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Abstract

Empowered by neural networks, deep reinforcement learning (DRL) achieves
tremendous empirical success. However, DRL requires a large dataset by in-
teracting with the environment, which is unrealistic in critical scenarios such as
autonomous driving and personalized medicine. In this paper, we study how to
incorporate the dataset collected in the offline setting to improve the sample ef-
ficiency in the online setting. To incorporate the observational data, we face two
challenges. (a) The behavior policy that generates the observational data may de-
pend on unobserved random variables (confounders), which affect the received
rewards and transition dynamics. (b) Exploration in the online setting requires
quantifying the uncertainty given both the observational and interventional data.
To tackle such challenges, we propose the deconfounded optimistic value itera-
tion (DOVI) algorithm, which incorporates the confounded observational data in
a provably efficient manner. DOVI explicitly adjusts for the confounding bias
in the observational data, where the confounders are partially observed or unob-
served. In both cases, such adjustments allow us to construct the bonus based on
a notion of information gain, which takes into account the amount of information
acquired from the offline setting. In particular, we prove that the regret of DOVI
is smaller than the optimal regret achievable in the pure online setting when the
confounded observational data are informative upon the adjustments.

1 Introduction

Empowered by the breakthrough in neural networks, deep reinforcement learning (DRL) achieves
significant empirical successes in various scenarios [19, 23, 36, 37]. Learning an expressive function
approximator necessitates collecting a large dataset. Specifically, in the online setting, it requires
the agent to interact with the environment for a large number of steps. For example, to learn a
human-level policy for playing Atari games, the agent has to interact with a simulator for more
than 108 steps [13]. However, in most scenarios, we do not have access to a simulator that allows
for trial and error without any cost. Meanwhile, in critical scenarios, e.g., autonomous driving and
personalized medicine, trial and error in the real world is unsafe and even unethical. As a result, it
remains challenging to apply DRL to more scenarios.

To bypass such a barrier, we study how to incorporate the dataset collected offline, namely the
observational data, to improve the sample efficiency of RL in the online setting [21]. In contrast
to the interventional data collected online in possibly expensive ways, observational data are often
abundantly available in various scenarios. For example, in autonomous driving, we have access
to trajectories generated by the drivers. As another example, in personalized medicine, we have
access to electronic health records from doctors. However, to incorporate the observational data in
a provably efficient way, we have to address two challenges.
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• The observational data are possibly confounded. Specifically, there often exist unobserved ran-
dom variables, namely confounders, that causally affect the agent and the environment at the same
time. In particular, the policy used to generate the observational data, namely the behavior policy,
possibly depends on the confounders. Meanwhile, the confounders possibly affect the received
rewards and the transition dynamics.
In the example of autonomous driving [9, 22], the drivers may be affected by complicated traffic
or poor road design, resulting in traffic accidents even without misconduct. The complicated
traffic and poor road design subsequently affect both the action of the drivers and the outcome.
Therefore, it is unclear from the observational data whether the accidents are due to the actions
adopted by the drivers. Agents trained with such observational data may be unwilling to take any
actions under complicated traffic, jeopardizing the safety of passengers.
In the example of personalized medicine [8, 29], the patients may not be compliant with pre-
scriptions and instructions, which subsequently affects both the treatment and the outcome. As
another example, the doctor may prescribe medicine to patients based on patients’ socioeconomic
status (which could be inferred by the doctor through interacting with the patients). Meanwhile,
socioeconomic status affects the patients’ health condition and subsequently plays the role of the
confounder. In both scenarios, such confounders may be unavailable due to privacy or ethical con-
cerns. Such a confounding issue makes the observational data uninformative and even misleading
for identifying and estimating the causal effect, which is crucial for decision-making in the online
setting. In all the examples, it is unclear from the observational data whether the outcome is due
to the actions adopted.

• Even without the confounding issue, it remains unclear how the observational data may facilitate
exploration in the online setting, which is the key to the sample efficiency of RL. At the core of
exploration is uncertainty quantification. Specifically, quantifying the uncertainty that remains
given the dataset collected up to the current step, including the observational data and the inter-
ventional data, allows us to construct a bonus. When incorporated into the reward, such a bonus
encourages the agent to explore the less visited state-action pairs with more uncertainty. In par-
ticular, constructing such a bonus requires quantifying the amount of information carried over by
the observational data from the offline setting, which also plays a key role in characterizing the
regret, especially how much the observational data may facilitate reducing the regret.
Uncertainty quantification becomes even more challenging when the observational data are con-
founded. Specifically, as the behavior policy depends on the confounders, there is a mismatch
between the data generating processes in the offline setting and the online setting. As a result,
it remains challenging to quantify how much information carried over from the offline setting is
useful for the online setting, as the observational data are uninformative and even misleading due
to the confounding issue.

