
Supplementary Material:
“Sparse Flows: Pruning Continuous-depth Models”

Lucas Liebenwein∗
MIT CSAIL

lucas@csail.mit.edu

Ramin Hasani∗
MIT CSAIL

rhasani@mit.edu

Alexander Amini
MIT CSAIL

amini@mit.edu

Daniela Rus
MIT CSAIL

rus@csail.mit.edu

S1 Hyperparameters

We provide the necessary hyperparameters to reproduce our experiments below. For each set of
experiments (Toy, Tabular, Images) we summarize the architecture of the unpruned model and relevant
hyperparameters pertaining to the training/pruning process. All experiments were repeated three
times with separate random seeds and average results are reported.

Table S1: Toy Dataset Hyperparameters.
Hyperparameters GAUSSIANS GAUSSIANSPIRAL SPIRAL MOON

Architecture

Layers 2 4 4 2
Hidden Size 128 64 64 128
Activation Sigmoid Sigmoid Sigmoid Tanh
Divergence Hutchison Hutchison Hutchison Hutchison

Solver

Type Dopri Dopri Dopri Dopri
Rel. tol. 1.0e-5 1.0e-5 1.0e-5 1.0e-4
Abs. tol 1.0e-5 1.0e-5 1.0e-5 1.0e-4
Backprop. Adjoint Adjoint Adjoint Adjoint

(Re-)Training

Optimizer AdamW AdamW AdamW Adam
Epochs 100 100 100 50
Batch size 1024 1024 1024 128
LR 5.0e-3 5.0e-2 5.0e-2 1.0e-2
β1 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999
Weight decay 1.0e-5 1.0e-2 1.0e-6 1.0e-4

Pruning PR 10% 10% 10% 10%

Table S2: Tabular Datasets Hyperparameters.
Hyperparameters POWER GAS HEPMASS MINIBOONE BSDS300

Architecture Please refer to Table 4, Appendix B.1 of Grathwohl et al. (2019).

Solver Please refer to Appendix C of Grathwohl et al. (2019).

(Re-)Training

Optimizer Adam Adam Adam Adam Adam
Epochs 100 30 400 400 100
Batch size 10000 1000 10000 1000 10000
LR 1.0e-3 1.0e-3 1.0e-3 1.0e-3 1.0e-3
LR step 0.1@{90, 97} 0.1@{25, 28} 0.1@{250, 295} 0.1@{300, 350} 0.1@{96, 99}
β1 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999 0.999
Weight decay 1.0e-6 1.0e-6 1.0e-6 1.0e-6 1.0e-6

Pruning PR 25% 25% 22% 22% 25%

1



Table S3: Image Datasets Hyperparameters.
Hyperparameters MNIST CIFAR-10

Architecture Please refer to Appendix B.1 (multi-scale) of Grathwohl et al. (2019).

Solver Please refer to Appendix C of Grathwohl et al. (2019).

(Re-)Training

Optimizer Adam Adam
Epochs 50 50
Batch size 200 200
LR 1.0e-3 1.0e-3
LR step 0.1@{45} 0.1@{45}
β1 0.9 0.9
β2 0.999 0.999
Weight decay 0.0 0.0

Pruning PR 22% 22%

S2 Figure 6 Clarifications

In figure below, we show the distribution and vector field of learned FFJORD networks (unpruned
(top) and 70% pruned down). The area in the vector field declared with a black circle shows the
vector field structure around an actual mode in the dataset. We see that the vector field (which is
illustrated by black arrows) attracts samples towards the mean of this distribution in both pruned and
unpruned networks.

However, there is a drastic difference between the vector field structure in-between modes (annotated
by purple circles), between the unpruned and pruned network. In the unpruned network, the vector
field attracts samples in-between modes. In contrast, in the pruned network, the vector field is
repellent in-between modes. Correspondingly, this illustration shows how an unpruned network tends
to have samples in-between modes, while the pruned network avoids this shortcoming.

Unpruned

Pruned 70%

Vector field in this purple region (which 
is in-between modes) attract points.

Vector field in this purple region (which is in-
between modes) DOES NOT attract points. Arrows 
direct samples to the actual models in the dataset.

