
Minibatch and Momentum Model-based Methods for
Stochastic Weakly Convex Optimization

Qi Deng1 Wenzhi Gao2

School of Information Management and Engineering
Shanghai University of Finance and Economics

1qideng@sufe.edu.cn 2gwz@163.shufe.edu.cn

Abstract

Stochastic model-based methods have received increasing attention lately due
to their appealing robustness to the stepsize selection and provable efficiency
guarantee. We make two important extensions for improving model-based methods
on stochastic weakly convex optimization. First, we propose new minibatch model-
based methods by involving a set of samples to approximate the model function in
each iteration. For the first time, we show that stochastic algorithms achieve linear
speedup over the batch size even for non-smooth and non-convex (particularly,
weakly convex) problems. To this end, we develop a novel sensitivity analysis of
the proximal mapping involved in each algorithm iteration. Our analysis appears
to be of independent interests in more general settings. Second, motivated by the
success of momentum stochastic gradient descent, we propose a new stochastic
extrapolated model-based method, greatly extending the classic Polyak momentum
technique to a wider class of stochastic algorithms for weakly convex optimization.
The rate of convergence to some natural stationarity condition is established over a
fairly flexible range of extrapolation terms.
While mainly focusing on weakly convex optimization, we also extend our work
to convex optimization. We apply the minibatch and extrapolated model-based
methods to stochastic convex optimization, for which we provide a new complexity
bound and promising linear speedup in batch size. Moreover, an accelerated model-
based method based on Nesterov’s momentum is presented, for which we establish
an optimal complexity bound for reaching optimality.

1 Introduction

In this paper, we are interested in the following stochastic optimization problem:

min
x ∈ X

f(x) = Eξ∼Ξ

[
f(x, ξ)

]
(1)

where f(·, ξ) stands for the loss function, sample ξ follows certain distribution Ξ, and X is a closed
convex set. We assume that f(·, ξ) is weakly convex, namely, the sum of f(x, ξ) and a quadratic
function λ

2 ‖x‖
2 is convex (λ > 0). This type of non-smooth non-convex functions can be found

in a variety of machine learning applications, such as phase retrieval, robust PCA and low rank
decomposition [9]. To solve problem (1), we consider the stochastic model-based method (SMOD,
[15, 10, 2]), which comprises a large class of stochastic algorithms (including stochastic (sub)gradient
descent, proximal point, among others). Recent work [15, 10] show that SMOD exhibits promising
convergence property: both asymptotic convergence and rates of convergence to certain stationarity

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

measure have been established for the SMOD family. In addition, empirical results [10, 16] indicate
that SMOD exhibits remarkable robustness to hyper-parameter tuning and often outperforms SGD.

Despite much recent progress, our understanding of model-based methods for weakly convex opti-
mization is still quite limited. Particularly, it is still unknown whether SMOD is competitive against
modern SGD used in practice. We highlight some important remaining questions. First, despite the
appealing robustness and stable convergence, the SMOD family is sequential in nature. It is unclear
whether minibatching, which is immensely used in training learning models, can improve the perfor-
mance of SMOD when the problem is non-smooth. Particularly, the current best complexity bound
O(L

2

ε4) from [10], which is regardless of batch size, is unsatisfactory. Were this bound tight, a se-
quential algorithm (using one sample per iteration) would be optimal: it offers the highest processing
speed per iteration as well as the best iteration complexity. Therefore, it is crucial to know whether
minibatching can improve the complexity bound of the SMOD family or the current bound is tight.
Second, in modern applications, momentum technique has been playing a vital role in large-scale
non-convex optimization (see [34, 31]). In spite of its effectiveness, to the best of our knowledge,
momentum technique has been provably efficient only in 1) unconstrained smooth optimization
[25, 11, 20] and 2) non-smooth optimization with a simple constraint [27], which constitute only a
portion of the interesting applications. From the practical aspect, it is peculiarly desirable to know
whether momentum technique is applicable beyond in SGD and whether it can benefit the SMOD
algorithm family in the non-smooth and non-convex setting.

Contributions. Our work is motivated by the aforementioned challenge to make SMOD more practi-
cally efficient. We summarize the contributions as follows. First, we extend SMOD to the minibatch
setting and develop sharper rates of convergence to stationarity. Leveraging the tool of algorithm
stability ([7, 30, 21]), we provide a nearly complete recipe on when minibatching would be helpful
even in presence of non-smoothness. Our theory implies that stochastic proximal point and stochastic
prox-linear are inherently parallelizable: both algorithms achieve linear speedup over the minibatch
size. To the best of our knowledge, this is the first time that these minibatch stochastic algorithms
are proven to exhibit such an acceleration even for non-smooth and non-convex (particularly, weakly
convex) optimization. Moreover, our theory recovers the complexity of minibatch (proximal) SGD
in [10], showing that (proximal) SGD enjoys the same linear speedup by minibatching for smooth
composite problems with non-smooth regularizers or with constrained domain.

Second, we present new extrapolated model-based methods by incorporating a Polyak-type mo-
mentum term. We develop a unified Lyapunov analysis to show that a worst-case complexity of
O(1/ε4) holds for all momentum SMOD algorithms. To the best of our knowledge, these are the first
complexity results of momentum stochastic prox-linear and stochastic proximal point for non-smooth
non-convex optimization. Since our analysis offers complexity guarantees for momentum SGD and its
proximal variant, our work appears to be more general than a recent study [27], which only proves
the convergence of momentum projected SGD. Proximal SGD is more advantageous in composite
optimization, where the non-smooth term is often involved via its proximal operator rather than the
subgradient. For example, in the Lasso problem, it is often favorable to invoke the proximal operator
of `1 function (Soft-Thresholding) to enhance solution sparsity. We summarize the complexity results
in Table 1.

Third, we develop new convergence results of SMOD for convex optimization, showing that minibatch
extrapolated SMOD achieves a promising linear speedup over the batch size under some mild condition.
Specifically, to obtain some ε-optimal solution, our proposed method exhibits an O(1/ε+ 1/(mε2))
complexity bound in the worst case. Moreover, we develop a new minibatch SMOD based on Nesterov’s
momentum, achieving the O(1/ε1/2 + 1/(mε2)) optimal complexity bound. Note that a similar
complexity result, explicitly relying on the smoothness assumption, has been shown in a recent
study [8]. Compared to this work, our analysis makes weaker assumptions, showing that smoothness
is not a must-have for many model-based algorithms, such as SPL and SPP, to get sharper complexity
bound.

Other related work. For smooth and composite optimization, it is well known that SGD can be
linearly accelerated by minibatching (c.f. [12, 19, 32]). Minibatch model-based methods have been
studied primarily in the convex setting. Asi et al. [3] investigates the speedups of minibatch stochastic
model-based methods in the convex smooth, restricted strongly convex and convex interpolation
settings, respectively. Since their assumptions differ from ours, the technique does not readily apply
to the non-convex setting. Chadha et al. [8] studies the accelerated minibatch model-based methods

2

Table 1: Complexity of SMOD to reach E ‖∇1/ρf‖ ≤ ε (M: minibatch; E: Extrapolation, m: batch
size)

Algorithms Problem Current Best Ours
M + SGD f : non-smooth O(1/ε4)[10] O(1/ε4)

M + Prox. SGD f = `+ ω; `:smooth O(1/(mε4) + 1/ε2)[10] O(1/(mε4) + 1/ε2)
M + SPL/SPP f : non-smooth O(1/ε4)[10] O(1/(mε4) + 1/ε2)

E + SGD f : non-smooth O(1/ε4)[27] O(1/ε4)
E + Prox. SGD f = `+ ω; `:smooth — O(1/ε4)
E + SPL/SPP f : non-smooth — O(1/ε4)
M + E + SGD f : non-smooth O(1/ε4)[27] O(1/ε4)

M + E + Prox. SGD f = `+ ω; `:smooth — O(1/(mε4) + 1/ε2)
M + E + SPL/SPP f : non-smooth — O(1/(mε4) + 1/ε2)

for convex smooth and convex interpolated problems. The interpolation setting, where the model
can perfectly fit the data, is not considered in our paper. Algorithm stability [7, 30]—an important
technique for analyzing the generalization performance of stochastic algorithms [21, 4], is the key
tool to obtain some of our convergence results. In contrast to the traditional work, our paper employs
the stability argument to obtain sharper optimization convergence rates (with respect to the batch
size). See Section 3. As noted by an anonymous reviewer, a similar idea of using stability analysis
was proposed by Wang et al. [33], albeit with a different motivation from distributed stochastic
optimization. Robustness and fast convergence of model-based methods have been shown on various
statistical learning problems [9, 16, 2, 5, 17, 6]. Drusvyatskiy and Paquette [14] give a complete
complexity analysis of the accelerated proximal-linear methods for deterministic optimization. Zhang
and Xiao [35] further improve the convergence rates of prox-linear methods on certain finite-sum and
stochastic problems by using variance-reduction. Momentum and accelerated methods for convex
stochastic optimization can be referred from [26, 29]. The study [11, 25, 34] develop the convergence
rate of stochastic momentum method for smooth non-convex optimization.

2 Background

Throughout the paper, we use ‖ · ‖ to denote the Euclidean norm and 〈·, ·〉 to denote the Euclidean
inner product. We assume that f(x) is bounded below. i.e., minx f(x) > −∞. The subdifferential
∂f(x) of function f(x) is the set of vectors v ∈ Rd that satisfy: f(y) ≥ f(x) + 〈v, y− x〉+ o(‖x−
y‖), as y → x. Any such vector in ∂f(x) is called a subgradient and is denoted by f ′(x) ∈ ∂f(x)
for simplicity. We say that a point x is stationary if 0 ∈ ∂f(x) + NX (x), where the normal cone
NX (x) is defined as NX (x) , {d : 〈d, y− x〉 ≤ 0,∀y ∈ X}. For a set S, define the set distance to 0

by: ‖S‖− , inf{‖x− 0‖, x ∈ S}. It is natural to use the quantity ‖∂f(x) +NX (x)‖− to measure
the stationarity of point x.

Moreau-envelope. The µ-Moreau-envelope of f is defined by fµ(x) , miny∈X
{
f(y) + 1

2µ‖x−
y‖2
}

and the proximal mapping associated with f(·) is defined by proxµf (x) , argminy∈X
{
f(y)+

1
2µ‖x− y‖

2
}
. Assume that f(x) is λ-weakly convex, then for µ < λ−1, the Moreau envelope fµ(·)

is differentiable and its gradient is∇fµ(x) = µ−1(x− proxµf (x)).

The SMOD family iteratively computes the proximal map associated with a model function fxk(·, ξk):

xk+1 = argmin
x∈X

{
fxk(x, ξk) +

γk
2
‖x− xk‖2

}
, (2)

where {ξk} are i.i.d. samples. Typical algorithms and the accompanied models are described below.

Stochastic (Proximal) Gradient Descent: consider the composite function f(x, ξ) = `(x, ξ)+ω(x)
where `(x, ξ) is a data-driven and weakly-convex loss term and ω(x) is a convex regularizer such as
`1-penalty. SGD applies the model function:

fy(x, ξ) = `(y, ξ) +
〈
`′(y, ξ), x− y

〉
+ ω(x). (3)

Stochastic Prox-linear (SPL): consider the composition function f(x, ξ) = h(C(x, ξ)) where
h(·, ξ) is convex continuous and C(x, ξ) is a continuously differentiable map. We perform partial

3

linearization to obtain the model

fy(x, ξ) = h
(
C(y, ξ) + 〈∇C(y, ξ), x− y〉

)
. (4)

Stochastic Proximal Point (SPP): compute (2) with full stochastic function:

fy(x, ξ) = f(x, ξ). (5)

Throughout the paper, we assume that f(x, ξ) is continuous and µ-weakly convex, and that the model
function fx(·, ·) satisfies the following assumptions [10].

A1: For any ξ ∼ Ξ, the model function fx(y, ξ) is λ-weakly convex in y (λ ≥ 0).
A2: Tightness condition: fx(x, ξ) = f(x, ξ), ∀x ∈ X , ξ ∼ Ξ.

A3: One-sided quadratic approximation: fx(y, ξ)− f(y, ξ) ≤ τ
2‖x− y‖

2, ∀x, y ∈ X , ξ ∼ Ξ.

A4: Lipschitz continuity: There exists L > 0 that fx(z, ξ) − fx(y, ξ) ≤ L ‖z − y‖, for any
x, y, z ∈ X , ξ ∼ Ξ.

Remark 1. Assumption A2 is quite standard and will be used only in the convergence proof. Com-
bining A1 and A3, we immediately have that f(x, ξ) is (λ+ τ)-weakly convex. Thus, it suffices to
assume that µ < τ + λ. Assumptions A2-A4 can be slightly relaxed by replacing the uniform bound
with a bound on expectation over ξ, leading to only a minor adjustment to the analysis.

Denote x̂ , proxf/ρ(x) = argminy
{
f(y) + ρ

2‖y − x‖
2
}

for some ρ > µ. Davis and Drusvyatskiy
[10] revealed a striking feature of Moreau envelope to characterize stationarity:

‖x̂− x‖ = ρ−1‖∇f1/ρ(x)‖, and ‖∂f(x̂) +NX (x̂)‖− ≤ ‖∇f1/ρ(x)‖.
Namely, a point x with small gradient norm ‖∇f1/ρ(x)‖ stays in the proximity of a nearly-stationary
point x̂. With this observation, they show the first complexity result of SMOD for non-smooth non-
convex optimization: min1≤k≤K E[‖∇f1/ρ(x

k)‖]2 ≤ O(L√
K

). Note that this rate is regardless of
the size of minibatches since it does not explicitly use any information of the samples other than the
Lispchitzness of the model function. Due to this limitation, it remains unclear whether minibatching
can further improve the convergence rate of SMOD.

3 SMOD with minibatches

In this section, we present a minibatch SMOD method which takes a small batch of i.i.d. samples to
estimate the model function. The overall procedure is detailed in Algorithm 1. Within each iteration,
Algorithm 1 forms a stochastic model function fxk(·, Bk) = 1

mk

∑mk

i=1 fxk(x, ξk,i) parameterized at
xk by sampling over mk i.i.d. samples Bk = ξk,1, . . . , ξk,mk

. Then it performs proximal update to
get the next iterate xk+1. We will illustrate the main convergence results of Algorithm 1 and leave all
the proof details in Appendix sections. But first, let us present an additional assumption.

A5: Two-sided quadratic bound: for any x, y ∈ X , ξ ∼ Ξ,
∣∣fx(y, ξ)− f(y, ξ)

∣∣ ≤ τ
2‖x− y‖

2.

Remark 2. Assumption A5 is vital for our improved convergence analysis. While it is slightly stronger
than A3, A5 is indeed satisfied by the SMOD family in most contexts: 1) For SPP, A5 is trivially satisfied
by taking fx(y, ξ) = f(y, ξ). 2) For SPL, we minimize a composition function f(x, ξ) = h(Cξ(x))
where h(·) is a c1-Lipschitz convex function and Cξ(·) is a c2-Lipschitz smooth map. In view of (4),
A5 is verified with |fx(y, ξ)− f(y, ξ)| ≤ c1

∥∥Cξ(y)−Cξ(x)−∇Cξ(x)T(y− x)
∥∥ ≤ c1c2

2 ‖x− y‖
2.

3) For SGD, A5 is satisfied if `(·, ξ) is c3-Lipschitz smooth for some c3 > 0, as |fx(y, ξ)− f(y, ξ)| ≤
|`(y, ξ)− `(x, ξ)−∇`(x, ξ)T(y − x)| ≤ c3

2 ‖x− y‖
2. We note that A5 is not satisfied by SGD when

the loss `(·, ξ) is also non-smooth. Unfortunately, there seems to be little hope to accelerate SGD in
such a case since the convergence rate of SGD already matches the rate of deterministic subgradient
method.

