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Abstract

Newcomblike decision problems have been studied extensively in the decision
theory literature, but they have so far been largely absent in the reinforcement
learning literature. In this paper we study value-based reinforcement learning
algorithms in the Newcomblike setting, and answer some of the fundamental
theoretical questions about the behaviour of such algorithms in these environments.
We show that a value-based reinforcement learning agent cannot converge to a
policy that is not ratifiable, i.e., does not only choose actions that are optimal given
that policy. This gives us a powerful tool for reasoning about the limit behaviour
of agents – for example, it lets us show that there are Newcomblike environments
in which a reinforcement learning agent cannot converge to any optimal policy.
We show that a ratifiable policy always exists in our setting, but that there are
cases in which a reinforcement learning agent normally cannot converge to it (and
hence cannot converge at all). We also prove several results about the possible limit
behaviours of agents in cases where they do not converge to any policy.

1 Introduction

In this paper, we study decision scenarios in which outcomes depend not only on the choices made
and physically implemented, but also depend directly on the agent’s policy. As an example, consider
an autonomous vehicle (AV) whose goal it is to arrive at target destinations quickly while minimising
the probability of collisions. In practice, AVs are careful drivers. It is easy to imagine an experiment
(or learning process) that might support careful driving: on each day, let the AV decide at random
between a careful and a more aggressive style of driving; other drivers on the road are unaware of
today’s chosen driving style and therefore behave the same around the AV on both types of days.
Presumably the decrease in accidents on careful days outweighs the increase in travel time.

However, imagine now that a type of AV was widely deployed. Then many of the drivers with whom
the AVs interact on the road would know a lot about how these AVs behave (e.g., from reading about
AVs, or from having interacted with other AVs of the same type in the past). In particular, if the other
drivers know that the AVs rarely take risks, they might (whether rationally or irrationally) cut them
off more, not give them right of way, etc. relative to the above experiment. Indeed, this phenomenon
– human drivers bullying timid AVs – has been reported in the real world (Condliffe, 2016; Liu et al.,
2020; cf. Cooper et al., 2019). As a result, the travel times of an AV are much longer if it always
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follows (and is known to follow) a careful driving policy. Moreover, some of the safety benefits of
careful choices disappear if the AV adopts a careful policy.

To comfortably model situations such as this one, we introduce Newcomblike decision processes
(NDPs). The name derives from Newcomb’s problem (Nozick, 1969), described in the next subsec-
tion, and similar problems that have been studied in the decision-theoretic literature. NDPs are a
generalisation of Markov decision processes wherein the transition probabilities and rewards depend
not only on the agent’s action, but also directly on the agent’s policy. Thus, for example, how
aggressively other cars move depends on the timidness of the AV’s policy. We describe NDPs in more
detail in Sect. 1.1. Importantly, the NDP model does not assume other agents in the environment
to respond rationally to the agent’s policy. Thus, some NDPs cannot comfortably be modelled as
games. (See Sect. 5.1 for a more detailed discussion of the relation between NDPs and game-theoretic
models.)

We believe that Newcomblike dynamics are commonplace when AI systems interact with other
(human or artificial) agents (Cavalcanti, 2010, Sect. 5; Oesterheld, 2019, Sect. 1; Conitzer, 2019).
The deployment of AVs is rife with such dynamics. Besides aggressiveness, it might matter whether
a policy is simple and thus predictable to humans, for instance. Another real-world scenario is that of
recommendation systems: most readers of this paper have some idea of how these systems work and
make choices based on it. (“I would like to watch this cat video, but if I do, my recommendations
will soon be full of them.”) Thus, the success of a particular recommendation depends not only on
the recommendation itself, but also on the recommendation system’s policy.

We are interested in learning to play NDPs. More specifically, we study the behaviour of value-based,
model-free RL agents, who maintain a Q-function that assigns values to state–action pairs. We define
these in more detail in Sect. 1.2. As we will see, such agents do not in general learn optimal policies
in NDPs (as they do in MDPs). Nevertheless, we believe that studying them is an important first step
in developing practical learning algorithms for NDPs due to the combination of the following points.

A) For illustrative purposes, the examples we discuss throughout this paper are simple and emphasise
the dependence of the environment on the policy. However, we think that most real-world
scenarios are only partially Newcomblike. For example, most of the AV’s environment changes
only in response to an AV’s actions and does not directly depend on the AV’s policy.