Vector field in this black region (that corresponds 
to an actual mode), does attract all samples 

inward toward that specific mode.

Figure S1: Clarification of how unpruned networks led to mode-collapse and pruned networks did
not.

2



S3 Density Estimation on 2D Data with regular CNF

FFJORD is an efficient way to reparameterize continuous normalizing flows (CNFs) during the
backwards pass in order to avoid computing the full Hessian, which can be prohibitively expensive in
large-scale experiments. In this section, we validate whether our observations hold independent of
the method to compute the Hessian.

Specifically, we train regular CNFs with full Hessian computation on a multi-modal Gaussian
distribution, a multi-model set of Gaussian distributions placed orderly on a spiral as well as a spiral
distribution with sparse regions following the setup from Section 4.1.

Figure S2 illustrates that densely connected flows (prune ratio = 0%) might get stuck in sharp local
minima and thus exhibit unfavorable generalization performance in terms of the NLL. Once we
perform pruning, we observe that the quality of the density estimation in all tasks considerably
improves. If we continue sparsifying the flows, depending on the task at hand, the flows get disrupted
again. Notably, we find that the straightforward Hessian computation may lead to slight improvements
compared to using the FFJORD approximation, cf. results for the Spiral dataset using FFJORD
and regular CNF as shown in Figure 4(c) and S2(c), respectively. This may be expected in certain
cases as FFJORD replaces the exact Hessian computation with an approximation, thus potentially
destabilizing training.

Overall, we can experimentally validate that our observations hold regardless of the specific method
to compute the Hessian.

0 50
Prune Ratio (%)

1.2

1.3

Lo
ss

 (N
LL

)

Unstructured Pruning Structured Pruning

0 20 40 60 80
Prune Ratio (%)

1.15

1.20

1.25

1.30

1.35

1.40

Lo
ss

 (N
LL

)

(a) Gaussians

0 20 40 60 80
Prune Ratio (%)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Lo
ss

 (N
LL

)

(b) Gaussian Spiral

0 20 40 60 80
Prune Ratio (%)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Lo
ss

 (N
LL

)

(c) Spiral

Figure S2: Negative log likelihood of Sparse Flow as function of prune ratio. Sparse Flows were
trained using regular CNFs instead of the FFJORD approximation. The remaining experimental setup
follows Section 4.1.

S4 Tabularized Results for Density Estimation on Real Data - Tabular

Table S4: Negative test log-likelihood (NLL) in nats on POWER tabular dataset and corresponding
architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

POWER Loss (nats)
Prune ratio (%) Number of parameters Unstructured Structured

0% 43.3K -0.34 -0.34
30% 30.3K -0.48 -0.41
47% 23.0K -0.50 -0.48
60% 17.4K -0.51 -0.45
70% 13.2K -0.55 -0.45
77% 9.95K -0.55 -0.44
82% 7.65K -0.52 -0.39
87% 5.81K -0.45 -0.25
90% 4.43K -0.39 0.04

3



Table S5: Negative test log-likelihood (NLL) in nats on GAS tabular dataset and corresponding
architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

GAS Loss (nats)
Prune ratio (%) Number of parameters Unstructured Structured

0% 279K -8.64 -8.64
30% 194K -10.85 -10.63
47% 147K -11.15 -10.93
60% 112K -11.39 -10.69
70% 84.6K -11.59 -10.20
77% 64.3K -11.47 -9.95
83% 48.6K -10.85 -9.85
87% 36.9K -10.73 -9.16
90% 28.0K -10.03 -7.58

Table S6: Negative test log-likelihood (NLL) in nats on HEPMASS tabular dataset and corresponding
architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

HEPMASS Loss (nats)
Prune ratio (%) Number of parameters Unstructured Structured

0% 547K 17.54 17.54
20% 437K 16.90 16.91
38% 340K 16.56 16.54
52% 264K 16.22 16.39
63% 205K 16.00 16.21
71% 160K 15.80 16.48
77% 124K 15.67 16.48
82% 96.7K 15.58 16.35
86% 75.5K 15.59 16.97
89% 59.0K 15.62 16.92
92% 46.4K 15.99 17.34
93% 36.3K 15.90 17.80
95% 28.9K 16.04 18.77