Contribution. To study causal reinforcement learning, we propose a class of Markov decision
processes (MDPs), namely confounded MDPs, which captures the data generating processes in both
the offline setting and the online setting as well as their mismatch due to the confounding issue.
In particular, we study two tractable cases of confounded MDPs in the episodic setting with linear
function approximation [7, 16, 42, 43].

• In the first case, the confounders are partially observed in the observational data. Assuming
that an observed subset of the confounders satisfies the backdoor criterion [32], we propose the
deconfounded optimistic value iteration (DOVI) algorithm, which explicitly corrects for the con-
founding bias in the observational data using the backdoor adjustment.

• In the second case, the confounders are unobserved in the observational data. Assuming that there
exists an observed set of intermediate states that satisfies the frontdoor criterion [32], we propose
an extension of DOVI, namely DOVI+, which explicitly corrects for the confounding bias in the
observational data using the composition of two backdoor adjustments. We remark that DOVI+
follows the same principle of design as DOVI and defer the discussion of DOVI+ to §A.

In both cases, the adjustments allow DOVI and DOVI+ to incorporate the observational data into the
interventional data while bypassing the confounding issue. It further enables estimating the causal
effect of a policy on the received rewards and the transition dynamics with enlarged effective sample
size. Moreover, such adjustments allow us to construct the bonus based on a notion of information
gain, which takes into account the amount of information carried over from the offline setting.
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In particular, we prove that DOVI and DOVI+ attain the ∆H ·
√
d3H3T -regret up to logarithmic

factors, where d is the dimension of features, H is the length of each episode, and T = HK
is the number of steps taken in the online setting, where K is the number of episodes. Here the
multiplicative factor ∆H > 0 depends on d, H , and a notion of information gain that quantifies the
amount of information obtained from the interventional data additionally when given the properly
adjusted observational data. When the observational data are unavailable or uninformative upon the
adjustments, ∆H is a logarithmic factor. Correspondingly, DOVI and DOVI+ attain the optimal√
T -regret achievable in the pure online setting [7, 16, 42, 43]. When the observational data are

sufficiently informative upon the adjustments, ∆H decreases towards zero as the effective sample
size of the observational data increases, which quantifies how much the observational data may
facilitate exploration in the online setting.

Related Work. Our work is related to the study of causal bandit [20]. The goal of causal bandit is to
obtain the optimal intervention in the online setting where the data generating process is described
by a causal diagram. The previous study establishes causal bandit algorithms in the online setting
[26, 34], the offline setting [17, 18], and a combination of both settings [11]. In contrast to this line
of work, we study causal RL in a combination of the online setting and the offline setting. Causal
RL is more challenging than causal bandit, which corresponds toH = 1, as it involves the transition
dynamics and is more challenging in exploration. See §B for a detailed literature review on causal
bandit.

Our work is related to the study of causal RL considered in various settings. [45] propose a model-
based RL algorithm that solves dynamic treatment regimes (DTR), which involve a combination
of the online setting and the offline setting. Their algorithm hinges on the analysis of sensitivity
[3, 27, 38, 44], which constructs a set of feasible models of the transition dynamics based on the
confounded observational data. Correspondingly, their algorithm achieves exploration by choosing
an optimistic model of the transition dynamics from such a feasible set. In contrast, we propose a
model-free RL algorithm, which achieves exploration through the bonus based on a notion of in-
formation gain. It is worth mentioning that the assumption of [45] is weaker than ours as theirs
does not allow for identifying the causal effect. As a result of partial identification, the regret of
their algorithm is the same as the regret in the pure online setting as T → +∞. In contrast, our
work instantiates the following framework in handling confounders for reinforcement learning. (a)
First, we propose the estimation equation based on the observations, which identifies the causal ef-
fect of actions on the cumulative reward. (b) Second, we conduct point estimation and uncertainty
quantification based on observations and the estimation equation. (c) Finally, we conduct explo-
ration based on the uncertainty quantification and achieve the regret reduction in the online setting.
Consequently, the regret of our algorithm is smaller than the regret in the pure online setting by
a multiplicative factor for all T . [25] propose a model-based RL algorithm in a combination of
the online setting and the offline setting. Their algorithm uses a variational autoencoder (VAE) for
estimating a structural causal model (SCM) based on the confounded observational data. In partic-
ular, their algorithm utilizes the actor-critic algorithm to obtain the optimal policy in such an SCM.
However, the regret of their algorithm remains unclear. [6] propose a model-based RL algorithm
in the pure online setting that learns the optimal policy in a partially observable Markov decision
process (POMDP). The regret of their algorithm also remains unclear. [35] utilize generative adver-
sarial reinforcement learning to reconstruct transition dynamics with confounder, and [40] propose
a model-based approach for POMDP based on adjustment with proxy variables. [30] consider off-
policy policy evaluation under one-decision confounding and constructs worst-case bounds with
theoretical guarantee. [4] utilizes states and actions as proxy variables to tackle off-policy policy
evaluation with confounders. In contrast, our work utilizes backdoor and frontdoor adjustments to
handle confounded observation.