B) Value-based reinforcement learning algorithms are very well developed. In contrast, we would
have to develop specialised learning algorithms for general NDPs from scratch.

C) As our results will show, in some situations and when set up correctly (e.g., in terms of learning
rates) value-based learning converges to optimal policies, or at least to reasonable policies,
even under Newcomblike dynamics. For example, in a game of rock-paper-scissors against an
opponent who knows the agent’s policy, some value-based learning agents learn the optimal
policy of mixing uniformly.

In light of A–C, we think that the most realistic paths to developing learning algorithms for real-world
scenarios with Newcomblike dynamics will involve value-based RL. Specifically, one avenue toward
realistic algorithms is to develop extensions of value-based RL and can detect and correct failures
that might arise in Newcomblike dynamics. For that, we need to understand how value-based RL
behaves in NDPs.

Contributions In Sect. 2 we demonstrate that value-based RL algorithms can only converge to a
policy that is ratifiable – that is, to a policy ⇡ for which all actions taken by ⇡ have optimal expected
reward when following ⇡. In Sect. 3, we discuss the convergence properties of agents in Newcomblike
situations, and show that there are cases where value-based agents must fail to converge. The action
frequencies might converge, even when the policies do not. In Sect. 4, we establish some conditions
on any action frequency that an agent could converge to. We also show that there are decision
problems and agents where even the action frequencies do not converge.

1.1 Newcomblike Decision Processes

A Newcomblike decision process (NDP) is a tuple hS,A, T,R, �i where S is a finite set of states;
A is a finite set of actions; T : S ⇥ A ⇥ (S  A)  S is a nondeterministic transition function;
R : S ⇥ A ⇥ S ⇥ (S  A)  R is a nondeterministic reward function, which we assume to be
bounded; and � 2 [0, 1) is a discount factor.
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A policy ⇡ : S  A is a function that nondeterministically maps states to actions. We use ⇡(a | s) to
denote the probability of taking action a in state s while following the policy ⇡. T and R are functions
from states, actions, and policies. In other words, they allow the outcome of a decision to depend on
the distributions from which the agent draws its actions, rather than just the state and the action that
is in fact taken. Also note that T (s, a,⇡) and R(s, a, s0,⇡) are defined even if ⇡(a | s) = 0. We say
that an NDP is a bandit NDP if it has only one state. We will sometimes use R(s, a,⇡) as a shorthand
for R(s, a, T (s, a,⇡),⇡), and we will sometimes omit the state from T , R, and ⇡ for bandit NDPs.
Moreover, we normally let � = 0 for bandit NDPs.

Consider a distribution over initial states for an agent, and let ⇡ be its policy, let xt be the sequence
of states it visits and at the sequence of actions it takes. We say ⇡ is optimal for that distribution if it
maximises E[

P1
i=0 �

i
R(xi, ai, ai+1,⇡)]. Note that unlike in the MDP case the optimal policy does

depend on the initial distribution, however this isn’t relevant in the bandit case.

As an example consider the eponymous Newcomb’s Problem.

Newcomb’s Problem (Nozick, 1969): There are two boxes in front of you; one opaque box, and one
transparent box. You can see that the transparent box contains $1,000. You can choose to either take
only the opaque box, or to take both boxes. The boxes have been placed in this room by an agent
who can predict your policy; if he believes that you will take only the opaque box then he has put
$1,000,000 in the opaque box, but if he believes that you will take both boxes then he has left the
opaque box empty. Do you take one box, or two?

A version of Newcomb’s Problem can be formalised as the following bandit NDP: S = {s},
A = {a1, a2},

R(a1,⇡) =

⇢
0 w.p. ⇡(a2)
10 w.p. ⇡(a1)

and R(a2,⇡) =

⇢
5 w.p. ⇡(a2)
15 w.p. ⇡(a1)

,

where “w.p.” is short for “with probability”. The key feature of this NDP is that, for any fixed policy,
a2 (“two-boxing”) yields a higher reward than a1 (“one-boxing”). But the expected reward of a policy
increases in ⇡(a1) s.t. the optimal policy is to always play a1.1 We can view Newcomb’s problem as
a simple version of the AV dynamic described in the introduction, where a2 is a driving action that
allows other drivers to cut the AV off at no risk.

