A Q-value convergence

We here show that if a tabular agent converges to a policy π∞ in a continuous NDP then Qₜ converges to qπ∞, assuming that the agent updates its Q-values in an appropriate way. To prove this we will use the following lemma:

Lemma 10. Let (ζₜ, δₜ, Fₜ) be a stochastic process where ζₜ, δₜ, Fₜ : X → ℜ satisfy

\[\delta_{t+1}(x) = (1 - \zeta_t(x_t)) \cdot \delta_t(x_t) + \zeta_t(x_t) \cdot F_t(x_t) \]

with xₜ ∈ X and t ∈ ℕ. Let Pₜ be a sequence of increasing σ-fields such that ζ₀ and δ₀ are P₀-measurable and ζₜ, δₜ and F₁₋ₜ are Pₜ-measurable, t ≥ 1. Then δₜ converges to 0 with probability 1 if the following conditions hold:

1. X is finite.
2. ζₜ(xₜ) ∈ [0, 1] and ∀x ≠ xₜ : ζₜ(x) = 0.
3. \(\sum_{t} \zeta_t(x_t) = \infty \) and \(\sum_{t} \zeta_t(x_t)^2 < \infty \) with probability 1.
4. \(\text{Var}\{F_t(x_t) \mid P_t\} \leq K(1 + \kappa \|\delta_t\|_\infty)^2 \) for some \(K \in \mathbb{R} \) and \(\kappa \in [0, 1) \).
5. \(\|\mathbb{E}\{F_t \mid P_t\}\|_\infty \leq \kappa \|\delta_t\|_\infty + c_t, \) where \(c_t \to 0 \) with probability 1 as \(t \to \infty \).

where \(\|\cdot\|_\infty \) is a (potentially weighted) maximum norm.

Proof. See Singh et al. (2000).

We say that a Q-value update rule is **appropriate** if it has the following form;

\[Q_{t+1}(a_t \mid s_t) \leftarrow (1 - \alpha_t(a_t, s_t)) \cdot Q_t(a_t \mid s_t) + \alpha_t(a_t, s_t) \cdot (r_t + \gamma \cdot \hat{v}_{t+1}(s_{t+1})) \]

where \(\hat{v}_t(s) \) is an estimate of the value of s, and if moreover

\[\lim_{t \to \infty} \mathbb{E} \left[\hat{v}_t(s) - \max_a Q_t(a \mid s) \right] = 0. \]

Q-learning is of course appropriate. Moreover, SARSA and Expected SARSA are also both appropriate, if the agent is greedy in the limit. Note that since \(R \) is bounded, \(Q_t(a \mid s) \) has bounded support. This means that if for all \(\delta > 0 \), \(\mathbb{P}(Q_t(a \mid s) - \max_a Q_t(a \mid s) - \delta) \to 0 \) as \(t \to \infty \), then \(\mathbb{E}_{a \sim \pi_t}(Q_t(a \mid s) - \delta) \to \max_a Q_t(a \mid s) \) as \(t \to \infty \).

Theorem 11. In any continuous NDP \((S, A, T, R, \gamma) \), if a tabular agent converges to a policy \(\pi_\infty \) then \(Q_t \) converges to \(q_{\pi_\infty} \), if the following conditions hold:

1. The agent updates its Q-values with an appropriate update rule.
2. The update rates \(\alpha_t(a, s) \) are in \([0, 1)\), and for all \(s \in S \) and \(a \in A \) we have that \(\sum_t \alpha_t(a, s) = \infty \) and \(\sum_t \alpha_t(a, s)^2 < \infty \) with probability 1.

Note that condition 2 requires that the agent takes every action in every state infinitely many times.