4



Table S7: Negative test log-likelihood (NLL) in nats on MINIBOONE tabular dataset and correspond-
ing architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

MINIBOONE Loss (nats)
Prune ratio (%) Number of parameters Unstructured Structured

0% 821K 10.38 10.38
20% 656K 10.83 10.87
38% 510K 11.11 10.93
52% 397K 10.50 11.09
62% 308K 10.77 11.10
71% 240K 10.51 11.40
77% 186K 10.64 11.07
82% 145K 10.46 11.50
86% 112K 10.37 11.35
89% 86.9K 10.44 11.11
92% 67.7K 10.60 10.93
94% 52.4K 10.27 10.75
95% 40.8K 10.05 10.41
96% 32.3K 9.90 11.26
97% 24.4K 10.15 12.09
98% 17.6K 10.72 14.92
99% 9.13K 13.61 39.01

Table S8: Negative test log-likelihood (NLL) in nats on BSDS300 tabular dataset and corresponding
architecture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD).
Results for unstructured and structured pruning are reported.

POWER Loss (nats)
Prune ratio (%) Number of parameters Unstructured Structured

0% 6.70M -128.32 -128.32
30% 4.69M -145.54 -145.42
47% 3.55M -148.78 -148.70
60% 2.68M -149.96 -149.92
70% 2.03M -150.28 -150.66
77% 1.54M -151.11 -150.11
83% 1.16M -151.22 -149.41
87% 878K -151.13 -149.42
90% 662K -150.53 -148.59

S5 Tabularized Results for Density Estimation on Real Data - Vision

Below, we report the tabularized results on MNIST and CIFAR10 for Sparse Flow using unstructured
and structured pruning. Note that highly sparse networks can fail to converge beyond a certain prune
ratio. Moreover, structured pruning may not converge for lower prune ratios compared to unstructured
pruning since we prune away entire channels and neurons in the former.

5



Table S9: Negative test log-likelihood (NLL) in bits/dim on MNIST and corresponding architecture
size in number of parameters and prune ratio for Sparse Flow (based on FFJORD). Results for
unstructured and structured pruning are reported.

MNIST Loss (bits/dim)
Prune ratio (%) Number of parameters Unstructured Structured

0% 801K 1.01 1.01
20% 641K 0.97 0.98
38% 499K 0.96 0.97
52% 387K 0.95 0.97
62% 302K 0.95 0.97
71% 234K 0.96 0.98
77% 182K 0.97 0.98
82% 141K 0.98 0.99
86% 109K 0.97 0.99
89% 84.5K 0.98 1.00

Table S10: Negative test log-likelihood (NLL) in bits/dim on CIFAR10 and corresponding architec-
ture size in number of parameters and prune ratio for Sparse Flow (based on FFJORD). Results for
unstructured and structured pruning are reported. “N/A” indicates that Sparse Flow did not converge
for the given prune ratio.

CIFAR10 Loss (bits/dim)
Prune ratio (%) Number of parameters Unstructured Structured

0% 1.36M 3.45 3.45
20% 1.09M 3.38 3.39
38% 845K 3.37 3.38
52% 657K 3.36 3.39
63% 510K 3.37 3.40
71% 395K 3.38 N/A
77% 308K 3.39 N/A
82% 239K 3.40 N/A
86% 186K 3.42 N/A
89% 144K 3.43 N/A
92% 112K 3.45 N/A
94% 86.7K 3.48 N/A
95% 67.4K 3.50 N/A

S6 More Hessian Analysis

We performed the following additional Hessian experiments. We observe that our conclusions on the
behavior of the Hessian is generalizable to other datasets as well.