We say that an NDP is continuous if T and R are continuous in the policy. In this paper we work
mainly with continuous NDPs. This is in part because it is technically convenient, and in part because
we believe that continuity is satisfied in many realistic cases.2

1.2 Reinforcement Learning Agents

We consider value-based reinforcement learning agents. Such agents have two main components; a
Q-function S ⇥ A ! R that predicts the expected future discounted reward conditional on taking
a particular action in a particular state, and a bandit algorithm that is used to select actions in each
state based on the Q-function. Given a policy ⇡, we use q⇡(a | s) to denote the (true) expected
future discounted reward conditional on taking action a in state s while following the policy ⇡ (and
conditional on all subsequent actions being chosen by ⇡). A model-free agent will update Q over time
to make it converge to q⇡ when following ⇡. If Q is represented as a lookup table, the agent is said
to be tabular. If the state space is large, it is common to instead approximate q⇡ (with e.g. a neural
network). For simplicity, we focus mostly on tabular agents. However, some of our results (Theorems
2 and 5) only assume that Q converges to q⇡ (for some q⇡) and therefore apply immediately to
non-tabular agents, as long as the function approximator for q⇡ converges to the same q⇡ .

1In most versions of Newcomb’s Problem, the predictor directly predicts the agent’s action with some fixed
accuracy, and the agent is unable to randomise in a way that is unpredictable to the environment. This version of
the problem can be modelled as a regular MDP. However, we believe that our version is more realistic in the
context of AI. After all, AIs can at least act pseudo-randomly, while the distribution according to which they
choose is predictable if e.g. their source code is known.

2For example, even if the environment has direct access to the source code of the agent, it may in general not
be feasible to extract the exact action probabilities from the code. However, it is always possible to estimate the
action probabilities by sampling. If this is done then T and R will depend continuously on the policy.
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The Q-values can be updated in different ways. One method is to use the update rule

Qt+1(at | st) (1� ↵t(st, at))Qt(at | st) + ↵t(st, at)(rt + �max
a

Qt(a | st+1)),

where at is the action taken at time t, st is the state visited at time t, rt is the reward obtained at time
t, and ↵t(s, a) is a learning rate. This update rule is known as Q-learning (Watkins, 1986). Other
widely used update rules include SARSA (Rummery and Niranjan, 1994) and Expected SARSA (van
Seijen et al., 2009). For the purposes of this paper it will not matter significantly how the Q-values
are computed, as long as it is the case that if an agent converges to a policy ⇡ in some NDP and
explores infinitely often then Q converges to q⇡ . We will later see that this is the case for Q-learning,
SARSA, and Expected SARSA in continuous NDPs.

There are also several different bandit algorithms. Two types of agents that are widely used in practice
and that we will refer to throughout the paper are softmax agents and ✏-Greedy agents. The policy of
a softmax agent with a sequence of temperatures �t 2 R+ is given by:

⇡t(a | s) = exp(Qt(a | s)/�t)P
a02A exp(Qt(a0 | s)/�t)

.

Unless otherwise stated we assume that �t ! 0. The policy of an ✏-Greedy agent with a sequence
of exploration probabilities ✏t 2 [0, 1] is ⇡t(a | s) = 1 � ✏t if a = argmaxa0 Qt(a0 | s) and
⇡t(a | s) = ✏t/(|A|� 1) otherwise. Unless otherwise stated we assume that ✏t ! 0. We assume that
✏-Greedy breaks ties for argmax, so that there is always some a 2 A such that ⇡(a | s) = 1� ✏t. We
say that an agent is greedy in the limit if the probability that the agent takes an action that maximises
Q converges to 1, and we say that it explores infinitely often if it takes every action in every state
infinitely many times.

1.3 Some Initial Observations

We here make three simple observations about NDPs that we will use to prove and understand the
results throughout this paper. First, a continuous NDP always has, for each possible distribution over
initial states, a policy ⇡ that maximises the expected discounted reward E[R | ⇡], since E[R | ⇡]
exists and is continuous in ⇡, and since the set of possible policies is a compact set. Also note that an
NDP in which T or R is discontinuous may not have any such policy.

Second, whereas all MDPs have a deterministic optimal policy, in some NDPs all optimal policies
randomise. To see this we introduce another example we will look at in this paper.