Proof. Let

- \(X = S \times A \)
- \(\zeta_t(a, s) = \alpha_t(a, s) \)
- \(\delta_t(a, s) = Q_t(a \mid s) - q_{\pi_\infty}(a \mid s) \)
- \(F_t(a, s) = r_t + \gamma \hat{v}_{t+1}(s_{t+1}) - q_{\pi_\infty}(a \mid s) \)

Since \(S \) and \(A \) are finite, and since \(R \) is bounded, we have that condition 1 and 4 in Lemma 10 are satisfied. Moreover, assumption 2 of this theorem corresponds to condition 2 and 3 in Lemma 10. It remains to show that condition 5 is satisfied, which we can do algebraically:
\[\|E(F_t \mid P_t)\|_\infty = \max_{s,a} \left| E \left[r_t + \gamma \hat{v}_t(s_{t+1}) - q_{\pi_\infty}(a \mid s) \right] \right| \]
\[= \max_{s,a} \left| E \left[r_t + \gamma \max_{a'} Q_t(a' \mid s_{t+1}) - q_{\pi_\infty}(a \mid s) + \gamma \hat{v}_t(s_{t+1}) - \gamma \max_{a'} Q_t(a' \mid s_{t+1}) \right] \right| \]
\[\leq \max_{s,a} \left| E \left[r_t + \gamma \max_{a'} Q_t(a' \mid s_{t+1}) - q_{\pi_\infty}(a \mid s) \right] \right| + \max_{s,a} \left| E \left[\gamma \hat{v}_t(s_{t+1}) - \gamma \max_{a'} Q_t(a' \mid s_{t+1}) \right] \right| \]

Note that the second term in this expression is bounded above by

\[\max_s \left| E \left[\hat{v}_t(s) - \max_a Q_t(a \mid s) \right] \right| \]

Let us use \(k_t \) to denote this expression. Since the \(Q \)-value update rule is appropriate we have that \(k_t \to 0 \) as \(t \to \infty \). We thus have:

\[= \max_{s,a} \left| E \left[r_t + \gamma \max_{a'} Q_t(a' \mid s_{t+1}) - q_{\pi_\infty}(a \mid s) \right] \right| + k_t \]

We can now expand the expectations, and rearrange the terms:

\[= \max_{s,a} \left| \sum_{s' \in S} P(T(s, a, \pi_t) = s') \left(E[R(s, a, s', \pi_t)] + \gamma \max_{a'} Q_t(a' \mid s') \right) - \sum_{s' \in S} P(T(s, a, \pi_\infty) = s') \left(E[R(s, a, s', \pi_\infty)] + \gamma \max_{a'} q_{\pi_\infty}(a' \mid s') \right) \right| + k_t \]

\[= \max_{s,a} \left| \sum_{s' \in S} P(T(s, a, \pi_\infty) = s') \left(E[R(s, a, s', \pi_t)] + \gamma \max_{a'} Q_t(a' \mid s') - E[R(s, a, s', \pi_\infty)] - \gamma \max_{a'} q_{\pi_\infty}(a' \mid s') \right) + \sum_{s' \in S} P(T(s, a, \pi_t) = s') \cdot X \right| + k_t \]

where \(X = E[R(s, a, s', \pi_t)] - \gamma \max_{a'} Q_t(a' \mid s') \). Let \(d_t(s, a) \) be the second term in this expression, and let \(b_t(s, a, s') = E[R(s, a, s', \pi_t)] - E[R(s, a, s', \pi_\infty)] \). Since \(\pi_t \to \pi_\infty \), and since \(T \) and \(R \) are continuous, we have that \(b_t(s, a, s') \to 0 \) and \(d_t(s, a) \to 0 \) as \(t \to \infty \) (for any \(s, a, \) and \(s' \)). We
Thus have:

\[Q_t(s, a, s') = \max_{a'} b_t(s, a, s') + d_t(s, a) \]

\[\leq \gamma \max_{s, a} |Q_t(a | s) - q_{\pi_\infty}(a | s)| + \max_{s, a, s'} |b_t(s, a, s') + d_t(s, a) + k_t| \]

\[= \gamma \max_{s, a} \delta(a, s) + c_t = \gamma \|\delta_t\|_\infty + c_t \]

where \(c_t = \max_{s, a, s'} |b_t(s, a, s') + d_t(s, a) + k_t| \). This means that

\[\|\mathbb{E}\{F_t | P_t\}\|_\infty \leq \gamma \|\delta_t\|_\infty + c_t \]

where \(\gamma \in [0, 1) \) and \(c_t \to 0 \) as \(t \to \infty \). Thus by lemma 10 we have that \(Q_t \) converges to \(q_{\pi_\infty} \).