We present an improved complexity analysis of SMOD by leveraging the framework of algorithm
stability [7, 30]. In stark contrast to its standard application in characterizing the algorithm gener-
alization performance, stability analysis is applied to determine how the variation of a minibatch
affects the estimation of the model function in each algorithm iteration.

4

Algorithm 1 Stochastic Model-based Method with Minibatches (SMOD)
Input: x1

for k = 1 to K do
Sample a minibatch Bk = {ξk,1, . . . , ξk,mk

} and update xk+1 by solving

min
x∈X

{
1

mk

mk∑
i=1

fxk

(
x, ξk,i

)
+
γk
2

∥∥x− xk∥∥2

}
(6)

end for

Notations. Let B = {ξ1, ξ2, . . . , ξm} be a batch of i.i.d. samples and B(i) = B \ {ξi} ∪ {ξ′i} by
replacing ξi with an i.i.d. copy ξ′i, and B′ = {ξ′1, ξ′2, . . . , ξ′m}. Let h(·, ξ) be a stochastic model
function, and denote h(y,B) = 1

m

∑m
i=1 h(y, ξi). The stochastic proximal mapping associated with

h(·, B) is defined by proxρh(x,B) , argminy∈X
{
h(y,B) + 1

2ρ‖y − x‖
2
}

for some ρ > 0. We
denote x+

B , proxρh(x,B) for brevity. We say that the stochastic proximal mapping proxρh is
ε-stable if, for any x ∈ X , we have∣∣EB,B′,i[h(x+

B(i)
, ξ′i)− h(x+

B , ξ
′
i)
]∣∣ ≤ ε, (7)

where i is an index chosen from {1, 2, . . . ,m} uniformly at random.

The next lemma exploits the stability of proximal mapping associated with the model function.
Lemma 3.1. Let fz(·, B) be a stochastic model function under the assumptions A1-A4. For γ ∈
(λ,∞), vectors z and y, the proximal mapping proxfz/γ(y,B) = argminx∈X

{
fz(x,B) + γ

2 ‖x−
y‖2
}

is ε-stable with ε = 2L2

m(γ−λ) .

Applying Lemma 3.1, we obtain the error bound for approximating the full model function in the
next theorem.
Theorem 3.2. Under all the assumptions of Lemma 3.1, we have∣∣EBk

[
fxk(xk+1, Bk)− Eξfxk(xk+1, ξ)|σk

]∣∣ ≤ εk, εk = 2L2

mk(γk−λ) . (8)

where σk is the σ-algebra generating {Bi}1≤i≤k−1.

Note that since xk+1 is dependent on Bk, fxk(xk+1, Bk) is not an unbiased estimator of
Eξ[fxk(xk+1, ξ)]. However, the stability argument identifies that the expected approximation error is
a decreasing function of batch size mk. This observation is the key to the sharp analysis of minibatch
stochastic algorithms. With all the tools at our hands, we obtain the key descent property in the
following theorem.
Theorem 3.3. Suppose that ρ > λ+ τ , γk ≥ ρ+ τ , A5 and all the assumptions in Lemma 3.1 hold.
Let Ek[·] abbreviates EBk

[
· |σk

]
and εk be given by (8), then we have

(ρ− λ− τ)

ρ(γk + ρ− 2λ− τ)
‖∇f1/ρ(x

k)‖2 ≤ f1/ρ(x
k)− Ek

[
f1/ρ(x

k+1)
]

+
ρεk

γk + ρ− 2λ− τ
. (9)

Next, we specify the rate of convergence to stationarity using a constant stepsize policy.
Theorem 3.4. Under the assumptions of Theorem 3.3, let ∆ = f1/ρ(x

1) − minx f(x), mk = m,

and γk = γ = max{ρ+ τ, λ+ η} where η =
√
K

α0
√
m

and α0 ∈ (0,∞). Let k∗ be an index chosen in
{1, 2, . . . ,K} uniformly, then we have

E
[
‖∇f1/ρ(x

k∗)‖2
]
≤ ρ

ρ− λ− τ

[
(2ρ− λ)∆

K
+
(∆

α0
+ 2α0ρL

2
) 1√

mK

]
. (10)

Remark 3. The performance of SMOD depends on α0 and batch size m. (10) implies that when
batch size is fixed, the best rate is obtained at α∗0 =

√
∆
2ρ

1
L . Since both ∆ and L are unknown,

5

Algorithm 2 Stochastic Extrapolated Model-Based Method (SEMOD)
Input: x0, x1, β, γ;
for k = 1 to K do

Sample data ξk and update:

yk = xk + β(xk − xk−1) (11)

xk+1 = argmin
x∈X

{
fxk(x, ξk) +

γ

2
‖x− yk‖2

}
(12)

end for

hyper-parameter tuning over α0 is required to obtain good empirical performance. For the simplicity
of theoretical analysis, let us take α0 = α∗0. Hence, to obtain an iterate whose Moreau envelop has
expected gradient norm smaller than ε, the total iteration count is Tε = max

{
O(∆

ε2),O(L
2∆
mε4)

}
. For

small batch size m (i.e. m = o(1/ε2)), the second term in max(,) dominates the bound Tε, yielding
a total complexity ofO(L

2∆
mε4). Note that this complexity bound is better than theO(L

2∆
ε4) bound [10]

by a factor of m.
Remark 4. Theorem 3.4 implies that SGD can be accelerated by minibatching on the smooth composite
problems (3) but leaves out the more general problems where `(x, ξ) is non-smooth and weakly
convex. In the latter case, showing any improved rate of minibatch SGD is substantially more
challenging. Without additional knowledge, the O(L

2∆
ε4) complexity of SGD already matches the best

result for deterministic subgradient method (c.f. [10]). It remains unknown whether such O(1/ε4)
bound is tight or not, and a possible direction to obtain sharper complexity bound is by exploiting the
non-smooth structure information such as sharpness.

Solving the subproblems. SGD is embarrassingly parallelizable by simply averaging the stochastic
subgradients. We highlight how to solve the proximal subproblems for SPL and SPP. Consider the
composition function f(x, ξ) = h(C(x, ξ)) where h(a) = |a|. For SPL, it is easy to transform
the corresponding subproblem to an O(mk)-dimensional quadratic program (QP) in the dual space
(e.g. [3]). The dual QP can be efficiently solved in parallel, for example, by a fast interior point solver.
For SPP, we show that the subproblem can be solved by a deterministic prox-linear method at a rapid
linear convergence rate. Note that the SPP subproblem is especially well-conditioned because our
stepsize policy ensures a large strongly convex parameter γ − λ. We refer to the appendix for more
technical details.

4 SMOD with momentum

We present a new model-based method by incorporating an additional extrapolation term, and we
record this stochastic extrapolated model-based method in Algorithm 2. Each iteration of Algorithm 2
consists of two steps, first, an extrapolation step is performed to get an auxiliary update yk. Then
a random sample ξk is collected and the proximal mapping, associated with the model function
fxk(·, ξk), is computed at yk to obtain the new point xk+1. For ease of exposition, we take constant
values of stepsize and extrapolation term.

Note that Algorithm 2 can be interpreted as an extension of the momentum SGD by replacing the
gradient descent step with a broader class of proximal mappings. To see this intuition, we combine
(11) and (12) to get

xk+1 = argmin
x∈X

{
fxk(x, ξk) + γβ〈xk−1 − xk, x− xk〉+

γ

2
‖x− xk‖2

}
, (13)

If we choose the linear model (3), i.e., fxk(x, ξk) = f(xk, ξk) + 〈f ′(xk, ξk), x− xk〉, and assume
X = Rd, then the update (13) has the following form:

xk+1 = xk − γ−1f ′(xk, ξk)− β(xk−1 − xk). (14)

Define vk , γ(xk−1 − xk) and apply it to (14), then Algorithm 2 reduces to the heavy-ball method

vk+1 = f ′(xk, ξk) + βvk, (15)

xk+1 = xk − γ−1vk+1. (16)

6

Despite such relation, the gradient averaging view (15) only applies to SGD for unconstrained
optimization, which limits the use of standard analysis of heavy-ball method ([34]) for our problem.
To overcome this issue, we present a unified convergence analysis which can deal with all the model
functions and is amenable to both constrained and composite problems.

Our theoretical analysis of Algorithm 2 relies on a different potential function from the one in the
previous section. Let us define the auxiliary variable

zk , xk +
β

1− β
(xk − xk−1). (17)

The following lemma proves some approximate descent property by adopting the potential function
f1/ρ(z

k) + ρ(γβ+ρβ2θ−2)
2(γθ−λθ) ‖xk − xk−1‖2 and measuring the quantity of ‖∇f1/ρ(z

k)‖.

Lemma 4.1. Assume that ρ ≥ 2(τ + λ) and β ∈ [0, 1). Let θ = 1− β. Then we have

(ρ− λθ)
2ρ(γθ − λθ)

‖∇f1/ρ(z
k)‖2 ≤ f1/ρ(z

k)− Ek
[
f1/ρ(z

k+1)
]

+
ρL2

(γθ2 − ρβ2θ−1)(γθ2 − λθ2)

+
ρ(γβ + ρβ2θ−2)

2(γθ − λθ)
(
‖xk − xk−1‖2 − Ek[‖xk+1 − xk‖2]

)
− ρ(γ − ρβ2θ−3)

4(γ − λ)
Ek[‖xk+1 − xk‖2]. (18)

Invoking Lemma 4.1 and specifying the stepsize policy, we obtain the main convergence result of
Algorithm 2 in the following theorem.

Theorem 4.2. Under assumptions of Lemma 4.1, if we choose x1 = x0, and set γ = γ0θ
−1
√
K +

λ+ ρβ2θ−3 for some γ0 > 0, then

E[‖∇f1/ρ(z
k∗)‖2] ≤ 2ρ

ρ− λ

[
ρβ2θ−2∆

K
+
(
γ0∆ +

ρL2

θγ0

) 1√
K

]
(19)

where k∗ is an index chosen in {1, 2, . . . ,K} uniformly at random.
Remark 5. Despite the fact that convergence is established for all γ0 > 0, we can see that the optimal

γ0 would be γ0 =
√

ρ
∆θL, which gives the bound E[‖∇f1/ρ(z

k∗)‖2] ≤ 2ρ
ρ−λ

(
ρβ2θ−2∆

K +2L
√

ρ∆
θK

)
.

In practice, we can set γ0 to a suboptimal value and obtain a possibly loose upper-bound.
Remark 6. Since zk is an extrapolated solution, it may not be feasible. It is desirable to show
optimality guarantee at iterates xk. Note that using Lemma 4.1 and the parameters in Theorem 4.2,
it is easy to show that E[‖xk∗ − xk

∗−1‖2] = O(1
K). Based on (17) we have ‖zk∗ − xk

∗‖2 =

β2θ−2E[‖xk∗ − xk∗−1‖2] = O(1
K). Using Lipschitz smoothness of Moreau envelop, we can show

E[‖∇f1/ρ(x
k∗)‖2] converges at the same O(1√

K
) rate as is shown in Theorem 4.2.

Combining momentum and minibatching, we develop a minibatch version of Algorithm 2 that takes
a batch of samples Bk in each iteration. The convergence analysis of this minibatch SEMOD is more
involving. We leave the details in the Appendix but informally state the main result below.
Theorem 4.3 (Informal). In the minibatch SEMOD, suppose that A5 holds, the batch size |Bk| = m

and γ = O(
√

K
m), then E[‖∇f1/ρ(z

k∗)‖2] = O
(

1
K +

√
1
mK

)
.

5 SMOD for convex optimization

Besides the study on non-convex optimization, we also apply model-based methods to stochastic
convex optimization. Due to the space limit, we highlight main theoretical results but defer all the
technical details to the Appendix section. We show that if certain assumption adapted from A5
for the convex setting holds, then the function gap of minibatching SEMOD converges at a rate of
O
(

1
K + 1√

mK

)
. In view of this result, the deterministic part of our rate is consistent with the best

O(1
K) rate for the heavy-ball method. For example, see [13, 18]. Moreover, the stochastic part of the

rate is improved from the O(1√
K

) rate of Theorem 4.4 [10] by a factor of
√
m.

7

An important question arises naturally: Can we further improve the convergence rate of model-based
methods for stochastic convex optimization? Due to the widely known limitation of heavy-ball type
momentum, it would be interesting to consider Nesterov’s acceleration. To this end, we present a
model-based method with Nesterov type momentum. Thanks to the stability argument, we obtain
the following improved rate of convergence: O

(
1
K2 + 1√

mK

)
. We note that a similar convergence

rate for minibatching model-based methods is obtained in a recent paper [8]. However, their result
requires the assumption that the stochastic function is Lipschitz smooth while our assumption is
much weaker.

6 Experiments

In this section, we examine the empirical performance of our proposed methods through experiments
on the problem of robust phase retrieval. (Additional experiments on blind deconvolution are given
in Appendix section). Given a set of vectors ai ∈ Rd and nonnegative scalars bi ∈ R+, the goal of
phase retrieval is to recover the true signal x∗ from the measurement bi = |〈ai, x∗〉|2. Due to the
potential corruption in the dataset, we consider the following penalized formulation

min
x ∈ Rd

1

n

n∑
i=1

∣∣〈ai, x〉2 − bi∣∣ (20)

where we impose `1-loss to promote robustness and stability (cf. [16, 10, 27]).

Data Preparation. We conduct experiments on both synthetic and real datasets.

1) Synthetic data. Synthetic data is generated following the setup in [27]. We set n = 300, d = 100
and select x∗ from unit sphere uniformly at random. Moreover, we generate A = QD where
Q ∈ Rn×d, qij ∼ N (0, 1) and D ∈ Rd is a diagonal matrix whose diagonal entries are evenly
distributed in [1/κ, 1]. Here κ ≥ 1 plays the role of condition number (large κ makes problem hard).
The measurements are generated by bi = 〈ai, x∗〉2 + δiζi (1 ≤ i ≤ n) with ζi ∼ N (0, 25), δi ∼
Bernoulli(pfail), where pfail ∈ [0, 1] controls the fraction of corrupted observations on expectation.

2) Real data. We consider zipcode, a dataset of 16 × 16 handwritten digits collected from [22].
Following the setup in [16], let H ∈ R256×256 be a normalized Hadamard matrix such that hij ∈{

1
16 ,−

1
16

}
, H = HT and H = H−1. Then we generate k = 3 diagonal sign matrices S1, S2, S3

such that each diagonal element of Sk is uniformly sampled from {−1, 1}. Last we set A =
[HS1, HS2, HS3] T ∈ R(3×256)×256. As for the true signal and measurements, each image is
represented by a data matrix X ∈ R16×16 and gets vectorized to x∗ = vec(X). To simulate the case
of corruption, we set measurements b = φpfail(Ax

∗), where φpfail(·) denotes element-wise squaring
and setting a fraction pfail of entries to 0 on expectation.

In the first experiment, we illustrate that SMOD methods enjoy linear speedup in the size of minibatches
and exhibit strong robustness to the stepsize policy. We conduct comparison on SPL and SGD and
describe the detailed experiment setup as follows.