Death in Damascus (Gibbard and Harper, 1976): Death will come for you tomorrow. You can
choose to stay in Damascus (where you are currently) or you can flee to Aleppo. If you are in the
same city as Death tomorrow, you will die. Death has already decided which city he will go to –
however, he can predict your policy, and has decided to go to the city where he believes that you will
be tomorrow. Do you stay in Damascus, or flee to Aleppo?

We formalise this as the bandit NDP S = {s}, A = {aDamascus, aAleppo}, and

R(aDamascus,⇡) =

⇢
0 w.p. ⇡(aDamascus)
10 w.p. ⇡(aAleppo)

and R(aAleppo,⇡) =

⇢
10 w.p. ⇡(aDamascus)
0 w.p. ⇡(aAleppo)

,

where “w.p.” is again short for “with probability”. In this NDP, randomising uniformly between
aDamascus and aAleppo is the unique optimal policy and in particular outperforms both deterministic
policies.

Note also that the Bellman optimality equation does not hold for NDPs. Even in Newcomb’s Problem,
as described above, Bellman’s optimality equation is not satisfied by the optimal policy.

2 Ratifiability

If an agent in the limit only takes the actions with the highest Q-values and it converges to some policy
⇡1, then it is clear that, for a given state, all actions in the support of ⇡1 must have equal expected
utility given ⇡1. Otherwise, the Q-values would eventually reflect the differences in expected utility
and the agent would move away from ⇡1. Similarly, if the algorithm explores sufficiently often, the
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actions that are taken with limit probability 0 cannot be better given ⇡1 than those taken by ⇡1.
After all, if they were better, the agent would have eventually figured this out and assigned them large
probability.

This condition on ⇡1 resembles a well-known doctrine in philosophical decision theory: ratifica-
tionism (see Weirich, 2016, Sect. 3.6, for an overview). One form of ratificationism is based on a
distinction between a decision – what the agent chooses – and the act that is selected by that decision.
Very roughly, ratificationism then states that a decision is rational only if the acts it selects have the
highest expected utility given the decision. Concepts of causality are often invoked to formalise the
difference between the decision, the act, and their respective consequences. Our setup, however, has
such a differentiation built in: we will view the policy as the “decision” and the action sampled from
it as the “act”.

2.1 Strong Ratifiability

As hinted earlier, slightly different versions of the concept of ratifiability are relevant depending on
how much exploration a learning algorithm guarantees. We start with the stronger version, which
more closely resembles what decision theorists mean when they speak about ratifiability.
Definition 1. Let M ✓ S be a set of states. A policy ⇡ is strongly ratifiable on M if supp(⇡(· |
s)) ✓ argmaxa2A q⇡(a | s) for all s 2M .

In Newcomb’s Problem the only strongly ratifiable policy is to play a2 with probability 1. In Death in
Damascus, only the optimal policy (mixing uniformly) is strongly ratifiable. There can also be several
strongly ratifiable policies. For example, if you play the Coordination Game of Table 1 against an
opponent who samples his action from the same policy as you then there are three strongly ratifiable
policies; to select action a with probability 1, to select action b with probability 1, and to select a
with probability 1/3 and b with probability 2/3.
Theorem 2. Let A be a model-free reinforcement learning agent, and let ⇡t and Qt be A’s policy
and Q-function at time t. Let A satisfy the following in a given NDP:

• A is greedy in the limit, i.e. for all � > 0, P (Qt(⇡t(s))maxa Qt(a | s)� �)! 0 as t!1.
• A’s Q-values are accurate in the limit, i.e. if ⇡t ! ⇡1 as t!1, then Qt ! q⇡1 as t!1.

Then if A’s policy converges to ⇡1 then ⇡1 is strongly ratifiable on the states that are visited
infinitely many times.

a b

a 2,2 0,0
b 0,0 1,1

Table 1: The Coordination Game

In Appendix A we show that the Q-values of a tabular
agent are accurate in the limit in any continuous NDP if
the agent updates its Q-values with SARSA, Expected
SARSA, or Q-learning, given that the agent explores in-
finitely often and uses appropriate learning rates. Since
we would expect most well-designed agents to have accu-
rate Q-values in the limit, Theorem 2 should apply very
broadly. Using Kakutani’s fixed-point theorem, it can be shown that every continuous NDP has a
ratifiable policy.
Theorem 3. Every continuous NDP has a strongly ratifiable policy.