\[\square \]

B Proof of Theorem 2

Theorem 2. Let \(A \) be a model-free reinforcement learning agent, and let \(\pi_t \) and \(Q_t \) be \(A \)'s policy and \(Q \)-function at time \(t \). Let \(A \) satisfy the following in a given NDP:

1. \(A \) is greedy in the limit, i.e. for all \(\delta > 0 \), \(\mathbb{P}(Q_t(\pi_t(s)) \leq \max_a Q_t(a | s) - \delta) \to 0 \) as \(t \to \infty \).
2. \(A \)'s \(Q \)-values are accurate in the limit, i.e. if \(\pi_t \to \pi_\infty \) as \(t \to \infty \), then \(Q_t \to q_{\pi_\infty} \) as \(t \to \infty \).

Then if \(A \)'s policy converges to \(\pi_\infty \) then \(\pi_\infty \) is strongly ratifiable on the states that are visited infinitely many times.

Proof. Let \(\pi_t \to \pi_\infty \) and hence \(Q_t \to q_{\pi_\infty} \). For strong ratifiability, we have to show that for all actions \(a' \) and states \(s \), if \(a' \) is suboptimal (in terms of true \(q \) values) given \(\pi_\infty \) in \(s \), then \(\pi_\infty(a' | s) = 0 \).

If \(a' \) is suboptimal in this way, then there is \(\delta > 0 \) s.t.

\[q_{\pi_\infty}(a' | s) \leq \max_a q_{\pi_\infty}(a | s) - \delta. \]

Thus, since \(Q_t \to q_{\pi_\infty} \), it is for large enough \(t \),

\[Q_t(a' | s) \leq \max_a Q_t(a | s) - \frac{\delta}{2}. \]

By the greedy-in-the-limit condition, \(\pi_t(a' | s) \to 0 \). Because \(\pi_t \to \pi_\infty \), it follows that \(\pi_\infty(a' | s) = 0 \), as claimed.

\[\square \]

C Proof of Theorem 3

Lemma 12 (Kakutani’s Fixed-Point Theorem). Let \(X \) be a non-empty, compact, and convex subset of some Euclidean space \(\mathbb{R}^n \), and let \(\phi : X \to 2^X \) be a set-valued function s.t. \(\phi \) has a closed graph and s.t. \(\phi(x) \) is non-empty and convex for all \(x \in X \). Then \(\phi \) has a fixed point.

Proof. See Kakutani (1941).

\[\square \]

Theorem 3. Every continuous NDP has a strongly ratifiable policy.
Then \(X_P\) we will show that two properties hold. Firstly that which tell us that at some point after time \(t\) This event is useful because it is implied by convergence to \(\lim_{\tau \to \infty} \mathbb{E}[X_\tau | \mathcal{F}_\tau] - X_\tau \geq 0.\) Suppose \(X_t\) is a non-negative discrete stochastic process, indexed by \(t\), and let \(\mathcal{F}_t\) denote the history up to time \(t\). Suppose \(X_t\) is bounded, i.e. there exists \(B\) such that \(|X_{t+1} - X_t| < B/t\). Suppose also that there exists \(\epsilon > 0\) and \(b > 0\) such that whenever \(X_t < b\),

\[
\text{Var}(X_{t+1} | \mathcal{F}_t) \geq \frac{\epsilon}{t^2}
\]

and

\[
\mathbb{E}[X_{t+1} | \mathcal{F}_t] - X_t \geq 0.
\]

Then \(\mathbb{P}(X_t \to 0) = 0.\)

Proof. Let \(a_n = 2^{2^n}\) and define the following sequences of events. Firstly, letting \(s_n\) denote

\[
A_n = \{X_{a_n+1} > s_n\}
\]

and

\[
A'_n = A_n \cup \{\exists t \in [a_n, a_{n+1}] \text{ s.t. } X_t \geq b\},
\]

which tell us that at some point after time \(a_n\), but not after \(a_{n+1}\), the value of \(X_t\) isn’t very small and secondly

\[
B_n = \{X_t < b \forall t \geq a_n\}.
\]

This event is useful because it is implied by convergence to 0 and tells us that Equation 5 can be applied.

