer
then maps this 3D tensor to |A|×20×20 representing the action-values for each patch. Following [5],
we used the dueling architecture [9]. For CURL, we followed the code accompanying the original
paper 1. We used random crop as the sole data augmentation. The (84, 84, 4) stacked observation was
first randomly cropped in to (80, 80, 4) and then zero-padded to the original size. The output layer
of the answer network has 128 units. The bilinear similarity was computed by a 128× 128 matrix
whose weights were learned together with the agent parameters. The exponential-moving-average
target network used a step size of 0.001.

C.3 DeepMind Lab Experiments

Neural Network Architecture. For DeepMind Lab, we used the same RL module and answer
network module as Atari but used a different state representation module to address the partial
observability. Specifically, the convolutional layers in the state representation module were followed
by a dense layer with 512 units and a GRU core [1, 2] with 512 units.

Hyperparameters. We used 32 parallel actors to generate data and updated the agent’s pa-
rameters every 20 steps. The discount factor was 0.99. We searched the entropy regulariza-
tion in {0.001, 0.003, 0.01, 0.03, 0.1} for the A2C baseline on explore_goal_locations_small, ex-
plore_object_locations_small, and lasertag_three_opponents_small and selected 0.003. We used the
RMSProp optimizer with decay 0.99 and ε = 10−8 without tuning. We searched the learning rate in
{0.00003, 0.0001, 0.0003, 0.001} for the A2C baseline and selected 0.0003. The gradient from the
A2C loss was clipped by global norm to 0.5. The values for the above hyperparameters are used for all
methods. The RL updates and the answer network updates used two separate optimizers with identical
hyperparameters. We used two separate optimizers because the gradients from the RL loss and the
gradients from the auxiliary loss may have different statistics. For end-to-end (not stop-gradient)
agents, we searched the mixing coefficient c in {0.1, 0.2, 0.5, 1, 2} on explore_goal_locations_small,
explore_object_locations_small, and lasertag_three_opponents_small. c = 1 worked the best for

1https://github.com/aravindsrinivas/curl_rainbow
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both rGVFs and baseline methods. The mixing coefficient was applied to the learning rate for the
auxiliary loss because we used separate optimizers.

C.4 Hardware

Each agent was trained on a single NVIDIA GeForce RTX 2080 Ti in all of our experiments.

C.5 Computational Cost

Like all auxiliary task methods, the additional computation of the GVF predictions introduces an
overhead to the overall training pipeline. In our experiment, we found that the overhead was tiny.
rGVFs was only 6% slower than the A2C baseline because the bottleneck was the agent-environment
interaction rather than the parameter updates.
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D Pseudocode for The Random Question Network Generator

Algorithm 1 A Random Question Network Generator

Input: number of features np, discount factor γ, action set A, depth D and repeat R
Output: a network G
G← an empty graph
roots← an empty set
leaves← an empty set
for i = 1 to np do

create a new feature node f in G
roots← roots ∪ {f}
leaves← leaves ∪ {f}
create a new prediction node v in G
leaves← leaves ∪ {v}
add edge < v, f, 1 > to G
add edge < v, v, γ > to G

end for
for d = 1 to D do
expanded← an empty set
for a ∈ A do
parent← randomly select R nodes from leaves without replacement
for p ∈ parent do

create a new prediction node v in G
mark v as conditioned on action a
expanded← expanded ∪ {v}
add edge < v, p, 1 > to G
f ← randomly select a node from roots
add edge < v, f, 1 > to G

end for
end for
leaves← expanded

end for
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E Additional Empirical Results
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Figure 1: Scatter plots of scores in (a) BeamRider and (b) SpaceInvaders obtained by rGVFs with
different hyperparameters. x-axis denotes the value of the hyperparameter. y-axis denotes the final
game score after training for 200 million frames. The red line in each panel is the line of best fit. The
dotted horizontal lines denote the performance of the end-to-end A2C baseline. The solid vertical
lines denotes the values we used in our final experiments.
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Figure 2: Learning curves in 49 Atari games. The x-axis denotes the number of frames. Each dark
curve is averaged over 5 independent runs with different random seeds. The shaded area shows the
standard error.
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Figure 3: Learning curves in 12 DeepMind Lab environments. The x-axis denotes the number of
frames. Each dark curve is averaged over 5 independent runs with different random seeds. The
shaded area shows the standard error.
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