Of course, the fact that a ratifiable policy always exists does not necessarily mean that a reinforcement
learning agent must converge to it – we will consider the question of whether or not this is the case in
Sect. 3. It is also worth noting that a discontinuous NDP may not have any strongly ratifiable policy.

It is a topic of ongoing discussion among philosophical decision theorists whether (strong) ratifiability
should be considered a normative principle of rationality, see Weirich (2016, Sect. 3.6) for details. In
general, the policy ⇡ that maximises E[R | ⇡] may or may not be ratifiable, as shown by Death in
Damascus and Newcomb’s problem, respectively.

There is a correspondence between ratificationism and many game-theoretic concepts. For example,
if you are playing a zero-sum game against an opponent who can see your policy and plays some
distribution over best responses to it then ⇡ can only be ratifiable if it is a maximin strategy. To give
another example, if you are playing a symmetric game against an opponent who follows the same
policy as you then ⇡ is ratifiable if and only if (⇡,⇡) is a Nash equilibrium. Joyce and Gibbard (1998,
Sect. 5) discuss the relation in more detail.
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2.2 Weak Ratifiability

We now show that even without infinite exploration, ⇡1 must still satisfy a weaker notion of
ratifiability.

Definition 4. Let M ✓ S be a set of states. A policy ⇡ is weakly ratifiable on M if q⇡(a | s) is
constant across a 2 supp(⇡(s)) for all s 2M .

What makes this a weak version of ratifiability is that it does not put any requirements on the
expected utility of actions that ⇡ does not take, it merely says that all actions that ⇡ takes with
positive probability must have the same (actual) q-value. As a special case, this means that all
deterministic policies are weakly ratifiable. This includes one-boxing in Newcomb’s problem.
Nonetheless, there are bandit NDPs in which the optimal policy is not even weakly ratifiable. For
example, consider an NDP with actions a1, a2, where R(a1,⇡) = �100(⇡(a1) � 1/2)2 + 1 and
R(a2,⇡) = �100(⇡(a1) � 1/2)2. The optimal policy mixes close to uniformly (⇡(a1) = 101/200),
but this is not weakly ratifiable, because R(a1,⇡) > R(a2,⇡).

Theorem 5. Same conditions as Theorem 2, but where A’s Q-values are only required to be accurate
in the limit for state-action pairs that A visits infinitely many times. Then ⇡1 is weakly ratifiable on
the set of states that are visited infinitely many times.

3 Non-Convergence of Policies

We have shown that most reinforcement learning algorithms can only converge to (strongly) ratifiable
policies. We now consider the question of whether they always converge to a policy at all. We find
that this is not the case.

3.1 Theoretical Results

From Theorem 2 it follows that in e.g. Death in Damascus an ✏-Greedy agent who explores infinitely
often cannot converge to any policy. After all, the only strongly ratifiable policy (and thus limit
policy) is to mix uniformly and an ✏-Greedy agent never mixes uniformly.

Perhaps more surprisingly, there are also NDPs in which a (slow-cooling) softmax agent cannot
converge to any policy. As an example, consider a bandit NDP with three actions a1, a2, a3, and
where the rewards R(ai,⇡) have expectations

⇡(ai+1) + 4·133·⇡(ai) [8j:⇡(aj)�1/4]
Y

j

(⇡(aj)�1/4) . (1)

For i = 3, we here let ai+1 = a1. We also require that the rewards are stochastic with a finite set of
outcomes such that the empirical Q-values are never exactly equal between different actions. We
call this the Repellor Problem. It has only one strongly ratifiable policy (mixing uniformly), but – as
illustrated by Figure 1 – when the current policy mixes close to uniformly, the softmax agent learns
(in expectation) to play less uniformly.

Theorem 6. Let A be an agent that plays the Repellor Problem, explores infinitely often, and updates
its Q-values with a learning rate ↵t that is constant across actions, and let ⇡t and Qt be A’s policy
and Q-function at time t. Assume also that for j 6= i, if ⇡t(ai), ⇡t(aj) both converge to positive
values, then

⇡t(ai)� ⇡t(aj)

Qt(ai)�Qt(aj)
!
a.s.
1 (2)

as t!1. Then ⇡t almost surely does not converge.