We will show that two properties hold. Firstly that \(\mathbb{P}(A'_n \cap B_n \cap \{X_t \to 0\}) \leq 2^{-2n}\) and secondly that \(\mathbb{P}(A'_n | \mathcal{F}_{a_{n+1}}) \geq 2/5\) for all sufficiently large \(n\).

From the second of these properties, and the fact that \(A'_n\) is \(\mathcal{F}_{a_{n+1}}\) measurable, it is immediate by the argument of the Borel-Cantelli Lemma that, almost surely, \(A'_n\) occurs infinitely often (i.o.) i.e. for infinitely many \(n\). From this and the fact that \(X_t \to 0 \implies (B_n \forall n \text{ sufficiently large})\) we can deduce the following

\[
\mathbb{P}(X_t \to 0) = \mathbb{P}(B_n \cap \{X_t \to 0\} \forall n \text{ sufficiently large})
\]

\[
= \mathbb{P}((A'_n \cap B_n \cap \{X_t \to 0\}) \text{ i.o.})
\]

\[
\leq \mathbb{P}(\exists n > m \text{ s.t. } A'_n \cap B_n \cap \{X_t \to 0\})
\]

\[
\leq \sum_{n=m}^{\infty} \mathbb{P}(A'_n \cap B_n \cap \{X_t \to 0\}).
\]

\[\text{(9)} \quad \text{(10)} \quad \text{(11)} \quad \text{(12)} \quad \text{(13)}\]
We now prove the first property. Note that if \(B_n \) occurs then \(A_n' \) can only occur if \(A_n \) occurs. Thus \(\mathbb{P}(A_n' \land B_n \land \{ X_t \to 0 \}) \leq \mathbb{P}(B_n \land \{ X_t \to 0 \} | A_n) \). To see this is small, we consider an augmentation of \(X_t \) given by

\[
Y_t = \begin{cases}
X_t & t \leq a_n + 1 \\
Y_{t-1} + (X_t - X_{t-1}) & t > a_n + 1.
\end{cases}
\]

(14)

Note that this process is a martingale (for \(t > a_n + 1 \)), i.e. \(\mathbb{E}[Y_{t+1} | \mathcal{F}_t] = Y_t \) for all \(t > a_n + 1 \), and that if \(B_n \) occurs then \(Y_t \leq X_t \) for all \(t \) (by Equation 5). As \(Y_t \) is a martingale \(\mathbb{E}[Y_t | \mathcal{F}_{a+n}] = Y_{a+n+1} \). Furthermore we can compute as follows

\[
\text{Var}(Y_t | \mathcal{F}_{a+n}) = \mathbb{E}[(Y_t - Y_{a+n+1})^2 | \mathcal{F}_{a+n+1}]
\]

(15)

\[
= \mathbb{E}[(\sum_{r=a_n+1}^{t-1} Y_r + Y_{r+1} - Y_r)^2 | \mathcal{F}_{a+n+1}]
\]

(16)

\[
= \mathbb{E}[(Y_{r+1} + Y_r - Y_r)^2 | \mathcal{F}_{a+n+1}]
\]

(17)

\[
= \mathbb{E}[\sum_{r=a_n+1}^{t-1} \sum_{s=a_n+1}^{t-1} (Y_{r+1} - Y_r)(Y_{s+1} - Y_s) | \mathcal{F}_{a+n+1}]
\]

(18)

\[
= \sum_{r=a_n+1}^{t-1} \sum_{s=a_n+1}^{t-1} \mathbb{E}[(Y_{r+1} - Y_r)(Y_{s+1} - Y_s) | \mathcal{F}_{a+n+1}].
\]

(19)