1) Dataset generation. We generate four testing cases: the synthetic datasets with (κ, pfail) =
(10, 0.2), and (10, 0.3); zipcode with digit images of id 2 and 24;

2) Initial point. We set the initial point x1(= x0) ∼ N (0, Id) for synthetic data and x1 = x∗ +
N (0, Id) for zipcode;

3) Stopping criterion. We set the stopping criterion to be f(xk) ≤ 1.5f̂ , where f̂ = f(x∗) is the
corrupted objective evaluated at the true signal x∗;

3) Stepsize. We set the parameter γ = α−1
0

√
K/m where m is the batch size; For synthetic dataset,

we test 10 evenly spaced α0 values in range [10−1, 102] on logarithmic scale, and for zipcode
dataset we set such range of α0 to [101, 103];

4) Maximum iteration. We set the maximum number of epochs to be 200 and 400 respectively for
minibatch and momentum related tests;

5) Batch size. We take minibatch size m from the range {1, 4, 8, 16, 32, 64};
6) Sub-problems The solution to the proximal sub-problems is left in the appendix.

8

For each algorithm, speedup from minibatching is quantified as T ∗1 /T
∗
m where T ∗m is the total number

of iterations for reaching the desired accuracy, with batch size m and the best initial stepsize α0

among values specified above. Specially, if an algorithm fails to reach desired accuracy after running
out of 400 epochs, we set its iteration number to the maximum.

0 10 20 30 40 50 60
0

20

40

60

80

100

120
SGD
SPL
SPP

0 10 20 30 40 50 60
0

20

40

60

80

100

120
SGD
SPL
SPP

0 10 20 30 40 50 60
0

20

40

60

80
SGD
SPL
SPP

0 10 20 30 40 50 60
0

20

40

60

80

100
SGD
SPL
SPP

Figure 1: Speedup over minibatch sizes. The left two are for synthetic datasets κ = 10, pfail ∈
{0.2, 0.3}; Digit datasets: digit image (id:24) with pfail ∈ {0.2, 0.3}.

10-1 100 101 102
0

2

4

6

8

10
SGD
SPL
SPP

10-1 100 101 102
0

10

20

30

40

50
SGD
SPL
SPP

100 101 102 103
0

2

4

6

8

10

12
SGD
SPL
SPP

100 101 102 103
0

10

20

30

40

50
SGD
SPL
SPP

10-1 100 101 102
0

1

2

3

4

5

6
104

SGD
SPL
SPP

10-1 100 101 102
0

1

2

3

4

5

6
104

SGD
SPL
SPP

100 101 102 103
0

5

10

15

104

SGD
SPL
SPP

100 101 102 103
0

5

10

15

104

SGD
SPL
SPP

Figure 2: From left to right: synthetic datasets with m ∈ {8, 32} and zipcode image (id=24) with
m ∈ {8, 32}. x-axis: initial stepsize α0. y-axis (first row): speedup over the sequential version:
T ∗1 /T

∗
m(α0) where T ∗m(α0) stands for the number of iterations when using batch size m and initial

stepsize α0. y-axis (second row): Total number of iterations.

Figure 1 plots the speedup of each algorithm over different values of batch size according to the
average of 20 independent runs. It can be seen that SPL exhibits a linear acceleration over the
batch size, which confirms our theoretical analysis. Moreover, we find SGD admits considerable
acceleration using minibatches, and sometimes the speedup performance matches that of SPL and
SPP. This observation seems to suggest the effectiveness of minibatch SGD in practice, despite the
lack of theoretical support.

Next, we investigate the sensitivity of minibatch acceleration to the choice of initial stepsizes. We
plot the algorithm speedup over the initial stepsize α0 in Figure 2 (1st row). It can be readily seen that
SGD, SPL and SPP all achieve considerable minibatch acceleration when choosing the initial stepsize
properly. However, SPL and SPP enjoy a much wider range of initial stepsizes for good speedup
performance, and hence, lays more robust performance than SGD. To further illustrate the robustness
of SPL and SPP, we compare the efficiency of both algorithms in the minibatch setting. In contrast to
the previous comparison on the relative scale, we directly compare the iteration complexity of the
two algorithms. We plot the total iteration number over the choice of initial stepsizes in Figure 2
(2nd row) for batch size m = 8 and 32. We observe that minibatch SPL(SPP)s exhibits promising
performance for a wide range of stepsize policies, while minibatch SGD quickly diverges for large
stepsizes. Overall, our experiment complements the recent work [10], which shows that SPL (SPP) is
more robust than SGD in the sequential setting.

Our second experiment investigates the performance of the proposed momentum methods. We
compare three model-based methods (SGD, SPL, SPP) and extrapolated model-based methods (SEGD,
SEPL, SEPP). We generate four testing cases: the synthetic datasets with (κ, pfail) = (10, 0.2) and

9

(10, 0.3); zipcode with digit images of id 2 and pfail ∈ {0.2, 0.3}. We set α0 ∈ [10−2, 100], β = 0.6
for synthetic data, and set α0 ∈ [100, 101], β = 0.9 for zipcode dataset. The rest of settings are the
same as in minibatch with m = 1.

Figure 3 plots the number of epochs to ε-accuracy over initial stepsize a0. It can be seen that with
properly selected momentum parameters (SEGD, SEPL, SEPP) all suggest improved convergence when
stepsize is relatively small.

10-2 10-1 100
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SPP

10-2 10-1 100
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SPP

100 101
0

100

200

300

400

SGD
SPL
SPP
SEGD
SEPL
SEPP

100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

Figure 3: From left to right: synthetic datasets with κ = 10, pfail ∈ {0.2, 0.3}, β = 0.6 and zipcode
image (id=2) with pfail ∈ {0.2, 0.3}, β = 0.9. x-axis: initial stepsize α0. y-axis: number of epochs
on reaching desired accuracy

10-2 10-1 100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

10-2 10-1 100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

Figure 4: From left to right: synthetic datasets with κ = 10, pfail = 0.2, β = 0.6,m ∈ {1, 32} and
zipcode image (id=24) with pfail = 0.3, β = 0.9,m ∈ {1, 32}. x-axis: initial stepsize α0. y-axis:
number of epochs for reaching desired accuracy

In the last experiment, we attempt to exploit the performance of the compared algorithms when
minibatching and momentum are applied simultaneously. The parameter setting is the same as that of
the second experiment, except that we choose m ∈ {1, 32}. Results are plotted in Figure 4 and it
can be seen that minibatch, when combined with momentum, exhibits even better convergence and
robustness.

7 Discussion

On a broad class of non-smooth non-convex (particularly, weakly convex) problems, we make
stochastic model-based methods more efficient by leveraging minibatching and momentum—two
techniques that are well-known only for SGD. Applying algorithm stability for optimization analysis
is a key step to achieving improved convergence rate over the batch size. This perspective appears
to be interesting for stochastic optimization in a much broader context. Although some progress
is made, we are unable to show whether minibatches can accelerate SGD when the objective does
not have a smooth component. Note that the complexity of SGD already matches the best bound
of full subgradient method. It would be interesting to know whether this bound for SGD is tight
or improvable. It would also be interesting to study the lower bound of SGD (and other stochastic
algorithms) in the non-smooth setting. Some interesting recent results can be referred from [23, 36].

8 Acknowledgement and disclosure of funding

The authors are grateful to the Area Chairs and the anonymous reviewers for their constructive
suggestions. QD was partially supported by National Natural Science Foundation of China (Grant
11831002, 72150001).

10

References
[1] H. Asi and J. C. Duchi. Stochastic (approximate) proximal point methods: Convergence,

optimality, and adaptivity. Siam Journal on Optimization, 29(3):2257–2290, 2019.

[2] H. Asi and J. C. Duchi. The importance of better models in stochastic optimization. Proceedings
of the National Academy of Sciences, 116(46):22924–22930, 2019.

[3] H. Asi, K. Chadha, G. Cheng, and J. C. Duchi. Minibatch stochastic approximate proximal point
methods. Advances in Neural Information Processing Systems, 33, 2020.

[4] R. Bassily, V. Feldman, C. Guzmán, and K. Talwar. Stability of stochastic gradient descent on
nonsmooth convex losses. Advances in Neural Information Processing Systems, 33, 2020.

[5] L. Berrada, A. Zisserman, and M. P. Kumar. Deep frank-wolfe for neural network optimization.
In ICLR 2019 : 7th International Conference on Learning Representations, 2019.

[6] A. Botev, H. Ritter, and D. Barber. Practical gauss-newton optimisation for deep learning. In
International Conference on Machine Learning, pages 557–565. PMLR, 2017.

[7] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of machine learning research,
2(Mar):499–526, 2002.

[8] K. Chadha, G. Cheng, and J. C. Duchi. Accelerated, optimal, and parallel: Some results on
model-based stochastic optimization. arXiv preprint arXiv:2101.02696, 2021.

[9] V. Charisopoulos, Y. Chen, D. Davis, M. Díaz, L. Ding, and D. Drusvyatskiy. Low-rank matrix
recovery with composite optimization: good conditioning and rapid convergence. arXiv preprint
arXiv:1904.10020, 2019.

[10] D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex functions.
Siam Journal on Optimization, 29(1):207–239, 2019.

[11] A. Defazio. Understanding the role of momentum in non-convex optimization: Practical insights
from a lyapunov analysis. arXiv preprint arXiv:2010.00406, 2020.

[12] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13(1), 2012.

[13] J. Diakonikolas and M. I. Jordan. Generalized momentum-based methods: a hamiltonian
perspective. SIAM Journal on Optimization, 31(1):915–944, 2021.

[14] D. Drusvyatskiy and C. Paquette. Efficiency of minimizing compositions of convex functions
and smooth maps. Mathematical Programming, pages 1–56, 2018.

[15] J. C. Duchi and F. Ruan. Stochastic methods for composite and weakly convex optimization
problems. SIAM Journal on Optimization, 28(4):3229–3259, 2018.

[16] J. C. Duchi and F. Ruan. Solving (most) of a set of quadratic equalities: Composite optimization
for robust phase retrieval. Information and Inference: A Journal of the IMA, 8(3):471–529, 2019.

[17] T. Frerix, T. Möllenhoff, M. Moeller, and D. Cremers. Proximal backpropagation. In Interna-
tional Conference on Learning Representations, 2018.

[18] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-ball
method for convex optimization. In 2015 European control conference (ECC), pages 310–315.
IEEE, 2015.

[19] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. ISSN 1052-6234.

[20] I. Gitman, H. Lang, P. Zhang, and L. Xiao. Understanding the role of momentum in stochastic
gradient methods. In Advances in Neural Information Processing Systems, volume 32, pages
9633–9643, 2019.

[21] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International Conference on Machine Learning, pages 1225–1234. PMLR, 2016.

[22] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and R. Tibshirani. The elements of
statistical learning, volume 2. Springer, 2009.

[23] G. Kornowski and O. Shamir. Oracle complexity in nonsmooth nonconvex optimization. arXiv
preprint arXiv:2104.06763, 2021.

11

[24] G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming,
133(1):365–397, 2012.

[25] Y. Liu, Y. Gao, and W. Yin. An improved analysis of stochastic gradient descent with momentum.
arXiv preprint arXiv:2007.07989, 2020.

[26] N. Loizou and P. Richtárik. Momentum and stochastic momentum for stochastic gradient,
newton, proximal point and subspace descent methods. Computational Optimization and Appli-
cations, 77(3):653–710, 2020.

[27] V. Mai and M. Johansson. Convergence of a stochastic gradient method with momentum for
non-smooth non-convex optimization. In Proceedings of the 37th International Conference on
Machine Learning, pages 6630–6639, 2020.

[28] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[29] O. Sebbouh, R. M. Gower, and A. Defazio. On the convergence of the stochastic heavy ball
method. arXiv preprint arXiv:2006.07867, 2020.

[30] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and uniform
convergence. The Journal of Machine Learning Research, 11:2635–2670, 2010.

[31] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In International Conference on Machine Learning, pages 1139–
1147, 2013.

[32] M. Takáč, P. Richtárik, and N. Srebro. Distributed mini-batch sdca. arXiv preprint
arXiv:1507.08322, 2015.

[33] J. Wang, W. Wang, and N. Srebro. Memory and communication efficient distributed stochastic
optimization with minibatch prox. In Conference on Learning Theory, pages 1882–1919. PMLR,
2017.

[34] Y. Yan, T. Yang, Z. Li, Q. Lin, and Y. Yang. A unified analysis of stochastic momentum methods
for deep learning. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, pages 2955–2961, 2018.

[35] J. Zhang and L. Xiao. Stochastic variance-reduced prox-linear algorithms for nonconvex
composite optimization. Mathematical Programming, pages 1–43, 2021.

[36] J. Zhang, H. Lin, S. Jegelka, A. Jadbabaie, and S. Sra. Complexity of finding stationary points
of nonsmooth nonconvex functions. arXiv preprint arXiv:2002.04130, 2020.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See remarks 3, 4 in Section 3 and
Discussion section

(c) Did you discuss any potential negative societal impacts of your work? [No] The paper
addresses theoretical questions on algorithm complexity, which, to the best of our
knowledge, has no negative social impact

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See assump-
tions in Section 2 and 3

(b) Did you include complete proofs of all theoretical results? [Yes] Proof is left in the
appendix

3. If you ran experiments...

12

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] Code is
supplied in the supplemental materials

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6 for details of experiments

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] From the experiments the error bars are relatively thin
and the results are presented by taking average.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The main goal of experiments is to
demonstrate our theoretical foundings, thereby only showing the iteration complexity
of algorithms.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] zipcode dataset is

referenced from [22].
(b) Did you mention the license of the assets? [No] The dataset used is published on an

open site without license.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

The experiments do not involve new datasets.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] An open dataset is used.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] The dataset has been open for years and only
involves zipcode digits.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [No] No crowdsourcing or human object is involved.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [No] No crowdsourcing or human object is
involved.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No] No crowdsourcing or human object is
involved.

13

Appendix

Table of Contents
A Proof of results in Section 3 15

A.1 Proof of Lemma 3.1 . 15
A.2 Proof of Theorem 3.2 . 16
A.3 Proof of Theorem 3.3 . 16
A.4 Proof of Theorem 3.4 . 18

B Proof of results in Section 4 18
B.1 Proof of Lemma 4.1 . 18
B.2 Proof of Theorem 4.2 . 20
B.3 SMOD with momentum and minibatching . 21

C SMOD for convex optimization 25
C.1 Convergence of extrapolated SMOD . 26
C.2 Robustness of the extrapolated SMOD . 27
C.3 Improved convergence using Nesterov acceleration 30

D Solving the subproblems 32
D.1 Phase retrieval . 32
D.2 Blind deconvolution . 33
D.3 Solving the SPP subproblem by Prox-linear algorithm 35

E Additional experiments 36
E.1 Blind deconvolution . 36
E.2 Phase retrieval . 37

Contents of the appendix

In the appendix, we present additional convergence analyses of the proposed algorithms. Appendix A
and B respectively give the convergence results for minibatching and momentum SMOD. Convergence
results of SMOD with both minibatching and momentum are formally presented in Appendix B.3.
Besides the missing proofs from the main article, in Appendix C we also give some new results
of SMOD for stochastic convex optimization, and show how to achieve and to possibly improve the
state-of-the-art complexity rates. Particularly, SMOD with Nesterov acceleration, which achieves the
best complexity rate, is developed in Appendix C.3. Last, we provide details on how to solve the
subproblems from the experiments in Section D. Additional experiments on blind deconvolution are
available in Appendix E.

14

A Proof of results in Section 3

Our paper will make use of the following elementary result, we refer to [3] for proof details.
Lemma A.1. A function f(x) is λ-weakly convex if and only if for any x, y and f ′(x) ∈ ∂f(x), we
have f(y) ≥ f(x) + 〈f ′(x), y − x〉 − λ

2 ‖y − x‖
2.