Line 2 is satisfied, for example, for softmax agents with �t converging to 0. Recall also that e.g.
Q-learning and SARSA are equivalent for bandit NDPs (if � = 0).
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3.2 Empirical Results

Figure 1: The triangle shows the space of possible
policies in the Repellor Problem, parameterised
by the probability they assign to each of the three
actions. Plotted against this space is the expected
direction in which a softmax agent would change
its policy if playing a particular policy.

Empirically, softmax agents converge (to
strongly ratifiable policies) in many NDPs, pro-
vided that the temperature decreases sufficiently
slowly. To illustrate this we will use Aymmet-
ric Death in Damascus, a version of Death in
Damascus wherein the rewards of aAleppo are
changed to be 5 (instead of 0) with probabil-
ity ⇡(aAleppo) and (as before) 10 with the re-
maining probability. This NDP has only one
(strongly) ratifiable policy, namely to go to
Aleppo with probability 2/3 and Damascus with
probability 1/3. This is also the optimal policy.
We use this asymmetric version to make it easier
to distinguish between convergence to the ratifi-
able policy and the default of uniform mixing at
high temperatures. Figure 2 shows the probabil-
ity of converging to this policy with a softmax
agent and a plot of the policy on one run. We can
see that this agent reliably converges provided
that the cooling is sufficiently slow.

Figure 2: The left figure plots the probability of softmax converging in Asymmetric Death in
Damascus given �n = n

�↵ against ↵. More accurately it is a plot of the fraction of runs which
assigned a Q-value of at least 5.5 to the action of going to Aleppo after 5000 iterations. These are
empirical probabilities from 20,000 runs for every ↵ that is a multiple of 0.025, and 510,000 runs for
each ↵ that is a multiple of 0.005 between 0.5 and 0.55. Notice the “kink” at ↵ = 0.5. Based on our
experiments, this kink is not an artefact and shows up reliably in this kind of graph. The right-hand
figure shows how the action probabilities evolve over time for a single run (chosen to converge to the
mixed strategy) for ↵ = 0.3.

However, there are also fairly simple games in which it seems like softmax agents cannot converge.
Consider Loss-Averse Rock-Paper-Scissors (LARPS), the problem of playing Rock-Paper-Scissors
against an opponent that selects each action with the same probability as you, and where you assign
utility 1 to a win, 0 to a draw, and -10 to a loss. We conjecture that slow-cooling softmax agents do
not converge in LARPS. We have unfortunately not been able to prove this formally, but Figure 3
presents some empirical data which corroborates the hypothesis.

4 Convergence of Action Frequencies

We have seen that there are NDPs in which some reinforcement learning algorithms cannot converge
to any policy. But if they do not converge to any policy, what does their limit behaviour look like?
We now examine whether these algorithms converge to taking each action with some limit frequency,
and what sorts of frequencies they can converge to.
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4.1 Possible Frequencies in the Bandit Case

Figure 3: This figure shows five runs of a softmax
agent in LARPS, and plots ⇡(arock) against the total
number of episodes played. The agent’s Q-values
are the historical mean rewards for each action, and
�t = 1/ log t.

In this section we establish a number of con-
ditions that must be satisfied by any limit
action frequency of a value-based agent. We
consider agents that converge to determinis-
tic policies (such as ✏-Greedy agents), and
we limit our analysis to the bandit case (with
� = 0).

Let P⌃
t : A ! [0, 1] be the frequency with

which each action in A is taken in the first
t steps (for some agent and some bandit
NDP). Note that P⌃

t is a random variable.
By the law of large numbers, P

⌃
t (a) �

1/t
Pt

i=0 ⇡i(a) converges to 0 almost surely
as t ! 1. Let ⇡a be the policy that takes
action a with probability 1, and let qa = q⇡a .
Theorem 7. Assume that there is some sequence of random variables (✏t � 0)t s.t. ✏t !

t!1 a.s.
0 and

for all t 2 N it is X

a⇤2argmaxa Qt(a)

⇡t(a
⇤) � 1� ✏t. (3)

Let P⌃
t ! p

⌃ with positive probability as t!1. Then across all actions a 2 supp(p⌃), qa(a) is
constant.