As \(Y_t \) is a martingale we have that this final expectation is zero unless \(r = s \). To see this assume WLOG that \(r > s \) and note that

\[
\mathbb{E}[(Y_{r+1} - Y_r)(Y_{s+1} - Y_s) | \mathcal{F}_{a+n+1}]
\]

(20)

\[
= \mathbb{E}[\mathbb{E}[(Y_{r+1} - Y_r)(Y_{s+1} - Y_s) | \mathcal{F}_r] | \mathcal{F}_{a+n+1}]
\]

(21)

\[
= \mathbb{E}[\mathbb{E}[(Y_{r+1} - Y_r)(Y_{s+1} - Y_s) | \mathcal{F}_r] | \mathcal{F}_{a+n+1}]
\]

(22)

\[
= \mathbb{E}[(Y_{s+1} - Y_s) | \mathcal{F}_{a+n+1}]
\]

(23)

\[
= 0.
\]

(24)

Putting these together, along with the fact that \(Y_{r+1} - Y_r \leq 2B/r \) (which follows from the similar bound on difference in \(X_t \)), we get that

\[
\text{Var}(Y_t | \mathcal{F}_{a+n}) = \sum_{r=a_n+1}^{t-1} \mathbb{E}[(Y_{r+1} - Y_r)^2 | \mathcal{F}_{a+n+1}]
\]

(25)

\[
\leq 4B^2 \sum_{r=a_n+1}^{\infty} r^{-2}.
\]

(26)

Thus, for all \(t \geq a_n + 1 \), by Chebyshev’s inequality,

\[
\mathbb{P}(Y_t < 0 | A_n) \leq \mathbb{P}(|Y_t - Y_{a+n+1}| > Y_{a+n+1} | A_n)
\]

(27)

\[
\leq \mathbb{P}(|Y_t - Y_{a+n+1}| > s_n | A_n)
\]

(28)

\[
\leq \frac{\text{Var}(Y_t | \mathcal{F}_{a+n+1})}{s_n^2}
\]

(29)

\[
\leq 2^{-2n}.
\]

(30)

Whilst by the final property if \(B_n \) occurs and \(X_t \to 0 \) then \(Y_t < \eta \) for all sufficiently large \(t \) for all \(\eta > 0 \). Thus \(\mathbb{P}(B_n \land \{ X_t \to 0 \} | A_n) \leq 2^{-2n} \) and \(\mathbb{P}(A_n' \land B_n \land \{ X_t \to 0 \}) \leq 2^{-2n} \).

We now prove that \(\mathbb{P}(A_n' | \mathcal{F}_{a+n}) \geq 2/5 \) for sufficiently large \(n \), where we have replaced \(n \) by \(n + 1 \) for convenience. We again define \(Y_t \) exactly as for the previous property and note again that
it is a martingale and that, for \(t \geq a_{n+1} \), \(4B^2/t^2 \geq \text{Var}(Y_{t+1} | \mathcal{F}_t) \geq \epsilon/t^2 \). Thus we can apply the martingale central limit theorem (Hall and Heyde, 1980, Theorem 5.4) to conclude that, setting \(\sigma_n^2 = \text{Var}(Y_{a_{n+1}} - Y_n | \mathcal{F}_n) \), the distribution conditioned on \(\mathcal{F}_{a_{n+1}} \) of \((Y_{a_{n+2}} - Y_{a_{n+1}})/\sigma_{n+1} \) converges to a standard normal distribution as \(n \to \infty \). Let \(Z \) have a standard normal distribution.

\[
\mathbb{P}(Y_{a_{n+2}} > s_{n+1}) = \mathbb{P}((Y_{a_{n+2}} - Y_{a_{n+1}})/\sigma_{n+1} > (s_{n+1} - Y_{a_{n+1}})/\sigma_{n+1})
\]
\[
= \mathbb{P}((Y_{a_{n+2}} - Y_{a_{n+1}})/\sigma_{n+1} > (s_{n+1} - X_{a_{n+1}})/\sigma_{n+1})
\]
\[
\geq \mathbb{P}((Y_{a_{n+2}} - Y_{a_{n+1}})/\sigma_{n+1} > s_{n+1}/\sigma_{n+1})
\]
\[
\to \mathbb{P}(Z > \lim_{n \to \infty} s_{n+1}/\sigma_{n+1})
\]
\[
= \mathbb{P}(Z > 0) = \frac{1}{2}
\]