We state an important result which generalizes the well-known three-point lemma to handle nonconvex
function.
Lemma A.2. Let g(x) be a η-weakly convex function, and κ > η. If

z+ = argmin
x∈X

{
g(x) +

κ

2
‖x− z‖2

}
,

then for any x ∈ X , we have

g(z+) +
κ

2
‖z+ − z‖2 ≤ g(x) +

κ

2
‖x− z‖2 − κ− η

2
‖x− z+‖2. (21)

Proof. Since g(x) is η-weakly convex, g(x) + κ
2 ‖x− z‖

2 =
[
g(x) + η

2‖x− z‖
2
]

+ κ−η
2 ‖x− z‖

2 is
strongly convex with parameter κ− η. Using the optimality condition 0 ∈ ∂

[
g(z+) + κ

2 ‖z
+ − z‖2

]
and strong convexity of g(·) + κ

2 ‖ · −z‖
2, we immediately obtain

g(x) +
κ

2
‖x− z‖2 ≥ g(z+) +

κ

2
‖z+ − z‖2 + 〈0, x− z+〉+

κ− η
2
‖x− z+‖2.

Before getting down to the proof, first recall that in Section 3, we let B = {ξ1, ξ2, . . . , ξm} be the
i.i.d. samples and B(i) = {ξ1, . . . , ξi−1, ξ

′
i, ξi+1 . . . , ξm} by replacing ξi with an i.i.d. copy ξ′i. We

denote B′ = {ξ′1, ξ′2, . . . , ξ′m−1, ξ
′
m}.

A.1 Proof of Lemma 3.1

For brevity, for i = 1, 2, . . . ,m, we denote

ŷ = arg min
x∈X

{
fz(x,B) +

γ

2
‖x− y‖2

}
,

ŷi = arg min
x∈X

{
fz(x,B(i)) +

γ

2
‖x− y‖2

}
.

Using triangle inequality and Jensen’s inequality, we deduce∣∣EB,B′,i[fz(ŷi, ξ′i)− fz(ŷ, ξ′i)]∣∣
=
∣∣∣ 1

m

m∑
i=1

EB,ξ′i
[
fz(ŷi, ξ

′
i)− fz(ŷ, ξ′i)

]∣∣∣
≤ 1

m

m∑
i=1

EB,ξ′i
∣∣fz(ŷi, ξ′i)− fz(ŷ, ξ′i)∣∣

≤ L

m

m∑
i=1

EB,ξ′i‖ŷi − ŷ‖, (22)

where the last inequality follows from A4.

Next we bound ‖ŷ − ŷi‖. Due to λ-weak convexity of fz(x,B) and by Lemma A.2, for any
i ∈ {1, 2, . . . ,m}, we obtain

fz(ŷ, B) +
γ

2
‖ŷ − y‖2 ≤ fz(ŷi, B) +

γ

2
‖ŷi − y‖2 −

γ − λ
2
‖ŷi − ŷ‖2,

fz(ŷi, B(i)) +
γ

2
‖ŷi − y‖2 ≤ fz(ŷ, B(i)) +

γ

2
‖ŷ − y‖2 − γ − λ

2
‖ŷi − ŷ‖2.

15

Summing up the above two relations, we deduce that

(γ − λ)‖ŷi − ŷ‖2

≤ fz(ŷ, B(i))− fz(ŷ, B) + fz(ŷi, B)− fz(ŷi, B(i))

=
1

m

[
fz(ŷ, ξ

′
i)− fz(ŷi, ξ′i) + fz(ŷi, ξi)− fz(ŷ, ξi)

]
(23)

Next, we use Assumption A4 and (23) to obtain (γ − λ)‖ŷi − ŷ‖2 ≤ 2L
m ‖ŷi − ŷ‖, which implies that

‖ŷi − ŷ‖ ≤
2L

m(γ − λ)
. (24)

In view of (22) and (24), we have∣∣EB,B′,i[fz(ŷi, ξ′i)− fz(ŷ, ξ′i)]∣∣ ≤ 2L2

m(γ − λ)
= ε.

A.2 Proof of Theorem 3.2

Theorem 3.2 is an immediate consequence of Lemma 3.1 and the following theorem which indicates
that stability bounds the error of approximating the full model function on expectation.
Theorem A.3. Assume that proxρh(·, ·) is ε-stable and denote x+

B = proxρh(x,B). Then, we have∣∣EB{h(x+
B , B

)
− Eξ

[
h
(
x+
B , ξ

)]}∣∣ ≤ ε.
Proof of Theorem A.3 The proof resembles the argument of Lemma 11 [7]. For brevity we
denote x̂ = proxρh(x,B) and x̂i = proxρh(x,B(i)). Since ξ′i is independent of B, we have
Eξ
[
h
(
x̂, ξ
)]

= Eξ′i
[
h
(
x̂, ξ′i

)]
for any i ∈ {1, . . . ,m}. Therefore, we have

Eξ
[
h
(
x̂, ξ
)]

=
1

m

m∑
j=1

Eξ′j
[
h
(
x̂, ξ′j

)]
. (25)

Similarly, due to the independence assumption, we have

EB
[
h
(
x̂, ξi

)]
= EB(i)

[
h(x̂i, ξ

′
i)
]
, (26)

which implies that

EB
[
h
(
x̂, B

)]
=

1

m

m∑
i=1

EB
[
h(x̂, ξi)

]
=

1

m

m∑
i=1

EB(i)

[
h(x̂i, ξ

′
i)
]

(27)

In view of (25) and (27), we deduce

EB
{
h
(
x̂, B

)
− Eξ

[
h
(
x̂, ξ
)]}

=
1

m

m∑
i=1

EB(i)

[
h(x̂i, ξ

′
i)
]
− 1

m

m∑
i=1

EB,ξ′i
[
h
(
x̂, ξ′i

)]
=

1

m

m∑
i=1

EB,ξ′i
[
h(x̂i, B(i))− h

(
x̂, ξ′i

)]
= EB,B′,i

[
h(x̂i, B(i))− h

(
x̂, ξ′i

)]
.

Appealing to the stability assumption, we complete the proof.

A.3 Proof of Theorem 3.3

First, due to the weak convexity of fxk(·, Bk) and Lemma A.2, we have

fxk(xk+1, Bk)+
γk
2
‖xk+1−xk‖2 ≤ fxk(x,Bk)+

γk
2
‖x−xk‖2− γk − λ

2
‖xk+1−x‖2, ∀x ∈ X .

(28)

16

For simplicity, we denote x̂k = proxf/ρ(x
k) = argminx∈X

{
f(x)+ ρ

2‖x−x
k‖2
}

. Then substituting
x = x̂k in (28), we have

fxk(xk+1, Bk)+
γk
2
‖xk+1−xk‖2 ≤ fxk(x̂k, Bk)+

γk
2
‖x̂k−xk‖2− γk − λ

2
‖xk+1− x̂k‖2. (29)

Analogously, since f(x) is (λ+τ)-weakly convex, applying Lemma A.2 with g(x) = f(x), η = λ+τ
and κ = ρ, we have

f(x̂k) +
ρ

2
‖x̂k − xk‖2 ≤ f(xk+1) +

ρ

2
‖xk+1 − xk‖2 − ρ− λ− τ

2
‖x̂k − xk+1‖2. (30)

Summing up (29) and (30) gives

γk − ρ
2
‖xk+1 − xk‖2 +

γk + ρ− 2λ− τ
2

‖x̂k − xk+1‖2 − γk − ρ
2

Ek‖x̂k − xk‖2

≤ f(xk+1)− fxk(xk+1, Bk) + fxk(x̂k, Bk)− f(x̂k)

=
{
f(xk+1)− Eξ

[
fxk(xk+1, ξ)

]}
+
{
Eξ
[
fxk(xk+1, ξ)

]
− fxk(xk+1, Bk)

}
+
[
fxk(x̂k, Bk)− f(x̂k)

]
≤ τ

2
‖xk − xk+1‖2 +

τ

2
‖xk − x̂k‖2 + Eξ

[
fxk(xk+1, ξ)

]
− fxk(xk+1, Bk), (31)

where the last inequality uses the Assumption A5. Moreover, note that Theorem 3.2 implies

Ek
{
Eξ
[
fxk(xk+1, ξ)

]
− fxk(xk+1, Bk)

}
≤ εk. (32)

Taking expectation over Bk in (31) and combining the result with (32), we obtain

γk − ρ
2

Ek
[
‖xk+1 − xk‖2

]
+
γk + ρ− 2λ− τ

2
Ek
[
‖x̂k − xk+1‖2

]
− γk − ρ

2
‖x̂k − xk‖2

≤ τ

2
Ek
[
‖xk − xk+1‖2

]
+
τ

2
‖x̂k − xk‖2 + εk,

which, by rearranging terms, implies

Ek
[
‖xk+1 − x̂k‖2

]
≤ γk − ρ+ τ

γk + ρ− 2λ− τ
‖x̂k − xk‖2 − γk − ρ− τ

γk + ρ− 2λ− τ
Ek
[
‖xk − xk+1‖2

]
+

2εk
γk + ρ− 2λ− τ

≤ ‖x̂k − xk‖2 − 2(ρ− λ− τ)

γk + ρ− 2λ− τ
‖x̂k − xk‖2 +

2εk
γk + ρ− 2λ− τ

, (33)

Above, the last inequality in (33) uses the assumption γk − ρ− τ ≥ 0.

Moreover, following the result (33) and the definition of Moreau envelope, we have

Ek
[
f1/ρ(x

k+1)
]

= Ek
[
f(x̂k+1) +

ρ

2
‖x̂k+1 − xk+1‖2

]
≤ f(x̂k) + Ek

[ρ
2
‖x̂k − xk+1‖2

]
≤ f(x̂k) +

ρ

2
‖x̂k − xk‖2 − ρ(ρ− λ− τ)

γk + ρ− 2λ− τ
‖x̂k − xk‖2 +

ρεk
γk + ρ− 2λ− τ

= f1/ρ(x
k)− ρ(ρ− λ− τ)

γk + ρ− 2λ− τ
‖x̂k − xk‖2 +

ρεk
γk + ρ− 2λ− τ

.

Finally, applying the identity ‖x̂k − xk‖2 = ρ−2‖∇f1/ρ(x
k)‖2 and rearranging the terms, we get (9).

17

A.4 Proof of Theorem 3.4

First, summing up (9) over k = 1, 2, . . . ,K, and taking expectation over all randomness, we have

K∑
k=1

ρ− λ− τ
ρ(γk + ρ− 2λ− τ)

E[‖∇f1/ρ(x
k)‖2]

≤ f1/ρ(x
1)− E

[
f1/ρ(x

K+1)
]

+

K∑
k=1

ρεk
γk + ρ− 2λ− τ

≤ ∆ +

K∑
k=1

ρεk
γk + ρ− 2λ− τ

,

where the second inequality uses −f1/ρ(x
K+1) ≤ −minx f(x). Plugging in γk = γ and mk = m

in above and appealing to the definition of xk
∗
, we have

ρ− λ− τ
ρ

E
[
‖∇f1/ρ(x

k∗)‖2
]

=
ρ− λ− τ

ρK

K∑
k=1

E
[
‖∇f1/ρ(x

k)‖2
]

≤ (γ + ρ− 2λ− τ)∆

K
+

ρ

K

K∑
k=1

εk

≤ (2ρ− λ)∆

K
+
η∆

K
+

2ρL2

m(γ − λ)

≤ (2ρ− λ)∆

K
+
η∆

K
+

2ρL2

mη
, (34)

where the second inequality uses γ ≤ ρ+ τ + λ+ η, the third inequality uses γ − λ ≥ η. Dividing
both sides of (34) by ρ−λ−τ

ρ gives (10).

B Proof of results in Section 4

B.1 Proof of Lemma 4.1

Denote x̄ = βxk + (1− β)x for x ∈ X . Then x̄ is also feasible due to the convexity of X . Noting
that θ = 1− β, we have the following identities:

x̄− xk = θ(x− xk), (35)

x̄− yk = θ(x− zk), (36)

x̄− xk+1 = θ(x− zk+1). (37)

Applying Lemma A.2 and using the optimality of xk+1, we have

fxk(xk+1, ξk) +
γ

2
‖xk+1 − yk‖2

≤ fxk(x̄, ξk) +
γ

2
‖x̄− yk‖2 − γ − λ

2
‖xk+1 − x̄‖2

= fxk(x̄, ξk) +
γθ2

2
‖x− zk‖2 − (γ − λ)θ2

2
‖x− zk+1‖2 (38)

Since fxk(·, ξk) + λ
2 ‖ · −x

k‖2 is convex, we have

fxk(x̄, ξk) ≤ (1− θ)
[
fxk(xk, ξk)

]
+ θ
[
fxk(x, ξk) +

λ

2
‖x− xk‖2

]
− λ

2
‖x̄− xk‖2

≤ (1− θ)f(xk, ξk) + θ
[
f(x, ξk) +

λ+ τ

2
‖x− xk‖2

]
− λθ2

2
‖x− xk‖2 (39)

18

where the second inequality uses Assumptions A2, A3 and (35). Summing up (38) and (39), we get

fxk(xk+1, ξk) +
γ

2
‖xk+1 − yk‖2

≤ (1− θ)f(xk, ξk) + θ
[
f(x, ξk) +

λ+ τ

2
‖x− xk‖2

]
− λθ2

2
‖x− xk‖2

+
γθ2

2
‖x− zk‖2 − (γ − λ)θ2

2
‖x− zk+1‖2 (40)

Moreover, appealing to Assumption A2 and A4, we have

f(xk, ξk)− L‖xk+1 − xk‖ = fxk(xk, ξk)− L‖xk+1 − xk‖ ≤ fxk(xk+1, ξk). (41)

Next, Putting (40) and (41) together, we have

− L‖xk+1 − xk‖+
γ

2
‖xk+1 − yk‖2

≤ − θf(xk, ξk) + θ
[
f(x, ξk) +

λ+ τ

2
‖x− xk‖2

]
− λθ2

2
‖x− xk‖2

+
γθ2

2
‖x− zk‖2 − (γ − λ)θ2

2
‖x− zk+1‖2 (42)

Denote ẑk = proxf/ρ(z
k). Note that zk may be infeasible, but the feasibility of ẑk is always

guaranteed. Substituting x = ẑk in the above result and then taking expectation over ξk, we have

− LEk[‖xk+1 − xk‖] + θf(xk)

≤ θf(ẑk) +
θ(λ+ τ)

2
‖ẑk − xk‖2 − λθ2

2
‖ẑk − xk‖2

+
γθ2

2
‖ẑk − zk‖2 − (γ − λ)θ2

2
Ek[‖ẑk − zk+1‖2]− γ

2
Ek[‖xk+1 − yk‖2] (43)

Next we apply Lemma A.2 and use the optimality condition for ẑk, noting that f(x) is (τ+λ)-weakly
convex, we get

f(ẑk) +
ρ

2
‖ẑk − zk‖2 ≤ f(xk) +

ρ

2
‖xk − zk‖2 − ρ− τ − λ

2
‖xk − ẑk‖2. (44)

Multiplying (44) by θ and then adding the result to (43), we deduce

− LEk[‖xk+1 − xk‖]

≤ ρθ

2
‖xk − zk‖2 − θ(ρ− τ − λ)

2
‖xk − ẑk‖2 − ρθ

2
‖ẑk − zk‖2

+
θ(λ+ τ)

2
‖ẑk − xk‖2 − λθ2

2
‖ẑk − xk‖2

+
γθ2

2
‖ẑk − zk‖2 − (γ − λ)θ2

2
Ek[‖ẑk − zk+1‖2]− γ

2
Ek[‖xk+1 − yk‖2]

=
γθ2 − λθ2

2

(
‖ẑk − zk‖2 − Ek[‖ẑk − zk+1‖2]

)
− ρθ − λθ2

2
Ek[‖ẑk − zk‖2]

− θ((ρ− 2(λ+ τ)) + λθ)

2
‖ẑk − xk‖2

− γ

2
Ek[‖xk+1 − yk‖2] +

ρβ2θ−1

2
‖xk − xk−1‖2. (45)

where the last equality uses the identity zk − xk = βθ−1(xk − xk−1).