Table S11: Gaussians - Hessian Analysis (Structured Pruning)
Model NLL λmax(H) tr(H) κ(H)

Unpruned FFJORD 1.173 0.0190 0.098 48.2k
Sparse Flows(PR=25%) 1.157 0.0110 0.076 2.76k
Sparse Flows(PR=67%) 1.148 0.0090 0.560 15.17k
Sparse Flows(PR=82%) 1.120 0.0065 0.058 22.75k
Sparse Flows(PR=90%) 1.136 0.0035 0.033 4.70k
Sparse Flows(PR=94%) 1.173 0.0069 0.033 3.94k
Sparse Flows(PR=96%) 1.244 0.0071 0.043 0.58k

6



Table S12: Gaussians-Spiral - Hessian Analysis (Structured Pruning)
Model NLL λmax(H) tr(H) κ(H)

Unpruned FFJORD 0.880 0.0130 0.121 0.34k
Sparse Flows(PR=25%) 0.692 0.0076 0.058 0.76k
Sparse Flows(PR=48%) 0.634 0.0049 0.047 0.22k
Sparse Flows(PR=67%) 0.646 0.0052 0.051 0.75k
Sparse Flows(PR=82%) 0.657 0.0053 0.053 1.69k
Sparse Flows(PR=94%) 0.740 0.0086 0.070 0.11k
Sparse Flows(PR=96%) 0.986 0.0100 0.095 0.23k

S7 Ablation Study

We have prepared our systematic ablation study with results provided as part of the supplementary
material. In our ablation we study different types of features of neural ODE models.

Please find the detailed description of this ablation study in the README.txt file. We include this
file’s description here as well.

Overview

We test different configurations by applying Sparse Flows (Algorithm 1) to investigate what type of
network configurations are most stable and robust with respect to pruning. For each type of sweep
(ablation), we highlight one key study and one key result.

Sweep over Optimization Parameters

Setup. We study the stability of different configurations for the optimizer and how the different
configurations affect the generalization performance during pruning.

Key observation. We can find the most stable parameter configuration for the optimizer by
considering sparsifying the flow and thus inducing additional regularization. The most stable
optimizer configuration is the one for which we can achieve the most pruning.

Sweep over Model Sizes - Depth vs. Width

Setup. We study different network configurations with (approximately) the same number of
parameters. The networks differ in the depth vs. width configuration. We test deep and narrow vs.
shallow and wide.

Key observation. Increasing the depth of the network while reducing the width of the network, in
general, does not help improve the generalization performance of the network over different prune
ratios. Specifically, one should pick the minimal depth of the RHS that ensures convergence. Usually,
any depth beyond that does not help improve the generalization performance of the flow.

Sweep over Activations

Setup. We study the same network configurations for the same amount of pruning and vary the
activation function of the neural network on the RHS. As we prune, we hope to unearth which
activation function is most robust to pruning and consequently to changes in the architecture.

Key observation. ReLU is usually not a very useful activation function. Rather, some Lipschitz
continuous activation functions are most useful. Generally, we found tanh and sigmoid to be most
useful, although sigmoid was probably the most robust single configuration across all experiments

Sweep over ODE Solvers

Setup. We study the same network configurations for the same amount of pruning and vary the
ODE solver of the neural ODE flow. As we prune, we hope to unearth which solver is most robust to
pruning and consequently to changes in the architecture.

7



Key observation. Generally, we found adaptive step size solvers (dopri5) superior to fixed step
size solvers (rk4, Euler). Moreover, we found backpropagation through time (BPTT) to be slightly
more stable than the adjoint method. Interestingly enough, we could oftentimes only observe the
differences between the robustness of the different solvers after we start pruning and sparsifying the
flows.

S8 More on Pruning Configurations

Iterative learning rate rewinding: We use learning rate rewinding (LRR) which is a hyperparameter
schedule for training/pruning/retraining of neural nets (Renda et al., 2020) (see Algorithm 1).

Pre-defined pruning threshold: We pick a desired prune ratio and prune the weights with the smallest
magnitudes until we obtain it. The largest weight that is being pruned constitutes the pre-defined
threshold for pruning.

What kinds of structures are being considered in structured pruning? We consider neurons in fully-
connected layers and channels with their corresponding filters in convolutional layers for structured
pruning. The corresponding pruning score is the norm of the neuron/channel weights as specified in
Table 1.

S9 Reproducibility Matters

All code and data which contains the details of the hyperparameters used in all experiments are openly
accessible online at: https://github.com/lucaslie/torchprune For the experiments on the
toy datasets, we based our code on the TorchDyn library (Poli et al., 2020a). For the experiments
on the tabular datasets and image experiments, we based our code on the official code repository of
FFJORD (Grathwohl et al., 2019).