Where the limit in the probability was zero because \(s_{n+1} = O(2^{n+1-3\cdot 2^{n+1}}) \) and \(\sigma_{n+1} = \Omega(2^{-3\cdot 2^{n}}) \). Finally note that, \(X_t \geq Y_t \) for all \(t \leq a_{n+2} \) unless the event \(\{ \exists a_{n+1} \leq t \leq a_{n+2} \text{s.t.} X_t \geq b \} \) occurs. So for sufficiently large \(n \) either \(\{ \exists a_{n+1} \leq t \leq a_{n+2} \text{s.t.} X_t \geq b \} \) or, with probability at least \(2/5 \), \(A_{n+1} \) occurs. Therefore, for sufficiently large \(n \), \(\mathbb{P}(A'_{n+1} | \mathcal{F}_{a_{n+1}}) \geq 2/5 \) and the proof is complete.

Theorem 6. Let \(A \) be an agent that plays the Repellor Problem, explores infinitely often, and updates its \(Q \)-values with a learning rate \(\alpha_t \) that is constant across actions, and let \(\pi_t \) and \(Q_t \) be \(A \)'s policy and \(Q \)-function at time \(t \). Assume also that for \(j \neq i \), \(\pi_t(a_i), \pi_t(a_j) \) both converge to positive values, then

\[
\frac{\pi_t(a_i) - \pi_t(a_j)}{Q_t(a_i) - Q_t(a_j)} \overset{a.s.}{\to} \infty
\]

as \(t \to \infty \). Then \(\pi_t \) almost surely does not converge.

Proof. We first need to establish the fact that \((1/3, 1/3, 1/3)\) is the only strongly ratifiable policy. First, if \(\pi(a_j) \leq 1/4 \) for some \(j \) then \(\mathbb{E}[R(a_i, \pi)] = \pi(a_{i+1}) \). It is easy to see that for this reward function, there is no strongly ratifiable policy other than the symmetric \((1/3, 1/3, 1/3)\).

The other case of \(\pi(a_j) \geq 1/4 \) for all \(j \) is harder. Finding strongly ratifiable policies in this range gives rise to the following system of polynomial equations, constrained to \(p_1, p_2, p_3 \in [1/4, 1] \):

\[
p_1 + 4 \cdot 13^3 p_2 \left(p_1 - \frac{1}{4} \right) \left(p_2 - \frac{1}{4} \right) \left(p_3 - \frac{1}{4} \right) = x
\]
\[
p_2 + 4 \cdot 13^3 p_3 \left(p_1 - \frac{1}{4} \right) \left(p_2 - \frac{1}{4} \right) \left(p_3 - \frac{1}{4} \right) = x
\]
\[
p_3 + 4 \cdot 13^3 p_1 \left(p_1 - \frac{1}{4} \right) \left(p_2 - \frac{1}{4} \right) \left(p_3 - \frac{1}{4} \right) = x
\]
\[
p_1 + p_2 + p_3 = 1
\]

Although this is non-trivial, it can be solved by computer algebra system. For completeness, we would like to give a more human argument here. Consider the simpler system

\[
p_1 + Kp_2 = p_2 + Kp_3 = p_3 + Kp_1
\]
\[
p_1 + p_2 + p_3 = 1
\]

Note that for \(p_1, p_2, p_3 \) to satisfy the original system of equations, it has to satisfy the above system of equations for a particular \(K > 0 \). It turns out that even without knowing \(K \), the unique solution to this equation system is the symmetric \(p_1 = p_2 = p_3 \). To prove this, assume that the three are not the same. WLOG we can assume that \(p_1 \) is among the maxima of \(\{ p_1, p_2, p_3 \} \). Then we can distinguish two cases: First, imagine that \(p_1 \geq p_2 \geq p_3 \), where at least one of the two inequalities is strict. Then because \(K > 0 \), it is \(p_1 + Kp_2 > p_2 + Kp_3 \), contradicting the first equality in line 31. Second, imagine that \(p_1 \geq p_3 \geq p_2 \), where at least one of the inequalities is strict. Then it