Moreover, we can bound the term Ek[‖xk+1 − yk‖2] using the following relation

‖xk+1 − yk‖2

= ‖xk+1 − xk‖2 + β2‖xk − xk−1‖2 − 2β〈xk+1 − xk, xk − xk−1〉
≥ ‖xk+1 − xk‖2 + β2‖xk − xk−1‖2 − β‖xk+1 − xk‖2 − β‖xk − xk−1‖2

= θ2‖xk+1 − xk‖2 + βθ
(
‖xk+1 − xk‖2 − ‖xk − xk−1‖2

)
. (46)

19

Next, adding LEk[‖xk+1 − xk‖] to both sides of (45), using the non-negativity of ρ− 2(λ+ τ) and
the bound (46), we deduce

0 ≤ γθ2 − λθ2

2

(
‖ẑk − zk‖2 − Ek[‖ẑk − zk+1‖2]

)
− ρθ − λθ2

2
‖ẑk − zk‖2

− γβθ + ρβ2θ−1

2
Ek[‖xk+1 − xk‖2] +

γβθ + ρβ2θ−1

2
‖xk − xk−1‖2

+ Ek
[
L‖xk+1 − xk‖ − γθ2 − ρβ2θ−1

2
‖xk+1 − xk‖2

]
≤ γθ2 − λθ2

2

(
‖ẑk − zk‖2 − Ek[‖ẑk − zk+1‖2]

)
− ρθ − λθ2

2
‖ẑk − zk‖2

− γβθ + ρβ2θ−1

2
Ek[‖xk+1 − xk‖2] +

γβθ + ρβ2θ−1

2
‖xk − xk−1‖2

+
L2

(γθ2 − ρβ2θ−1)
− γθ2 − ρβ2θ−1

4
Ek[‖xk+1 − xk‖2]

where the last inequality identifies the fact that bx− a
4x

2 ≤ b2

a for a, b > 0, ∀x ∈ R. It then follows
that

Ek[‖ẑk − zk+1‖2]

≤ ‖ẑk − zk‖2 − ρ− λθ
γθ − λθ

‖ẑk − zk‖2 +
2L2

(γθ2 − ρβ2θ−1)(γθ2 − λθ2)

− γβ + ρβ2θ−2

γθ − λθ
(
Ek[‖xk+1 − xk‖2]− ‖xk − xk−1‖2

)
− γ − ρβ2θ−3

2(γ − λ)
Ek[‖xk+1 − xk‖2] (47)

In view of (47) and the definition of Moreau envelope, we have

Ek
[
f1/ρ(z

k+1)
]

= Ek
[
f(ẑk+1) +

ρ

2
‖zk+1 − ẑk+1‖2

]
≤ Ek

[
f(ẑk) +

ρ

2
‖zk+1 − ẑk‖2

]
≤ f1/ρ(z

k)− ρ(ρ− λθ)
2(γθ − λθ)

‖zk − ẑk‖2 +
ρL2

(γθ2 − ρβ2θ−1)(γθ2 − λθ2)

+
ρ(γβ + ρβ2θ−2)

2(γθ − λθ)
{
‖xk − xk−1‖2 − Ek

[
‖xk+1 − xk‖2

]}
.

− ρ(γ − ρβ2θ−3)

4(γ − λ)
Ek[‖xk+1 − xk‖2] (48)

In view of the above result and the relation ‖zk − ẑk‖2 = ρ−2‖∇1/ρf(zk)‖2, we obtain (18).

B.2 Proof of Theorem 4.2

Unfolding the relation (18) and then taking expectation over all the randomness, we have

ρ− λθ
2ρ(γθ − λθ)

K∑
k=1

E[‖∇f1/ρ(z
k)‖2]

≤ f1/ρ(z
1)− E

[
f1/ρ(z

K+1)
]

+
ρ(γβ + ρβ2θ−2)

2(γθ − λθ)
‖x1 − x0‖2

+
ρL2K

(γθ2 − ρβ2θ−1)(γθ2 − λθ2)

≤ ∆ +
ρL2K

(γθ2 − ρβ2θ−1)(γθ2 − λθ2)
, (49)

20

where the last inequality uses x1 = x0 = z1 and that f1/ρ(z
1)−f1/ρ(z

K+1) ≤ f(z1)−minx f(x) =
∆. Appealing to the definition of k∗ and relation (64), we have

E [‖∇f1/ρ(z
k∗)‖2]

=
1

K

K∑
k=1

E [‖∇f1/ρ(z
k)‖2]

≤ 2ρ(γθ − λθ)∆
(ρ− λθ)K

+
2ρ2L2

θ(ρ− λθ)(γθ − ρβ2θ−2)

≤ 2ρ

ρ− λ

[
(γθ − λθ)∆

K
+

ρL2

θ(γθ − ρβ2θ−2)

]
=

2ρ

ρ− λ

[
(ρβ2θ−2 + γ0

√
K)∆

K
+

ρL2

θ(γ0

√
K + λθ)

]
≤ 2ρ

ρ− λ

[
ρβ2θ−2∆

K
+
(
γ0∆ +

ρL2

θγ0

) 1√
K

]
.

where the first inequality uses the fact that (ρ − λθ)−1 ≤ (ρ − λ)−1 for θ ∈ (0, 1] and that
γ = γ0θ

−1
√
K + λ+ ρβ2θ−3. Therefore, (19) immediately follows.

B.3 SMOD with momentum and minibatching

We present a new model-based method by combining the momentum and minibatching techniques in
a single framework.

Algorithm 3 Stochastic Extrapolated Model-Based Method with Minibatching
Input: x0, x1, β, γ
for k = 1 to K do

Sample a minibatch Bk = {ξk,1, . . . , ξk,m} and update:

yk = xk + β(xk − xk−1) (50)

xk+1 = argmin
x∈X

{
fxk(x,Bk) +

γ

2
‖x− yk‖2

}
(51)

end for

The convergence analysis of Algorithm 3 is more complicated than that of the sequential extrapolated
SMOD. We require a different design of potential function:

f1/ρ(z
k) + αf(xk) + β‖xk − xk−1‖2

where α and β are some constants and zk is defined as in Section 4. We summarize the approximate
descent property in the following function.

Lemma B.1. In Algorithm 3, Assume that A5 holds and ρ > 3(τ + λ), then we have

ρ− λθ
2θρ(γ − λ)

‖∇f1/ρ(z
k)‖2

≤ f1/ρ(z
k)− Ek

[
f1/ρ(z

k+1)
]

+
ρβ

2θ2(γ − λ)

[
f(xk)− Ek[f(xk+1)]

]
− ρ(γθ2 − ζ)

4θ2(γ − λ)
‖xk+1 − xk‖2 +

ρε

2θ2(γ − λ)

+
ρ(γβ + 2ρβ2θ−2)

2θ(γ − λ)

{
‖xk − xk−1‖2 − Ek[‖xk+1 − xk‖2]

}
. (52)

where ζ = 2θ(ρ+ λβ + τ) + τ + 2ρβ2θ−1 and ε = 2L2

m(γ−λ) .

21

Proof. Analogous to the relation (40), we have

fxk(xk+1, Bk) +
γ

2
‖xk+1 − yk‖2

≤ (1− θ)f(xk, Bk) + θ
[
f(x,Bk) +

λ+ τ

2
‖x− xk‖2

]
− λθ2

2
‖x− xk‖2

+
γθ2

2
‖x− zk‖2 − (γ − λ)θ2

2
‖x− zk+1‖2 (53)

Placing the value x = ẑk, we arrive at

fxk(xk+1, Bk) +
γ

2
‖xk+1 − yk‖2

≤ (1− θ)f(xk, Bk) + θf(ẑk, Bk) +
(λ+ τ)θ − λθ2

2
‖ẑk − xk‖2

+
γθ2

2
‖ẑk − zk‖2 − (γ − λ)θ2

2
‖ẑk − zk+1‖2

≤ (1− θ)f(xk, Bk) + θf(ẑk, Bk) + θ(λβ + τ)
[
‖ẑk − xk+1‖2 + ‖xk − xk+1‖2

]
+
γθ2

2
‖ẑk − zk‖2 − (γ − λ)θ2

2
‖ẑk − zk+1‖2 (54)

where the last inequality uses the fact (λ + τ)θ − λθ2 = θ(λβ + τ) and applies ‖a + b‖2 ≤
2‖a‖2 + 2‖b‖2 with a = ẑk − xk+1 and b = xk+1 − xk.

Recall that ẑk = proxf/ρ(z
k). In view of Lemma A.2 and the (τ + λ)-weak convexity of f(·), we

have

θf(ẑk) +
ρθ

2
‖ẑk − zk‖2 ≤ θf(xk+1) +

ρθ

2
‖xk+1 − zk‖2 − θ(ρ− τ − λ)

2
‖xk+1 − ẑk‖2. (55)

Summing up (54) and (55) and rearranging the terms, we arrive at
γ

2
‖xk+1 − yk‖2

≤ (1− θ)
[
f(xk, Bk)− f(xk+1)

]
+ θ
[
f(ẑk, Bk)− f(ẑk)

]
+ f(xk+1)− fxk(xk+1, Bk)

+ θ(λβ + τ)‖xk − xk+1‖2

+
γθ2 − ρθ

2
‖ẑk − zk‖2 − (γ − λ)θ2

2
‖ẑk − zk+1‖2

+
ρθ

2
‖xk+1 − zk‖2 − θ(ρ− 3(τ + λ) + 2λθ)

2
‖xk+1 − ẑk‖2 (56)

On both sides of the above inequality, we take expectation over Bk conditioned on all the randomness
that generates B1, B2, . . . , Bk−1 . Noting that Ek

[
f(xk, Bk)

]
= f(xk) and Ek

[
f(ẑk, Bk)

]
=

f(ẑk), it follows that
γ

2
Ek
[
‖xk+1 − yk‖2

]
≤ (1− θ)

[
f(xk)− Ek[f(xk+1)]

]
+ Ek

[
f(xk+1)− fxk(xk+1, Bk)

]
+ θ(λβ + τ)Ek‖xk − xk+1‖2 +

γθ2 − ρθ
2

‖ẑk − zk‖2 − (γ − λ)θ2

2
Ek‖ẑk − zk+1‖2

+
ρθ

2
Ek‖xk+1 − zk‖2 − θ(ρ− 3(τ + λ) + 2λθ)

2
Ek‖xk+1 − ẑk‖2 (57)

Moreover, similar to the analysis for minibatch SMOD, we apply Theorem A.3 and Lemma 3.1 to show
that

Ek
{
Eξ
[
fxk(xk+1, ξ)

]
− fxk(xk+1, Bk)

}
≤ ε.

In view of this result and Assumption A5, we arrive at

Ek
[
f(xk+1)− fxk(xk+1, Bk)

]
= Ek

[
f(xk+1)− Eξ[fxk(xk+1, ξ)]

]
+ Ek

{
Eξ
[
fxk(xk+1, ξ)

]
− fxk(xk+1, Bk)

}
≤ τ

2
Ek[‖xk − xk+1‖2] + ε. (58)

22

Putting (57) and (58) together and using the assumption ρ > 3(τ + λ), we have

γ

2
Ek
[
‖xk+1 − yk‖2

]
≤ (1− θ)

[
f(xk)− Ek[f(xk+1)]

]
+

2θ(λβ + τ) + τ

2
Ek[‖xk − xk+1‖2] + ε

+
γθ2 − ρθ

2
‖ẑk − zk‖2 − (γ − λ)θ2

2
Ek[‖ẑk − zk+1‖2]

+
ρθ

2
Ek[‖xk+1 − zk‖2] (59)

Moreover, we can bound the term Ek[‖xk+1 − yk‖2]

‖xk+1 − yk‖2

= ‖xk+1 − xk‖2 + β2‖xk − xk−1‖2 − 2β〈xk+1 − xk, xk − xk−1〉
≥ ‖xk+1 − xk‖2 + β2‖xk − xk−1‖2 − β‖xk+1 − xk‖2 − β‖xk − xk−1‖2

= θ‖xk+1 − xk‖2 − βθ‖xk − xk−1‖2, (60)

and

ρθ

2
‖xk+1 − zk‖2 =

ρθ

2
‖xk+1 − xk − βθ−1(xk − xk−1)‖2

≤ ρθ‖xk+1 − xk‖2 + ρβ2θ−1‖xk − xk−1‖2 (61)

where the inequality comes from the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2.

Putting (59), (60) and (61) together, we have

γθ2 − 2θ(ρ+ λβ + τ)− τ − 2ρβ2θ−1

2
Ek[‖xk+1 − xk‖2]

≤ (1− θ)
[
f(xk)− Ek[f(xk+1)]

]
+ ε

+
γθ2 − ρθ

2
‖ẑk − zk‖2 − (γ − λ)θ2

2
Ek[‖ẑk − zk+1‖2]

+
γβθ + 2ρβ2θ−1

2
Ek
[
‖xk − xk−1‖2 − ‖xk+1 − xk‖2

]
It then follows that

Ek[‖ẑk − zk+1‖2]

≤ ‖ẑk − zk‖2 − ρ− λθ
γθ − λθ

‖ẑk − zk‖2 +
ε

(γ − λ)θ2

+
β

(γ − λ)θ2

[
f(xk)− Ek[f(xk+1)]

]
− γθ2 − 2θ(ρ+ λβ + τ)− τ − 2ρβ2θ−1

2(γ − λ)θ2
Ek[‖xk+1 − xk‖2]

− γβ + 2ρβ2θ−2

γθ − λθ
(
Ek
[
‖xk+1 − xk‖2 − ‖xk − xk−1‖2

])
(62)

23

In view of (62) and the definition of Moreau envelope, we have

Ek
[
f1/ρ(z

k+1)
]

= Ek
[
f(ẑk+1) +

ρ

2
‖zk+1 − ẑk+1‖2

]
≤ Ek

[
f(ẑk) +

ρ

2
‖zk+1 − ẑk‖2

]
≤ f1/ρ(z

k)− ρ(ρ− λθ)
2(γθ − λθ)

‖zk − ẑk‖2 +
ρε

2(γθ2 − λθ2)
+

ρβ

2(γ − λ)θ2

[
f(xk)− Ek[f(xk+1)]

]
− ρ(γθ2 − 2θ(ρ+ λβ + τ)− τ − 2ρβ2θ−1)

4(γ − λ)θ2
‖xk+1 − xk‖2

+
ρ(γβ + 2ρβ2θ−2)

2(γθ − λθ)
{
‖xk − xk−1‖2 − Ek

[
‖xk+1 − xk‖2

]}
. (63)

In view of the above result and the relation ‖zk − ẑk‖2 = ρ−2‖∇1/ρf(zk)‖2, we obtain (52).

Theorem B.2. Suppose we choose γ = γ0

√
K
m + θ−2ζ +λ, where ζ is defined in B.1. Then we have

E [‖∇f1/ρ(z
k∗)‖2] ≤ ρ

ρ− θλ

[
θ−1(ρβ + 2ζ)∆

K
+
(
θγ0∆ +

ρL2

θγ0

) 2√
mK

]
.