That is, the actions played with positive limit frequency must all be equally good when played
deterministically. This condition is vaguely analogous to weak ratifiability, and is proven in roughly
the same way as Theorem 2.
Theorem 8. Same assumptions as Theorem 7. If |supp(p⌃)| > 1 then for all a 2 supp(p⌃) there
exists a0 2 A s.t. qa(a0) � qa(a).

This condition is an instability condition. Say that multiple actions are taken with nonzero limit
frequency, and that action a has the highest Q-value at time t. Then for other actions to be played
with positive limit frequency, other actions must at some point be believed to be optimal again (since
the probability of exploration goes to zero). Hence they cannot all be worse when explored while
mainly playing a, since a could otherwise be played forever.
Theorem 9. Same assumptions as Theorem 7. Let U be the Q-value qa(a) which (by Theorem
7) is constant across a 2 supp(p⌃). For any a

0 2 A � supp(p⌃) that is played infinitely often,
let frequency 1 of the exploratory plays of a0 happen when playing a policy near elements of
{⇡a | a 2 supp(p⌃)}. Then either there exists a 2 supp(p⌃) such that qa(a0)  U ; or qa0(a0) < U .

Theorem 9 describes what circumstances are needed for an actions a0 to be played with limit frequency
zero. One possibility is that exploration is done only finitely many times (in which case bad luck
could lead to low Q-values). A second possibility is that the exploration mechanism is “rigged” so
that a0 is mostly played when playing policies outside the proximity of {⇡a | a 2 supp(p⌃)}. In
this case the utility of a0 under some zero-limit-frequency policy might lead to low Q-values. If
exploration of a0 is spread out more naturally then all but frequency zero of that exploration will
happen near elements of {⇡a | a 2 supp(p⌃)}. In this case, the only reason for a0 to be played with
zero frequency is that exploring a

0 near some of the elements of {⇡a | a 2 supp(p⌃)} makes a0 look
poor.

4.2 When is Frequency Convergence Possible?

We believe there are NDPs in which an ✏-Greedy agent cannot converge to any limit action frequency.
Specifically, we believe that LARPS is such an example. Figure 4a shows the directions in which the
frequencies of different actions evolve. The graph seems to have no attractor and hence we believe an
✏-Greedy agent cannot converge to any limit action frequency in this NDP. We have not been able to
rigorously prove this. However, experiments seem to confirm this hypothesis. Figure 4b depicts five
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(a) This figure plots the dynamics of LARPS for
an ✏-Greedy agent. Each point represents a triplet
(fR, fS, fP), where fR denotes the fraction of past time
steps at which aR was estimated to be the best action,
and similarly for fS, fP. Plotted against this space is
the expected direction in which the frequencies will
change. For instance, if in the past aR, was mostly
played, then aP will have the highest empirical Q-
values and will therefore be played more in the future.

(b) This figure shows five runs of an ✏-Greedy agent
in LARPS, and plots the proportion of past episodes
in which the agent played “rock” against the total
number of episodes played. The agent’s Q-values are
the historical mean rewards for each action, and its
✏-value is 0.01.

Figure 4

runs of ✏-Greedy in LARPS. We can see that the agents oscillate between different actions, and that
the periods increase in length.

5 Related Work

5.1 Learning in games

Some of the Newcomblike dynamics we have described in this paper could also be modelled as games,
especially as so-called Stackelberg games in which one player, the Stackelberg leader, chooses a
strategy first and another player, the Stackelberg follower, then responds to that strategy. For example,
in the case of autonomous vehicles (AVs), we might imagine that the AV company is the Stackelberg
leader and the human drivers are the Stackelberg followers.

That said, there are differences between NDPs and games. NDPs can react arbitrarily to the agent’s
policy, whereas in games, the other players play a best (i.e., expected-utility-maximising) response.
In many real-world situations, other agents in the environment cannot be comfortably modelled as
expected-utility-maximising agents. Interactions between AVs and humans can serve as examples.
Most people probably do not reason rationally about small-probability, big-impact events, such as
car crashes. Also, humans will generally operate on simplified models of an AV’s policy (even
when more detailed models are available). Of course, a game-theoretic analysis can also be fruitful
and address issues that we ignore: By assuming all players to be rational, game theory can provide
recommendations and predictions for multiple agents simultaneously, while our NDP model considers
a single agent for a given environment. We believe that the NDP perspective provides additional
insight into learning in such situations.