\(^3 \)For example, in Mathematica, the following code identifies the unique solution \((1/3, 1/3, 1/3)\):

```math
```
We will show, however, that these values almost surely do not converge to 0 if the policies converge at t. Thus, overall for large enough t we have

$$X_t := \sum_{a_i, a_j : i < j} |D_t(a_j, a_i)| \to 0,$$

as $t \to \infty$.

We will show, however, that these values almost surely do not converge to 0 if the policies converge to $(1/3, 1/3, 1/3)$. Roughly, we show that when the relative Q-values are close to 0 and the agent acts according to a policy that is close to $(1/3, 1/3, 1/3)$, the Q-values will in expectation be updated toward the action that is currently most likely to be taken. Thus for large enough t, X_t will always increase in expectation. With some other easy-to-verify properties of X_t, we can then apply Lemma 13, which gives us that almost surely the X_t do not converge to 0 as $t \to \infty$.

In order to prove that $\mathbb{E}[X_t \mid \mathcal{F}_{t-1}] - X_{t-1} > 0$ for large enough t and assuming X_t is close to 0 and π_t close to $(1/3, 1/3, 1/3)$, let $a^* \in \arg\max_a \pi_t(a)$. Because of stochasticity of the rewards and by line 2, it is $\pi_t(a^*) > 1/3$ for large enough t. Further, let $a^- = \min_a \pi_t(a)$. It is $\pi_t(a^-) \leq 1/3$.

Finally, let $\epsilon = \pi_t(a^*) - \pi_t(a^-)$.

The $X_t - X_{t-1}$ can be seen as the sum of three differences $|D_t(a_j, a_i)| - |D_{t-1}(a_j, a_i)|$. We start with the difference for a^* and a^-. It is

$$\mathbb{E} \left[|D_t(a^*, a^-) - D_{t-1}(a^*, a^-)| \right] = \alpha_t \left(\mathbb{E} [R(a^*, \pi_t)] - \mathbb{E} [R(a^-, \pi_t)] \right) - \alpha_t \left(Q_{t-1}(a^*) - Q_{t-1}(a^-) \right)$$

Now, assuming that π is close enough to $(1/3, 1/3, 1/3)$ that $\pi(a_j) \geq 1/4 + 1/13$ for all j, it is

$$\mathbb{E} [R(a^*, \pi_t)] - \mathbb{E} [R(a^-, \pi_t)] = (\pi(a^*) - \pi(a^-)) \cdot 4 \prod_j 13 \left(\pi(a_j) - \frac{1}{4} \right) + \pi(a_{+1}) - \pi(a_{+1})$$

$$\geq 4\epsilon - \epsilon$$

It is left to estimate the other summands in the expectation of $X_t - X_{t-1}$. Consider any pair of actions a_i, a_j with $i > j$. Because $|D_t(a_i, a_j)| = |D_t(a_j, a_i)|$, we can assume WLOG that $Q_{t-1}(a_i) > Q_{t-1}(a_j)$, which for large enough t also means $\pi_t(a_i) > \pi_t(a_j)$. Thus, by similar reasoning as before,

$$\mathbb{E} \left[|D_t(a_i, a_j)| - |D_{t-1}(a_i, a_j)| \right] = \alpha_t \left(\mathbb{E} [R(a_i, \pi_t)] - \mathbb{E} [R(a_j, \pi_t)] \right) - \alpha_t \left(Q_{t-1}(a_i) - Q_{t-1}(a_j) \right)$$

and

$$\mathbb{E} [R(a_i, \pi_t)] - \mathbb{E} [R(a_j, \pi_t)] \geq -\epsilon.$$

Thus, overall for large enough t we have

$$\mathbb{E}[X_t \mid \mathcal{F}_t] - X_{t-1} \geq \alpha_t \epsilon - \alpha_t \left(\sum_{a_i, a_j : i < j} Q_{t-1}(a_i) - Q_{t-1}(a_j) \right)$$