Proof. Unfolding the relation (52) and then taking expectation over all the randomness, we have

ρ− λθ
2θρ(γ − λ)

K∑
k=1

E[‖∇f1/ρ(z
k)‖2]

≤ f1/ρ(z
1)− E

[
f1/ρ(z

K+1)
]

+
ρβ

2θ2(γ − λ)

[
f(x1)− Ek[f(xK+1)]

]
+

ρεK

2θ2(γ − λ)
+
ρ(γβ + 2ρβ2θ−2)

2θ(γ − λ)
‖x1 − x0‖2.

≤
(

1 +
ρβ

2θ2(γ − λ)

)
∆ +

L2ρK

θ2m(γ − λ)2
, (64)

where we use the assumption x1 = x0 = z1 and that

max
{
f1/ρ(z

1)− f1/ρ(z
K+1), f1/ρ(x

1)− f1/ρ(x
K+1)

}
≤ ∆.

Appealing to the definition of k∗, γ and then using relation (64), we arrive at

E [‖∇f1/ρ(z
k∗)‖2]

≤ ρ

ρ− θλ

[
ρβθ−1∆

K
+

2θ(γ − λ)∆

K
+

2ρL2

θm(γ − λ)

]
≤ ρ

ρ− θλ

[
θ−1(ρβ + 2ζ)∆

K
+
(
θγ0∆ +

ρL2

θγ0

) 2√
mK

]
.

Remark 7. While the convergence result in Theorem B.2 is established for all γ0 > 0, we can
see that the optimal γ0 would be γ0 = θ−1

√
ρ
∆L, which gives the bound E[‖∇f1/ρ(z

k∗)‖2] =

O
(

∆
K + L

√
ρ∆
mK

)
. In practice we can set γ0 to a suboptimal value and obtain a possibly loose

upper-bound.

24

C SMOD for convex optimization

In this section, we develop new complexity results of model-based methods for stochastic convex
optimization. To provide the sharpest convergence rate possible, we replace Assumption A5 with the
following assumption

A6: For any x ∈ X , fx(·, ξ) is a convex function, and

− τ

2
‖x− y‖2 ≤ fx(y, ξ)− f(y, ξ) ≤ 0, ξ ∈ Ξ, y ∈ X . (65)

It is easy to see that Assumption A6 ensures the convexity of f(y, ξ). More specifically, let x̄ =
(1− α)x+ αy where x, y ∈ X and α ∈ [0, 1], we have

f(x̄, ξ) = fx̄(x̄, ξ)

≤ (1− α)fx̄(x, ξ) + αfx̄(y, ξ)

≤ (1− α)f(x, ξ) + αf(y, ξ)

where the equality comes from Assumption A2, the first inequality follows from convexity of fx̄(·, ξ)
and the second inequality uses (65).

Outline of this section. Since convergence to global optimality can be guaranteed in convex
optimization, it is favorable to describe convergence rates with respect to the optimality gap. To this
end, we conduct new convergence analysis of SMOD with minibatching and momentum for stochastic
convex optimization. In subsection C.1, we show that under the additional Assumption A6, after K
iterations of the extrapolated minibatch method (Algorithm 3), the expected optimality gap converges
at rate

O
(1

K
+

1√
mK

)
.

In view of the above result, the deterministic part of our rate is consistent with the best O(1
K) rate for

heavy-ball method. For example, see [4, 6]. Moreover, the stochastic part of the rate is improved
from the result O(1√

K
) of Theorem 4.4 [3] by a factor of

√
m.

As is mentioned in the main article, one major advantage of SMOD methods is the robustness to
stepsize selection (see [1]). In other words, compared to SGD, SPL and SPP tend to admit a wider
range of stepsizes. In subsection C.2, we show that the extrapolated model-based method inherits the
merits of robustness from the model-based method.

An important question arises naturally: Can we further improve the convergence rate of model-based
methods? Due to the widely known limitation of heavy-ball type momentum, it would be interesting
to consider Nesterov’s acceleration. In subsection C.3, we present a model-based method with
Nesterov type momentum. Thanks to the stability argument, we obtain the following improved rate
of convergence:

O
(1

K2
+

1√
mK

)
.

We note that a similar convergence rate for minibatch model-based methods is obtained in a recent
paper [2]. However, their result requires the assumption that the stochastic function is Lipschitz
smooth while our assumption is much weaker. The full complexity results are presented in Table 2.

Table 2: Complexity of stochastic algorithms to reach ε-accuracy: E[f(x) − f(x∗)] ≤ ε. (M:
minibatching; E: Extrapolation (Polyak type); N: Nesterov acceleration

Algorithms Problems Current Best Ours
M + SMOD f : smooth composite O(1/ε2) [3] O(1/ε+ 1/(mε2))

M + E + SMOD f : non-smooth O(1/ε2) [3] O(1/ε+ 1/(mε2))

M + N + SMOD f : smooth composite O(1/ε1/2 + 1/(mε2)) [2] O(1/ε1/2 + 1/(mε2))
M + N + SMOD f : non-smooth — O(1/ε1/2 + 1/(mε2))

25

C.1 Convergence of extrapolated SMOD

The following Lemma summarizes some important convergence property of Extrapolated SMOD for
convex stochastic optimization.
Lemma C.1. Under Assumption A6, let θ = 1 − β in Algorithm 3. Then for any x̂ ∈ X and
k = 1, 2, 3, . . ., we have

Ek
[
f(xk+1)− f(x̂)

]
− (1− θ)

[
f(xk)− f(x̂)

]
≤ 2L2

mγ
+
γθ2

2
‖x̂− zk‖2 − γθ2

2
Ek[‖x̂− zk+1‖2]

+
γβ(1− β)

2
‖xk − xk−1‖2 − γ(1− β)− τ

2
Ek[‖xk+1 − xk‖2]

(66)

Proof. Applying three point lemma, for any x ∈ X , we have

fxk(xk+1, Bk)− fxk(x,Bk) ≤ γ

2
‖x− yk‖2 − γ

2
‖x− xk+1‖2 − γ

2
‖yk − xk+1‖2. (67)

Based on Assumption A6, we have

f(xk+1)− fxk(xk+1, Bk)

= Eξ
[
f(xk+1, ξ)

]
− fxk(xk+1, Bk)

= Eξ
[
f(xk+1, ξ)− fxk(xk+1, ξ)

]
+ Eξ

[
fxk(xk+1, ξ)− fxk(xk+1, Bk)

]
≤ τ

2
‖xk − xk+1‖2 + Eξ

[
fxk(xk+1, ξ)− fxk(xk+1, Bk)

]
. (68)

Plugging the above into (67), we have that

f(xk+1)− fxk(x,Bk) ≤ γ

2
‖x− yk‖2 − γ

2
‖x− xk+1‖2 − γ

2
‖yk − xk+1‖2

+
τ

2
‖xk − xk+1‖2 + Eξ

[
fxk(xk+1, ξ)− fxk(xk+1, Bk)

]
.

Let x = (1− θ)xk + θx̂ and zk = xk + θ−1β(xk − xk−1). Then we have

x− yk = θ(x̂− zk),

x− xk+1 = θ(x̂− zk+1),

and by convexity, we obtain that

f(xk+1)− f(x̂, Bk)− (1− θ)
[
f(xk, Bk)− f(x̂, Bk)

]
≤ f(xk+1)− fxk(x,Bk)

≤ γθ2

2
‖x̂− zk‖2 − γθ2

2
‖x̂− zk+1‖2 − γ

2
‖yk − xk+1‖2

+
τ

2
‖xk − xk+1‖2 + Eξ

[
fxk(xk+1, ξ)− fxk(xk+1, Bk)

]
.

(69)

Then we have

− γ

2
‖yk − xk+1‖2 +

τ

2
‖xk − xk+1‖2

= − γ

2
‖xk+1 − xk‖2 + γβ

〈
xk+1 − xk, xk − xk−1

〉
− γβ2

2
‖xk − xk−1‖2 +

τ

2
‖xk − xk+1‖2

≤ γβ(1− β)

2
‖xk − xk−1‖2 − γ(1− β)− τ

2
‖xk+1 − xk‖2, (70)

where the last inequality is by Cauchy-Schwarz and we deduce that

f(xk+1)− f(x̂, Bk)− (1− θ)
[
f(xk, Bk)− f(x̂, Bk)

]
≤ γθ2

2
‖x̂− zk‖2 − γθ2

2
‖x̂− zk+1‖2

+
γβ(1− β)

2
‖xk − xk−1‖2 − γ(1− β)− τ

2
‖xk+1 − xk‖2

+ Eξ
[
fxk(xk+1, ξ)− fxk(xk+1, Bk)

]
.

26

Next, we take expectation over Bk conditioned on B1, B2, . . . , Bk−1. Note that Ek[f(x̂, Bk)] =
f(x̂), Ek[f(xk, Bk)] = f(xk) and

Ek
[
f(xk+1)− f(x̂)

]
− (1− θ)

[
f(xk)− f(x̂)

]
≤ γθ2

2
‖x̂− zk‖2 − γθ2

2
Ek[‖x̂− zk+1‖2]

+
γβ(1− β)

2
‖xk − xk−1‖2 − γ(1− β)− τ

2
Ek[‖xk+1 − xk‖2]

+ Ek
{
Eξ
[
fxk(xk+1, ξ)− fxk(xk+1, Bk)

]}
.

(71)

Moreover, based on the stability of the proximal mapping, we have

Ek
{
Eξ
[
fxk(xk+1, ξ)− fxk(xk+1, Bk)

]}
≤ εk, where εk =

2L2

mγ
. (72)

Combining (71) and (72) gives the desired result (66).

By specifying a constant stepsize and batch size, we develop the convergence rate of SEMOD in the
following Theorem.

Theorem C.2. Let x1 = x0, x∗ be an optimal solution and γ = γ0

√
K
m + θ−2τ , where γ0 = 2θ−1L

D̃

and D̃ ≥ ‖x0 − x∗‖, then we have

E
[
f(xk

∗
)− f(x∗)

]
≤ f(x0)− f(x∗)

K
+
θ−1τD̃2

2K
+

2D̃L√
mK

. (73)

where k∗ is an index chosen in {1, 2, . . . ,K} uniformly at random.

Proof. Let us denote ∆k = E[f(xk)−f(x∗)] for the sake of simplicity. Following Lemma C.1 (with
x̂ = x∗), we sum up (66) over k = 1, 2, . . . ,K and then take expectation over all the randomness,
then we have

∆K+1 + θ

K∑
k=1

∆k ≤ ∆1 +
γθ2

2
‖x̂− z1‖2 +

γβ(1− β)

2
‖x1 − x0‖2 +

2L2K

mγ
,

where the inequality holds since γ ≥ θ−2τ . Using x1 = z1 = x0, we have

E
[
f(xk

∗
)− f(x∗)

]
=

1

K

K∑
k=1

∆k

≤ ∆1

K
+
γθ

2K
‖x∗ − x0‖2 +

2L2

mθγ

≤ ∆1

K
+
γθD̃2

2K
+

2L2

mθγ

≤ ∆1

K
+
θ−1τD̃2

2K
+
θγ0D̃

2

2
√
mK

+
2L2

√
mKθγ0

=
∆1

K
+
θ−1τD̃2

2K
+

2D̃L√
mK

.

Therefore, we complete the proof.

C.2 Robustness of the extrapolated SMOD

As is mentioned in the main article, one major advantage of SMOD methods is the robustness to stepsize
selection (see [1]). In other words, compared to SGD, SPL and SPP tend to admit a wider range of
stepsizes. We show that the extrapolated model-based method inherit the merits of robustness. For
the sake of the asymptotic analysis, stepsize parameter γk in SEMOD is now indexed by k. We present
the main convergence property in the following theorem.

27

Theorem C.3. Suppose that Assumption A6 holds, x1 = x0 and the stepsize γk satisfies γk ≥ 2τθ−2.
Then we have

E[‖x∗ − xK+1‖2] ≤ ‖x∗ − x1‖2 + 2θ−2
K∑
k=1

γ−2
k E[‖f ′(x∗, Bk)‖2].

Proof. First, Assumption A6 implies that

fxk(xk+1, Bk) ≥ f(xk+1, Bk)− τ

2
‖xk+1 − xk‖2,

−fxk(x,Bk) ≥ −f(x,Bk).

Summing up the above two relations gives

fxk(xk+1, Bk)− fxk(x,Bk) ≥ f(xk+1, Bk)− f(x,Bk)− τ

2
‖xk+1 − xk‖2.

In view of (67), we have

f(xk+1, Bk)− f(x,Bk) ≤ fxk(xk+1, Bk)− fxk(x,Bk) +
τ

2
‖xk+1 − xk‖2

≤ γk
2
‖x− yk‖2 − γk

2
‖x− xk+1‖2 − γk

2
‖yk − xk+1‖2 +

τ

2
‖xk+1 − xk‖2,

which implies that
γk
2
‖x− xk+1‖2 ≤ γk

2
‖x− yk‖2 +

τ

2
‖xk+1 − xk‖2 − γk

2
‖yk − xk+1‖2 − [f(xk+1, Bk)− f(x,Bk)].

By the convexity of f(·, Bk), we have, for any η > 0 that

f(xk+1, Bk)− f(x,Bk)

≥ 〈f ′(x,Bk), xk+1 − x〉
= 〈f ′(x,Bk), xk − x〉+ 〈f ′(x,Bk), xk+1 − xk〉
≥ 〈f ′(x,Bk), xk − x〉 − ‖f ′(x,Bk)‖‖xk+1 − xk‖

≥ 〈f ′(x,Bk), xk − x〉 − 1

2ηγk
‖f ′(x,Bk)‖2 − ηγk

2
‖xk+1 − xk‖2.

Recalling the identities x− yk = θ(x̂− zk) and x− xk+1 = θ(x̂− zk+1), we have

γkθ
2

2
‖x̂− zk+1‖2

=
γk
2
‖x− xk+1‖2

≤ γk
2
‖x− yk‖2 +

τ

2
‖xk+1 − xk‖2 − γk

2
‖yk − xk+1‖2 − [f(xk+1, Bk)− f(x,Bk)]

≤ γk
2
‖x− yk‖2 +

τ

2
‖xk+1 − xk‖2 − γk

2
‖yk − xk+1‖2 +

ηγk
2
‖xk+1 − xk‖2

− 〈f ′(x,Bk), xk − x〉+
1

2ηγk
‖f ′(x,Bk)‖2

=
γkθ

2

2
‖x̂− zk‖2 +

τ + ηγk
2

‖xk+1 − xk‖2 − γk
2
‖yk − xk+1‖2

− 〈f ′(x,Bk), xk − x〉+
1

2ηγk
‖f ′(x,Bk)‖2.

Moreover, using an argument of (70), we obtain
γk
2
‖yk − xk+1‖2 +

τ + ηγk
2

‖xk+1 − xk‖2

= −γk
2
‖yk − xk+1‖2 +

τ + ηγk
2

‖xk+1 − xk‖2

≤ γkβ(1− β)

2
‖xk − xk−1‖2 − γk(1− β − η)− τ

2
‖xk+1 − xk‖2.

28

Combining the above two results and taking expectation Ek[·], we have that

γkθ
2

2
Ek[‖x̂− zk+1‖2]

≤ γkθ
2

2
‖x̂− zk‖2 − Ek[〈f ′(x,Bk), xk − x〉] +

1

2ηγk
Ek[‖f ′(x,Bk)‖2]

+
τ + ηγk

2
Ek[‖xk+1 − xk‖2]− γk

2
Ek[‖yk − xk+1‖2]

≤ γkθ
2

2
‖x̂− zk‖2 − Ek[〈f ′(x,Bk), xk − x〉] +

1

2ηγk
‖f ′(x,Bk)‖2 +

γkβ(1− β)

2
‖xk − xk−1‖2

− γk(1− β − η)− τ
2

Ek[‖xk+1 − xk‖2].