References
Ryan P Adams, Jeffrey Pennington, Matthew J Johnson, Jamie Smith, Yaniv Ovadia, Brian Patton,

and James Saunderson. Estimating the spectral density of large implicit matrices. arXiv preprint
arXiv:1802.03451, 2018.

Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus. Data-dependent
coresets for compressing neural networks with applications to generalization bounds. In Inter-
national Conference on Learning Representations, 2019a. URL https://openreview.net/
forum?id=HJfwJ2A5KX.

Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus. Sipping
neural networks: Sensitivity-informed provable pruning of neural networks. arXiv preprint
arXiv:1910.05422, 2019b.

Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. arXiv preprint arXiv:1803.05649, 2018.

Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, volume 20.
Curran Associates, Inc., 2008. URL https://proceedings.neurips.cc/paper/2007/file/
0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf.

Ricky T. Q. Chen, Jens Behrmann, David K Duvenaud, and Joern-Henrik Jacobsen. Residual flows
for invertible generative modeling. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In Advances in neural information processing systems, pages 6571–6583,
2018.

8

https://github.com/lucaslie/torchprune
https://openreview.net/forum?id=HJfwJ2A5KX
https://openreview.net/forum?id=HJfwJ2A5KX
https://proceedings.neurips.cc/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5d0d5594d24f0f955548f0fc0ff83d10-Paper.pdf


Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. In International Conference on Learning Representations, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In Advances in Neural
Information Processing Systems, pages 3134–3144, 2019.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. arXiv
preprint arXiv:1906.04032, 2019.

N. Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W.
Mahoney. Lipschitz recurrent neural networks. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=-N7PBXqOUJZ.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to train your
neural ode. arXiv preprint arXiv:2002.02798, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. In Francis Bach and David Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 881–889, Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.
mlr.press/v37/germain15.html.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pages 2232–
2241. PMLR, 2019.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. International Conference
on Learning Representations, 2019.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149, 2015a. URL
http://arxiv.org/abs/1510.00149.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections
for efficient neural networks. In Proceedings of the 28th International Conference on Neural
Information Processing Systems-Volume 1, pages 1135–1143, 2015b.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. A natural lottery
ticket winner: Reinforcement learning with ordinary neural circuits. In International Conference
on Machine Learning, pages 4082–4093. PMLR, 2020.

Ramin Hasani, Mathias Lechner, Alexander Amini, Daniela Rus, and Radu Grosu. Liquid time-
constant networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(9):7657–7666,
May 2021.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Morgan Kaufmann, 1993.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

9

https://openreview.net/forum?id=-N7PBXqOUJZ
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://proceedings.mlr.press/v37/germain15.html
http://proceedings.mlr.press/v37/germain15.html
http://arxiv.org/abs/1510.00149


Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 2078–
2087. PMLR, 10–15 Jul 2018. URL http://proceedings.mlr.press/v80/huang18d.html.

Chin-Wei Huang, Ricky TQ Chen, Christos Tsirigotis, and Aaron Courville. Convex potential flows:
Universal probability distributions with optimal transport and convex optimization. arXiv preprint
arXiv:2012.05942, 2020.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-squares polynomial flow. In International
Conference on Machine Learning, pages 3009–3018. PMLR, 2019.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima. In
5th International Conference on Learning Representations, ICLR 2017, 2017.

Diederik P Kingma and Prafulla Dhariwal. Glow: generative flow with invertible 1× 1 convolutions.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
pages 10236–10245, 2018.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improving variational inference with inverse autoregressive flow. arXiv preprint arXiv:1606.04934,
2016.

Zhifeng Kong and Kamalika Chaudhuri. The expressive power of a class of normalizing flow models.
In International Conference on Artificial Intelligence and Statistics, pages 3599–3609. PMLR,
2020.

Mathias Lechner and Ramin Hasani. Learning long-term dependencies in irregularly-sampled time
series. arXiv preprint arXiv:2006.04418, 2020.

Mathias Lechner, Ramin Hasani, Alexander Amini, Thomas A Henzinger, Daniela Rus, and Radu
Grosu. Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence, 2(10):
642–652, 2020a.