By line 2, ϵ outgrows the differences in Q-values and therefore this term will be positive for all large enough t, as claimed.

\[\square\]
E Proof of Theorem 7

Theorem 7. Assume that there is some sequence of random variables \((\epsilon_t \geq 0)_t\) s.t. \(\epsilon_t \to \infty\) a.s. and for all \(t \in \mathbb{N}\) it is

\[
\sum_{a^* \in \arg \max_a Q_t(a)} \pi_t(a^*) \geq 1 - \epsilon_t.
\] (3)

Let \(P_t^\Sigma \to p^\Sigma\) with positive probability as \(t \to \infty\). Then across all actions \(a \in \text{supp}(p^\Sigma)\), \(q_a(a)\) is constant.

Proof. Consider any \(a \in \text{supp}(p^\Sigma)\) that is played with positive frequency. Because exploration goes to zero, almost all (i.e. frequency 1) of the time that \(a\) is played must be from \(\pi_t\) playing \(a\) with probability close to 1. Therefore, whenever \(P_t^\Sigma \to \infty P^\Sigma\) it is

\[
Q_t(a) \to_{a.s.} q_a(a). \tag{41}
\]

Thus \(q_a(a)\) must be constant across \(a \in \text{supp}(p^\Sigma)\), since otherwise the actions with lower values of \(q_a(a)\) could not be taken in the limit. \(\square\)

F Proof of Theorem 8

Theorem 8. Same assumptions as Theorem 7. If \(|\text{supp}(p^\Sigma)| > 1\) then for all \(a \in \text{supp}(p^\Sigma)\) there exists \(a' \in A\) s.t. \(q_a(a') \geq q_a(a)\).

Proof. Let \(|\text{supp}(p^\Sigma)| > 1\) and suppose that \(\exists a \in \text{supp}(p^\Sigma)\) s.t.

\[
\forall a' \in A - \{a\} : q_a(a') < q_a(a). \tag{42}
\]

Policies close to \(\pi_a\) are almost surely played infinitely often. Every time \(T\) this happens we have that \(Q_T(a) > Q_T(a')\) for all \(a' \in A - \{a\}\). Now it is easy to see that if 42 holds, then there is a \(K\) s.t. every such time \(T\), there is a chance of at least \(K\) that for all \(t \geq T\) it is \(Q_t(a) > Q_t(a')\) for all \(a' \in A - \{a\}\). Hence almost surely \(\text{supp}(p^\Sigma) = \{a\}\), which contradicts the assumption that \(|\text{supp}(p^\Sigma)| > 1\). \(\square\)

G Proof of Theorem 9

Theorem 9. Same assumptions as Theorem 7. Let \(U\) be the \(Q\)-value \(q_a(a)\) which (by Theorem 7) is constant across \(a \in \text{supp}(p^\Sigma)\). For any \(a' \in A - \text{supp}(p^\Sigma)\) that is played infinitely often, let frequency 1 of the exploratory plays of \(a'\) happen when playing a policy near elements of \(\{\pi_a \mid a \in \text{supp}(p^\Sigma)\}\). Then either there exists \(a \in \text{supp}(p^\Sigma)\) such that \(q_a(a') \leq U\); or \(q_a(a') < U\).

Proof. Suppose there is an \(a' \in A - \text{supp}(p^\Sigma)\) for which both are false, i.e. \(q_a(a') > U\) for all \(a \in \text{supp}(p^\Sigma)\), and \(q_a(a') \geq U\). Frequency 1 of the time that \(a'\) is played is when the policy is near an element of \(\{\pi_a \mid a \in \text{supp}(p^\Sigma) \cup \{a'\}\}\), and so \(Q_t(a')\) converges to some convex combination of \(q_a(a')\) for \(a \in \text{supp}(p^\Sigma) \cup \{a'\}\). Therefore, in the limit \(Q_t(a')\) is bigger than \(U\). But that is inconsistent with \(a'\) being played with frequency 0. \(\square\)