Dividing both sides of the above relation by γkθ2/2 and taking take x = x∗ gives

Ek[‖x̂− zk+1‖2]

≤ ‖x̂− zk‖2 − 2

γkθ2
Ek[〈f ′(x,Bk), xk − x∗〉] +

1

ηγ2
kθ

2
Ek[‖f ′(x∗, Bk)‖2]

+
β(1− β)

θ2
‖xk − xk−1‖2 − (1− β − η)− τ/γk

θ2
Ek[‖xk+1 − xk‖2]

≤ ‖x̂− zk‖2 +
1

ηγ2
kθ

2
Ek[‖f ′(x∗, Bk)‖2] +

β(1− β)

θ2
‖xk − xk−1‖2

− (1− β − η)− τ/γk
θ2

Ek[‖xk+1 − xk‖2].

where the last inequality uses the property Ek[〈f ′(x∗, Bk), xk − x∗〉] = 〈f ′(x∗), xk − x∗〉 ≤ 0,
which is derived from optimality condition.

Last we take η = θ2/2, γk ≥ τ
(1−β)2−η such that β(1 − β) ≤ (1 − β − η) − τ/γk and sum over

k = 1, . . . ,K to obtain

E[‖x̂− zK+1‖2] ≤ ‖x̂− z1‖2 +
β(1− β)

θ2
‖x1 − x0‖2 +

2

θ4

K∑
k=1

γ−2
k E[‖f ′(x∗, Bk)‖2].

Plugging ‖x̂− zK+1‖2 = 1
θ2 ‖x

∗ − xK+1‖2 in the above inequality and then multiplying both sides
by θ2, we obtain the desired result.

Remark 8. Let X ∗ be the set of optimal solutions and assume that supx∈X∗ Ek[‖f ′(x∗, Bk)‖2] <∞.
Using an argument of Cor 3.2 [1], we can show that when

∑∞
k=1 γ

−2
k <∞, then supk dist(xk, X∗) <

∞ with probability one. This completes our proof of the boundedness of the iterates.

It is interesting to compare SEMOD and SGD in terms of the robustness to the stepsize policy. Consider
that SGD takes the form xk+1 = argminx〈f ′(xk, Bk), x〉 + γk

2 ‖x − x
k‖2. Using the argument of

[28], it is easy to show that SGD exhibits the bound

E[‖x∗ − xK+1‖2] ≤ ‖x∗ − x1‖2 +

K∑
k=1

γ−2
k E[‖f ′(xk, Bk)‖2],

which explicitly depends on the subgradients of iterates {xk}. When ‖f ′(xk, Bk)‖ is large, (e.g. f
is a high order polynomial or an exponential function) we need sufficiently large {γk} (i.e. small
stepsize 1/γk) to ensure the boundedness of iterates. However, in contrast to SGD, SEMOD has a bound
only depending on the subgradient over the optimal solutions. For many problems, (e.g. interpolation
problems), ‖f ′(x∗, ξ)‖ can be substantially smaller than supx ‖f ′(x, ξ)‖.
We also note that the best bound for SMOD is when θ = 1 (i.e. β = 0). It appears that adding
momentum encourages more exploration of the parameter space, however, at the cost of potentially
departing from the original solution path.

29

C.3 Improved convergence using Nesterov acceleration

It is known that the heavy-ball type stochastic gradient does not give an optimal rate of convergence.
Next we show that our proposed stability analysis can be combined with Nesterov’s acceleration
[24], yielding an accelerated SMOD method which achieves the best complexity for convex stochastic
optimization.

Algorithm 4 Stochastic Model-based Method with Minibatching and Nesterov’s Acceleration
Input: x0 = z0;
for k = 0 to K do

Sample a minibatch Bk = {ξk,1, . . . , ξk,mk
} and update yk, zk+1, xk+1 by

yk = (1− θk)xk + θkz
k,

zk+1 = argmin
x∈X

{
fyk(x,Bk) +

γk
2
‖x− zk‖2

}
,

xk+1 = (1− θk)xk + θkz
k+1.

end for

Lemma C.4. Let ∆k , f(xk)− f(x) for some x ∈ X . For k = 0, 1, 2, . . . we have

Ek
[
∆k+1

]
− (1− θk)∆k

≤ 2L2θk
mkγk

+
γkθk

2
‖x− zk‖2 − γkθk

2
Ek[‖x− zk+1‖2]

− γkθk − τθ2
k

2
Ek[‖zk − zk+1‖2].

(74)

Proof. First, recall that fy(x) = Eξ[fy(x, ξ)]. Assumption A6 implies that for any x, y ∈ X , we
have

f(x) = Eξ[f(x, ξ)] ≤ Eξ
[
fy(x, ξ) +

τ

2
‖x− y‖2

]
= fy(x) +

τ

2
‖x− y‖2.

Therefore, we deduce that

f(xk+1) ≤ fyk(xk+1) +
τ

2
‖xk+1 − yk‖2

= fyk
(
(1− θk)xk + θkz

k+1
)

+
τθ2
k

2
‖zk+1 − zk‖2

≤ (1− θk)fyk(xk) + θkfyk(zk+1) +
τθ2
k

2
‖zk+1 − zk‖2

≤ (1− θk)f(xk) + θkfyk(zk+1) +
τθ2
k

2
‖zk+1 − zk‖2

= (1− θk)f(xk) + θkfyk(zk+1, Bk) +
τθ2
k

2
‖zk+1 − zk‖2

+ θk
[
fyk(zk+1)− fyk(zk+1, Bk)

]
(75)

where the equality uses the fact θk(zk+1 − zk) = xk+1 − yk, the third inequality uses Assumption
A6 again. Moreover, due to the optimality of zk+1 for the subproblem, for any x ∈ X , we have

fyk(zk+1, Bk) ≤ fyk(x,Bk) +
γk
2
‖x− zk‖2 − γk

2
‖x− zk+1‖2 − γk

2
‖zk − zk+1‖2

≤ f(x,Bk) +
γk
2
‖x− zk‖2 − γk

2
‖x− zk+1‖2 − γk

2
‖zk − zk+1‖2

(76)

where the second inequality uses Assumption A6. Following (76) and (75), we obtain

f(xk+1) ≤ (1− θk)f(xk) + θkf(x,Bk) + θk
[
fyk(zk+1)− fyk(zk+1, Bk)

]
+
γkθk

2
‖x− zk‖2 − γkθk

2
‖x− zk+1‖2 − γkθk − τθ2

k

2
‖zk − zk+1‖2. (77)

30

On both sides of (77), we take expectation over Bk conditioned on B1, B2, . . . , Bk−1. Noting that
Ek[f(x,Bk)] = f(x), we have that

Ek
[
f(xk+1)− f(x)

]
− (1− θk)

[
f(xk)− f(x)

]
≤ γkθk

2
‖x− zk‖2 − γkθk

2
Ek[‖x− zk+1‖2]− γkθk − τθ2

k

2
Ek[‖zk − zk+1‖2]

+ θkEk
[
fyk(zk+1)− fyk(zk+1, Bk)

]
.

(78)

Moreover, based on the stability of proximal mapping, we have that

Ek
[
fyk(zk+1)− fyk(zk+1, Bk)

]
= Ek

{
Eξ
[
fyk(zk+1, ξ)− fyk(zk+1, Bk)

]}
≤ 2L2

mkγk
. (79)

Combining the above two results together immediately gives us the desired result (74).

Theorem C.5. In Algorithm 4, let the sequence {Γk},

Γk =

{
(1− θk)−1Γk−1 if k > 0

1 if k = 0
(80)

and assume that Γk, γk, and θk satisfy

Γkγkθk ≥ Γk+1γk+1θk+1, (81)
γk ≥ τθk, (82)

then we have

ΓKE[∆K+1] ≤ (1− θ0)∆0 +
Γ0γ0θ

2
0

2
‖x− z0‖2 +

K∑
k=0

2L2Γkθk
mkγk

. (83)

Moreover, if we take x = x∗ be an optimal solution, and assume that mk = m, θk = 2
k+2 , γk = γ

k+1 ,
γ = 2τ + η, η = 2L√

3mD̃
(K + 2)

3
2 where D̃ ≥ ‖x0 − x∗‖, then we have

E
[
f(xK+1)− f(x∗)

]
≤ 2τD̃2

(K + 1)(K + 2)
+

4
√

2LD̃√
3m(K + 1)

. (84)

Proof. First of all, it can be easily checked that conditions (81) and (82) are satisfied by the proposed
setting of θk and γk. Next, multiplying both sides of (74) by Γk, and then dropping out the negative
term −γkθk−τθ

2
k

2 ΓkEk[‖zk − zk+1‖2] in the result, we have

ΓkEk
[
∆k+1

]
− Γk−1∆k

≤ 2L2Γkθk
mkγk

+
Γkγkθk

2
‖x− zk‖2 − Γkγkθk

2
Ek[‖x− zk+1‖2]

Summing up the above result over k = 0, 1, 2, ...,K and taking expectation over all the randomness,
we obtain the desired result (83).

Moreover, note that θ0 = 1, Γk = (k+2)(k+1)
2 , hence we have

K∑
k=0

2L2Γkθk
mkγk

=

K∑
k=0

2L2(k + 1)2

mγ
≤ 2L2

mγ

∫ K+2

1

s2ds ≤ 2L2

3mγ
(K + 2)3. (85)

31

Placing x = x∗, then we have

E
[
f(xK+1)− f(x∗)

]
≤ Γ−1

K

{
(1− θ0)∆0 +

Γ0γ0θ
2
0

2
‖x− z0‖2 +

K∑
k=0

2L2Γkθk
mkγk

}
≤ Γ−1

K

{γ
2
D̃2 +

2L2

3mγ
(K + 2)3

}
=

1

K + 1

{ γD̃2

K + 2
+

4L2(K + 2)2

3mγ

}
≤ 2τD̃2

(K + 1)(K + 2)
+

1

K + 1

{ ηD̃2

K + 2
+

4L2(K + 2)2

3mη

}
=

2τD̃2

(K + 1)(K + 2)
+

4LD̃

K + 1

√
K + 2

3m

≤ 2τD̃2

(K + 1)(K + 2)
+

4
√

2LD̃√
3m(K + 1)

.

where the second inequality uses (85), and D̃ ≥ ‖x0 − x∗‖, the third inequality uses the fact
γ = 2τ + η and 1

γ ≤
1
η , and the last inequality uses K + 2 ≤ 2(K + 1) for K ≥ 1. This completes

the proof.

D Solving the subproblems

In this section, we describe how to solve the subproblems arising from (SGD), (SPL) and(SPP). For
the sake of simplicity, we abstract the SMOD subproblems by

min
x ∈ Rd

1

m

m∑
i=1

ϕz(x, ξi) +
γ

2
‖x− y‖2 (86)

D.1 Phase retrieval

We first state the expressions for the sequential updates (i.e. m = 1). More technical derivations
can be referred from [3]. Given current iterate x, we denote x+ to be the output of SMOD update and
suppress all the iteration indices.

In terms of phase retrieval, let ξ = (a, b) for a ∈ Rd and b ∈ R and we have

x+
sgd = argmin

x

{
〈v, x− z〉+

γ

2
‖x− y‖2

}
x+

spl = argmin
x

{∣∣〈a, z〉2 + 2〈a, z〉〈a, x− z〉 − b
∣∣+

γ

2
‖x− y‖2

}
x+

spp = argmin
x

{
|〈a, x〉2 − b|+ γ

2
‖x− y‖2

}
.

The above three subproblems admit closed-form solutions
x+

sgd = y − γ−1v

x+
spl = y + Proj[−1,1]

(
− δ
‖ζ‖2

)
ζ

x+
spp ∈

{
y − 2〈a,y〉a

2‖a‖2±γ , y −
〈a,y〉±

√
b

‖a‖2 a
}
,

where
v ∈ ∂x(|〈a, z〉2 − b|)

= 2〈a, z〉a ·
{

sign(〈a, z〉2 − b), if 〈a, z〉2 − b 6= 0
[−1, 1], o.w.

δ = γ−1(〈a, z〉2 + 2〈a, z〉〈a, x− z〉 − b),
ζ = 2γ−1〈a, z〉a

32

and Proj[−1,1](·) denotes the orthogonal projection operator onto [−1, 1].

For minibatching, we let y = z and

x+
sgd = argmin

x

{
1

m

m∑
i=1

〈vi, x− z〉+
γ

2
‖x− z‖2

}

x+
spl = argmin

x

{
1

m

m∑
i=1

∣∣〈ai, z〉2 − bi + 2〈ai, z〉〈ai, x− z〉
∣∣+

γ

2
‖x− z‖2

}

x+
spp = argmin

x

{
1

m

m∑
i=1

|〈ai, x〉2 − bi|+
γ

2
‖x− z‖2

}
,

where vi ∈ ∂x(|〈ai, z〉2 − bi|). Minibatch subproblems can be reformulated as standard convex
programs.

x+
sgd = z − 1

mγ

m∑
i=1

vi (87)

(
x+

spl, ∗
)

= argmin
(x,t)

{
1

m

m∑
i=1

ti +
γ

2
‖x− z‖2

}
subject to 〈ai, z〉2 − bi + 2〈ai, z〉〈ai, x− z〉 ≥ −ti (88)

〈ai, z〉2 − bi + 2〈ai, z〉〈ai, x− z〉 ≤ ti i = 1, 2, . . . ,m. (89)

(
x+

spp, ∗
)

= argmin
(x,t)

{
1

m

m∑
i=1

ti

}
subject to xT

(γ
2
I − aiaT

i

)
x− γ〈z, x〉+

γ

2
‖z‖2 + bi ≤ ti

xT
(γ

2
I + aia

T
i

)
x− γ〈z, x〉+

γ

2
‖z‖2 − bi ≤ ti, i = 1, 2, . . . ,m (90)

Remark 9. We make a few comments. First, the update (SGD) (87) admits a simple closed-form
solution by directly using the average subgradients over the minibatches. Second, the SPL subproblem
(89) can be further transformed into an O(m)-dimensional quadratic program in the dual form, which
can be efficiently solved in parallel. (See [1]). Third, the SPP subproblem (90) is solvable by interior
point methods for quadratically constrained quadratic programming (QCQP).

However, despite the fast theoretical convergence, interior point methods are potentially unscalable
the growing number of nonlinear constraints. In our initial experiments, we apply Gurobi for solving
(90) but fail to get an accurate solution to subproblems when m > 5. Therefore, we alternatively
utilize the strong convexity of (90) and adopt deterministic prox-linear algorithm to obtain an accurate
solution (up to 1e-08 accuracy) by solving several QPs as in (89). The theoretical linear convergence
of this method is verified in D.3. Finally, similar observations can be made for the experiments of
blind deconvolution.

D.2 Blind deconvolution

The detailed formulation of blind deconvolution is deferred to Section 6 and we focus on its proximal
subproblems here. For convenience we use (x; y) to denote the vertical concatenation of two column

33

vectors. Given current iterate w = (wx;wy), the subproblems are given by

w+
sgd = argmin

(x;y)

{
〈s, (x− zx; y − zy)〉+

γ

2
‖x− wx‖2 +

γ

2
‖y − wy‖2

}
w+

spl = argmin
(∆x;∆y)

{
|〈u, zx〉〈v, zy〉+ 〈v, zy〉〈u,∆x〉+ 〈u, zx〉〈v,∆y〉

+ 〈v, zy〉〈u,wx − zx〉+ 〈u, zx〉〈v, wy − zy〉 − b|+
γ

2
[‖∆x‖2 + ‖∆y‖2]

}
+ w

w+
spp = argmin

(x;y)

{
|〈u, x〉〈v, y〉 − b|+ γ

2
‖x− wx‖2 +

γ

2
‖y − wy‖2

}
and we have

w+
sgd = w − γ−1s

w+
spl = w + Proj[−1,1]

(
− δ
‖ζ‖2

)
ζ

where

s ∈ ∂(x;y)(|〈u, zx〉〈v, zy〉 − b|)

= (〈v, zy〉u; 〈u, zx〉v) ·
{

sign(〈u, zx〉〈v, zy〉 − b), if 〈u, zx〉〈v, zy〉 − b 6= 0
[−1, 1], o.w.