Mathias Lechner, Ramin Hasani, Daniela Rus, and Radu Grosu. Gershgorin loss stabilizes the
recurrent neural network compartment of an end-to-end robot learning scheme. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 5446–5452. IEEE, 2020b.

Mathias Lechner, Ramin Hasani, Radu Grosu, Daniela Rus, and Thomas A Henzinger. Adversarial
training is not ready for robot learning. arXiv preprint arXiv:2103.08187, 2021.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598–605, 1990.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pages 3870–3882. PMLR, 2020.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning
for efficient neural networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=BJxkOlSYDH.

Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost in pruning:
The effects of pruning neural networks beyond test accuracy. Proceedings of Machine Learning
and Systems, 3, 2021.

10

http://proceedings.mlr.press/v80/huang18d.html
https://openreview.net/forum?id=BJxkOlSYDH


Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pages 5058–5066, 2017.

Alaa Maalouf, Harry Lang, Daniela Rus, and Dan Feldman. Deep learning meets projective clustering.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=EQfpYwF3-b.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asma. Dissecting
neural odes. In 34th Conference on Neural Information Processing Systems, NeurIPS 2020. The
Neural Information Processing Systems, 2020.

P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural networks for
resource efficient inference. In 5th International Conference on Learning Representations, ICLR
2017-Conference Track Proceedings, 2019.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural
importance sampling. ACM Transactions on Graphics (TOG), 38(5):1–19, 2019.

Junier Oliva, Avinava Dubey, Manzil Zaheer, Barnabas Poczos, Ruslan Salakhutdinov, Eric Xing, and
Jeff Schneider. Transformation autoregressive networks. In International Conference on Machine
Learning, pages 3898–3907. PMLR, 2018a.

Junier Oliva, Avinava Dubey, Manzil Zaheer, Barnabas Poczos, Ruslan Salakhutdinov, Eric Xing,
and Jeff Schneider. Transformation autoregressive networks. In Jennifer Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 3898–3907. PMLR, 10–15 Jul 2018b. URL
http://proceedings.mlr.press/v80/oliva18a.html.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continuous
normalizing flows via optimal transport. arXiv preprint arXiv:2006.00104, 2020.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. arXiv preprint arXiv:1705.07057, 2017.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, and Jinkyoo Park. Torchdyn: A
neural differential equations library. arXiv preprint arXiv:2009.09346, 2020a.

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, Jinkyoo Park, et al. Hy-
persolvers: Toward fast continuous-depth models. Advances in Neural Information Processing
Systems, 33, 2020b.

Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing fine-tuning and rewinding in
neural network pruning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=S1gSj0NKvB.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
Conference on Machine Learning, pages 1530–1538. PMLR, 2015.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, and Charles Sut-
ton. Veegan: Reducing mode collapse in gans using implicit variational learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017a. URL https://proceedings.neurips.cc/paper/2017/file/
44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf.

11

https://openreview.net/forum?id=EQfpYwF3-b
https://openreview.net/forum?id=EQfpYwF3-b
http://proceedings.mlr.press/v80/oliva18a.html
https://openreview.net/forum?id=S1gSj0NKvB
https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/44a2e0804995faf8d2e3b084a1e2db1d-Paper.pdf


Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pages 3310–3320, 2017b.

Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi Sugiyama.
Coupling-based invertible neural networks are universal diffeomorphism approximators. arXiv
preprint arXiv:2006.11469, 2020.

Charles Vorbach, Ramin Hasani, Alexander Amini, Mathias Lechner, and Daniela Rus. Causal
navigation by continuous-time neural networks. arXiv preprint arXiv:2106.08314, 2021.

Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks. arXiv preprint
arXiv:1908.05164, 2019.

Liu Yang and George Em Karniadakis. Potential flow generator with l2 optimal transport regularity
for generative models. IEEE Transactions on Neural Networks and Learning Systems, 2020.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural
networks using energy-aware pruning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5687–5695, 2017.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE International Conference on Big Data (Big Data),
pages 581–590. IEEE, 2020.

12


	Density Estimation on 2D Data with regular CNF
	Tabularized Results for Density Estimation on Real Data - Tabular
	More Hessian Analysis
	Ablation Study
	More on Pruning Configurations
	Reproducibility Matters