Despite the differences between NDPs and games, there are some interesting parallels between
model-free learning in NDPs and in games, where similar learning methods are sometimes referred
to as fictitious play (Brown, 1951). Fudenberg and Levine (1998, Chapter 2) show that fictitious play
can only converge to a Nash equilibrium (for similar results about convergence to Nash equilibrium,
see e.g. Mazumdar et al., 2020, Oesterheld et al., 2021). As noted in Sect. 2.1, the concept of Nash
equilibrium resembles the concept of ratifiability. Shapley (1964) shows that fictitious play can fail
to converge. However, there are many special cases in which convergence is guaranteed, including
two-player zero-sum games (Robinson, 1951) and generic 2⇥ 2 games (Miyasawa, 1961).

5.2 Learning and Newcomblike problems

Other authors have discussed learning in Newcomblike problems. The most common setup is one in
which the learner assigns values directly to policies, or more generally to that which the agent chooses.
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It is then usually shown that (among the policies considered) the agent will converge to taking the
one with the highest (so-called evidential) expected utility (Albert and Heiner, 2001; Oesterheld,
2018). This contrasts with our setup, in which the learner selects policies but assigns values to actions.
Oesterheld (2019) also studies agents who maximise reward in Newcomblike environments. However,
Oesterheld does not consider the learning process. Instead he assumes that the agent has already
formed beliefs and uses some form of expected utility maximisation. He also specifically considers
the implications of having some overseer assign rewards based on beliefs about the state of the world
(as opposed to having the reward come directly from the true world state).

6 Discussion and Further Work

We have seen that value-based reinforcement learning algorithms can fail to converge to any policy in
some NDPs, and that when they do converge, they can only converge to ratifiable policies. Decision
theorists have discussed whether ratifiability should be considered to be a sound normative principle.
Note that (as discussed in Sect. 2) the optimal policies ⇡ are not in general ratifiable. We have also
examined the limit action frequencies that agents can converge to (even when the policies do not
converge). Still, there are NDPs in which many agents cannot converge even to any such frequency.
We gave some results on what actions can be taken with positive limit frequency. A loose connection
to ratifiability can still be drawn.

Overall, established decision-theoretical ideas can be used to understand and formally describe the
behaviour of “out-of-the-box” reinforcement learning agents in NDPs. However, their behaviour is
not always desirable. Our work elucidates possible failures. We hope that our work will thus enable
more accurate reasoning about the behaviour of RL agents in real-world situations, especially when
interacting with humans or other agents. We hold such improvements in understanding to be broadly
beneficial to the safe design and deployment of AI systems.

Throughout the paper, we have noted specific open questions related to our results. For instance, can
the results in Sect. 4.1 be generalised beyond the bandit setting? There are also many topics and
questions about our setting that we have not touched on at all. For instance, our experimental results
indicate that convergence is often slow (considering how simple the given problems are). It might be
desirable to back up this impression with theoretical results. We have only studied simple value-based
model-free algorithms – the analysis could be extended to other reinforcement learning algorithms
(e.g., policy-gradient or model-based algorithms). Also, there are further ways in which we could
generalise our setting. One example is to introduce partial observability and imperfect memory into
the NDPs. The latter has been studied in game and decision theory (Piccione and Rubinstein, 1997;
Elga, 2000), but recently – under the name memoryless POMDP – also in reinforcement learning
(Azizzadenesheli et al., 2016; Steckelmacher et al., 2018; cf. Conitzer, 2019). What makes this
especially appealing in the NDP context is that problems related to imperfect memory relate closely
to Newcomblike problems (Briggs, 2010; Schwarz, 2015). One could also look for narrower classes
of NDPs in which RL agents are guaranteed to perform well in some sense.

Ultimately, the goal of this line of research is to develop learners that are able to deal effectively and
safely with Newcomblike dynamics. We hope that our results will be useful in developing extensions
of value-based RL that can detect and correct for the failures that arise when existing methods are
applied in Newcomblike settings. However, we should also consider alternative approaches that
do not hinge on insights from the present work. For example, a few recent papers (on learning in
non-Newcomblike settings) have considered learning to predict the expected utility as a function of
the policy (as opposed to traditional Q values, which are not paremeterised by the policy) (Harb et al.,
2020). In principle, learning such a policy evaluation function avoids the problems of the learners
considered in this paper. However, it remains to be seen how practical this approach is.
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