δ = γ−1 [〈u, zx〉〈v, zy〉+ 〈v, zy〉〈u,wx − zx〉+ 〈u, zx〉〈v, wy − zy〉 − b]
ζ = γ−1 (〈v, zy〉u; 〈u, zx〉v) .

As for SPP, we consider the following two cases.

Case 1. If 〈u,wx〉〈v, wy〉 − b 6= 0, then

w+
x = wx −

{
±γ〈v,wy〉−‖v‖2〈u,wx〉

γ2−‖u‖2‖v‖2

}
u, w+

y = wy −
{
±γ〈u,wx〉−‖u‖2〈v,wy〉

γ2−‖u‖2‖v‖2

}
v.

Case 2. If 〈u,wx〉〈v, wy〉 − b = 0, then

w+
x = wx − ζ

(
b
η

)
u, w+

y = wy − ζηv,

where ζ = η〈u,wx〉−η2
b‖u‖2 and η is determined by

η4‖v‖2 − η3‖v‖2〈u,wx〉+ bη‖u‖2〈v, wy〉 − b2‖u‖2 = 0.

Moreover, for the minibatch variants, we set w = z and get the following subproblems

w+
sgd = argmin

(x;y)

{
1

m

m∑
i=1

〈si, (x− zx; y − zy)〉+
γ

2
‖x− zx‖2 +

γ

2
‖y − zy‖2

}

w+
spl = argmin

(∆x;∆y)

{
1

m

m∑
i=1

|〈ui, zx〉〈vi, zy〉+ 〈vi, zy〉〈ui,∆x〉+ 〈wi, zx〉〈vi,∆y〉 − bi|

+
γ

2
‖∆x‖2 +

γ

2
‖∆y‖2

}
+ z

w+
spp = argmin

(x;y)

{
1

m

m∑
i=1

|〈ui, x〉〈vi, y〉 − bi|+
γ

2
‖x− zx‖2 +

γ

2
‖y − zy‖2

}
,

34

where si ∈ ∂(x;y)(|〈ui, zx〉〈vi, zy〉 − bi|). Then we solve the subproblems by

w+
sgd = z − 1

mγ

m∑
i=1

si,

(
x+

spl; y
+
spl, ∗

)
= argmin

(x,y,t)

{
1

m

m∑
i=1

ti +
γ

2
‖x− zx‖2 +

γ

2
‖y − zy‖2

}
subject to 〈ui, zx〉〈vi, zy〉+ 〈vi, zy〉〈ui, x− zx〉+ 〈ui, zx〉〈vi, y − zy〉 − bi ≤ ti

〈ui, zx〉〈vi, zy〉+ 〈vi, zy〉〈ui, x− zx〉+ 〈ui, zx〉〈vi, y − zy〉 − bi ≥ −ti,
i = 1, 2, . . . ,m

(
x+

spp; y+
spp, ∗

)
= argmin

(x,y,t)

{
1

m

m∑
i=1

ti

}
subject to

γ

2
[‖x− zx‖2 + ‖y − zy‖2] + 〈ui;x〉〈vi, y〉 − bi ≤ ti

γ

2
[‖x− zx‖2 + ‖y − zy‖2]− 〈ui, x〉〈vi, y〉+ bi ≤ ti, i = 1, 2, . . . ,m,

where the last two problems are solved by either QP (QCQP) optimizers or prox-linear iterations as
in phase retrieval.

D.3 Solving the SPP subproblem by Prox-linear algorithm

Suppose that the objective admits a composition form h(c(·)). We show that when applied to the SPP
subproblem, the deterministic prox-linear algorithm obtains a linear convergence rate. Without loss
of generality, consider the SPP subproblem

min
x ∈ X

1

m

m∑
i=1

ϕx̄(x, ξi) +
γ

2
‖x− x̄‖2 (91)

where ϕx̄(x, ξi) = h(c(x, ξi)) and we apply deterministic prox-linear method to solve the above
subproblem. For clarity we denote zt to be the iterate of the subproblems and define ϕzt(z) :=
1
m

∑m
i=1 h(c(zt, ξi) + 〈ϕ(∇c(zt, ξi), (z − zt)〉), ϕ(z) := 1

m

∑m
i=1 h(c(x, ξi)). In each prox-linear

iteration, we tate η ≥ τ and compute

zt+1 = arg min
z

{
ϕ(z) +

γ

2
‖z − x̄‖2 +

η

2
‖z − zt‖2

}
.

First by A5 we have

ϕzt(z)− ϕ(z) ≤ τ

2
‖z − zt‖2

ϕ(zt+1)− ϕzt(zt+1) ≤ τ

2
‖zt+1 − zt‖2

and by the strong convexity of subproblems we have

ϕzt(z
t+1) +

γ

2
‖zt+1 − x̄‖2 +

η

2
‖zt+1 − zt‖2

≤ ϕzt(z) +
γ

2
‖z − x̄‖2 +

η

2
‖z − zt‖2 − γ + η − λ

2
‖zt+1 − z‖2,

which implies

ϕzt(z
t+1) +

γ

2
‖zt+1 − x̄‖2 +

η

2
‖zt+1 − zt‖2 + ϕzt(z)− ϕ(z) + ϕ(zt+1)− ϕzt(zt+1)

≤ ϕzt(z) +
γ

2
‖z − x̄‖2 +

η

2
‖z − zt‖2 − γ + η − λ

2
‖zt+1 − z‖2 +

τ

2
‖z − zt‖2 +

τ

2
‖zt+1 − zt‖2.

35

Re-arranging the terms, we have[
ϕ(zt+1) +

γ

2
‖zt+1 − x̄‖2

]
−
[
ϕ(z) +

γ

2
‖z − x̄‖2

]
≤ η + τ

2
‖z − zt‖2 − γ + η − λ

2
‖zt+1 − z‖2 +

τ − η
2
‖zt+1 − zt‖2

≤ η + τ

2
‖z − zt‖2 − γ + η − λ

2
‖zt+1 − z‖2, (92)

where the last inequality is by η ≥ τ . Define α = η+τ
γ+η−λ and divide both sides of the inequality by(

η+τ
2

)
αt, we obtain

2

αt(η + τ)

{[
ϕ(zt+1) +

γ

2
‖zt+1 − x̄‖2

]
−
[
ϕ(z) +

γ

2
‖z − x̄‖2

]}
≤ 1

αt
‖zt − z‖2 − 1

αt
· γ + η − λ

η + τ
‖zt+1 − z‖2

=
1

αt
‖zt − z‖2 − 1

αt+1
‖zt+1 − z‖2.

Last we define ∆t :=
[
ϕ(zt+1) + γ

2 ‖z
t+1 − x̄‖2

]
−
[
ϕ(z∗) + γ

2 ‖z
∗ − x̄‖2

]
and by (92) we can

verify that {∆k} is monotonically decreasing. By taking z = z∗ and summing over t = 0, . . . , T , we
get

T∑
t=0

2∆T

αt(η + τ)
≤

T∑
t=0

2∆t

αt(η + τ)

≤
T∑
t=0

1

αt
‖zt − z∗‖2 − 1

αt+1
‖zt+1 − z∗‖2

= ‖z0 − z∗‖2 − 1

αT+1
‖zT+1 − z∗‖2

≤ ‖z0 − z∗‖2

and we have

∆T ≤
(η + τ)‖z0 − z∗‖2

2
(∑T

t=0 1/αt
) ≤ (η + τ)‖z0 − z∗‖2

2

(
η + τ

γ + η − λ

)T
and this implies linear convergence.

E Additional experiments

This section presents the experiments that were not displayed in the main article due to space limit.

E.1 Blind deconvolution

Blind deconvolution aims to separate two unknown signals from their convolution, resulting in the
following non-smooth biconvex problem

min
x, y ∈ Rd

1

n

n∑
i=1

∣∣〈ui, x〉〈vi, y〉 − bi∣∣. (93)

Data preparation. We conduct experiments over synthetic dataset.

1) Synthetic data. We choose n, d and the signal x∗ in the same way as in phase retrieval. Namely
we generate U = Q1D1, V = Q2D2 where qij ∼ N (0, 1) and D1, D2 are diagonal matrices
whose diagonal entries evenly distribute between 1 and 1/κ; Measurements {bi} are generated by
bi = 〈ui, x∗〉〈vi, x∗〉+ δiζi with ζi ∼ N (0, 25) and δ ∼ Bernoulli(pfail)

The detailed experiment setup is given as follows

36

1) Dataset generation. We test κ ∈ {1, 10} and pfail ∈ {0.2, 0.3};
2) Initial point. For all algorithms, we set the initial point x1(= x0) and y1(= y0) ∼ N (0, Id);

3) Stepsize. We set the parameter γ = α−1
0

√
K/m where m is the batch size; we test 10 evenly

spaced α0 values in range [10−1, 102] for SGD, SPL and in range [10−2, 101] for SGD, SPL and SPP;

4) Others. The rest of the experiment setup are the same as in synthetic phase retrieval, which can be
referred from Section 6.

In our setup, when we take α0 ≥ 10, the resultant SPP subproblem will remain nonconvex. Thus we
present the results with α0 in two ranges for SPP and the other two SMOD algorithms.

In Figure 5 we plot the the algorithm speedup over the size of minibatches for two different settings
pfail ∈ {0.2, 0.3}. We find that both SPL and SGD enjoy linear speedup over the size of minibatches.
Figure 6 shows the algorithm speedup over different values of α0. In comparison with SGD, SPL
has significant acceleration over a much wider range of stepsize values. Figure 7 shows the total
iteration number over different values of α0. The result suggests that momentum can further improve
the performance of both stochastic algorithms, particularly if algorithms are initiated with small
stepsizes.

0 10 20 30 40 50 60
0

50

100

150

200
SGD
SPL
SPP

0 10 20 30 40 50 60
0

50

100

150
SGD
SPL
SPP

Figure 5: Speedup vs. batch size m. κ = 10. From left to right: (α0, pfail) =
([10−2, 10], 0.2), ([10−1, 102], 0.2), ([10−2, 10], 0.3), ([10−1, 102], 0.3).

10-2 10-1 100 101 102
0

5

10

15

20

25
SGD
SPL
SPP

10-2 10-1 100 101 102
0

20

40

60

80
SGD
SPL
SPP

10-2 10-1 100 101 102
0

5

10

15

20

25
SGD
SPL
SPP

10-2 10-1 100 101 102
0

20

40

60

80
SGD
SPL
SPP

10-2 10-1 100 101 102
0

1

2

3

4

5

6
104

SGD
SPL
SPP

10-2 10-1 100 101 102
0

1

2

3

4

5

6
104

SGD
SPL
SPP

10-2 10-1 100 101 102
0

1

2

3

4

5

6
104

SGD
SPL
SPP

10-2 10-1 100 101 102
0

1

2

3

4

5

6
104

SGD
SPL
SPP

Figure 6: First row: Speedup vs. Stepsize α0. Second row: Iteration number on reaching desired ac-
curacy vs. Stepsize α0. From left to right: κ = 10, (pfail,m) = (0.2, 8), (0.2, 32), (0.3, 8), (0.3, 32).

E.2 Phase retrieval

We complement the experiments in Section 6 by visualizing the effectiveness of image recovery on
zipcode datasets. Details on data processing and parameter settings are available in Section 6.

More detailedly, we conduct experiments on the test images of digit 6 and illustrate the results of SPL
and SGD in Figure 8 and Figure 9, respectively. We fix α0 = 100 and run each algorithm over 200
epochs (number of passes over the data). Then we report the results over the earliest 600 iterations
and plot the recovered digits for different batch sizes m ∈ {1, 4, 8, 16, 32, 48, 64}. It can be seen that

37

10-2 10-1 100 101
0

100

200

300

400

SGD
SPL
SPP
SEGD
SEPL
SEPP

10-2 10-1 100 101
0

100

200

300

400

SGD
SPL
SPP
SEGD
SEPL
SEPP

10-2 10-1 100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

10-2 10-1 100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

10-2 10-1 100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

10-2 10-1 100 101
0

100

200

300

400

SGD
SPL
SPP
SEGD
SEPL
SEPP

10-2 10-1 100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

10-2 10-1 100 101
0

100

200

300

400
SGD
SPL
SPP
SEGD
SEPL
SEPP

Figure 7: Epoch number on reaching desired accuracy vs. Stepsize α0. First row: β = 0.2. Second
row: β = 0.6. From left to right: κ = 10, (pfail,m) = (0.2, 1), (0.2, 32), (0.3, 1), (0.3, 32).

with larger batch size, both methods exhibit improved performance and generate images with better
quality, which suggests the practical advantage of using large batch size. Moreover, SPL outperforms
SGD by giving a much better recovered image quality. This observation confirms the earlier study
about the superior performance of prox-linear methods [5].

Figure 8: Reconstruction of real image (digit 6) for stochastic prox-linear method. Rows
correspond to recovery results of different minibatch size m ∈ {1, 4, 8, 16, 32, 48, 64}.
Columns correspond to recovery results after different number of iterations T ∈
{1, 60, 120, 180, 240, 300, 360, 420, 480, 540, 600}.

Reference
[1] H. Asi, K. Chadha, G. Cheng, and J. C. Duchi. Minibatch stochastic approximate proximal

point methods. Advances in Neural Information Processing Systems, 33, 2020.

[2] K. Chadha, G. Cheng, and J. C. Duchi. Accelerated, optimal, and parallel: Some results on
model-based stochastic optimization. arXiv preprint arXiv:2101.02696, 2021.

[3] D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex functions.
Siam Journal on Optimization, 29(1):207–239, 2019.

38

Figure 9: Reconstruction of real image (digit 6) for stochastic (sub)gradient descent.

[4] J. Diakonikolas and M. I. Jordan. Generalized momentum-based methods: a hamiltonian
perspective. SIAM Journal on Optimization, 31(1):915–944, 2021.

[5] J. C. Duchi and F. Ruan. Solving (most) of a set of quadratic equalities: Composite optimization
for robust phase retrieval. Information and Inference: A Journal of the IMA, 8(3):471–529,
2019.

[6] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-ball
method for convex optimization. In 2015 European control conference (ECC), pages 310–315.
IEEE, 2015.

[7] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and uniform
convergence. The Journal of Machine Learning Research, 11:2635–2670, 2010.

39

	Introduction
	Background
	SMOD with minibatches
	SMOD with momentum
	SMOD for convex optimization
	Experiments
	Discussion
	Acknowledgement and disclosure of funding
	Appendix
	 Appendix
	Proof of results in Section 3
	Proof of Lemma 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4

	Proof of results in Section 4
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	SMOD with momentum and minibatching

	SMOD for convex optimization
	Convergence of extrapolated SMOD
	Robustness of the extrapolated SMOD
	Improved convergence using Nesterov acceleration

	Solving the subproblems
	Phase retrieval
	Blind deconvolution
	Solving the SPP subproblem by Prox-linear algorithm

	Additional experiments
	Blind deconvolution
	Phase retrieval