2 Confounded Reinforcement Learning

Structural Causal Model. We denote a structural causal model (SCM) [32] by a tuple (A,B, F, P ).
Here A is the set of exogenous (unobserved) variables, B is the set of endogenous (observed) vari-
ables, F is the set of structural functions capturing the causal relations, which determines an en-
dogenous variable v ∈ B based on the other exogenous and endogenous variables, and P is the
distribution of all the exogenous variables. We say that a pair of variables Y and Z are confounded
by a variable W if they are both caused by W .
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An intervention on a set of endogenous variables X ⊆ B assigns a value x to X regardless of
the other exogenous and endogenous variables as well as the structural functions. We denote by
do(X = x) the intervention on X and write do(x) if it is clear from the context. Similarly, a
stochastic intervention [10, 28] on a set of endogenous variables X ⊆ B assigns a distribution p to
X regardless of the other exogenous and endogenous variables as well as the structural functions.
We denote by do(X ∼ p) the stochastic intervention on X .

Confounded Markov Decision Process. To characterize a Markov decision process (MDP) in the
offline setting with observational data, which are possibly confounded, we introduce an SCM, where
the endogenous variables are the states {sh}h∈[H], actions {ah}h∈[H], and rewards {rh}h∈[H]. Let
{wh}h∈[H] be the confounders. In §3, we assume that the confounders are partially observed, while
in §A, we assume that they are unobserved. The set of structural functions F consists of the tran-
sition of states sh+1 ∼ Ph(· | sh, ah, wh), the transition of confounders wh ∼ P̃h(· | sh), the be-
havior policy ah ∼ νh(· | sh, wh), which depends on the confounder wh, and the reward function
rh(sh, ah, wh). See Figure 1 for the causal diagram that describes such an SCM.

sh ah

wh

sh+1

(a) Offline Setting

sh ah

wh

sh+1

(b) Online Setting

Figure 1: Causal diagrams of the h-th step of the confounded MDP (a) in the offline setting and (b) in the online
setting, respectively.

Here ah and sh+1 are confounded by wh in addition to sh. We denote such a confounded MDP
by the tuple (S,A,W, H,P, r), where H is the length of an episode, S, A, andW are the spaces
of states, actions, and confounders, respectively, r = {rh}h∈[H] is the set of reward functions,
and P = {Ph, P̃h}h∈H is the set of transition kernels. In the sequel, we assume without loss of
generality that rh takes value in [0, 1] for all h ∈ [H].

In the online setting that allows for intervention, we assume that the confounders {wh}h∈[H]

are unobserved. A policy π = {πh}h∈[H] induces the stochastic intervention do(a1 ∼
π1(· | s1), . . . , aH ∼ πH(· | sH)), which does not depend on the confounders. In particular, an
agent interacts with the environment as follows. At the beginning of the k-th episode, the environ-
ment arbitrarily selects an initial state sk1 and the agent selects a policy πk = {πkh}h∈[H]. At the
h-th step of the k-th episode, the agent observes the state skh and takes the action akh ∼ πkh(· | skh).
The environment randomly selects the confounder wkh ∼ P̃h(· | skh), which is unobserved, and the
agent receives the reward rkh = rh(skh, a

k
h, w

k
h). The environment then transits into the next state

skh+1 ∼ Ph(· | skh, akh, wkh).

For a policy π = {πh}h∈H , which does not depend on the confounders {wh}h∈[H], we define the
value function V π = {V πh }h∈[H] as follows,

V πh (s) = Eπ
[ H∑
j=h

rj(sj , aj , wj)

∣∣∣∣ sh = s

]
, ∀h ∈ [H], (2.1)

where we denote by Eπ the expectation with respect to the confounders {wj}Hj=h and the trajectory
{(sj , aj)}Hj=h, starting from the state sj = s and following the policy π. Correspondingly, we define
the action-value function Qπ = {Qπh}h∈[H] as follows,

Qπh(s, a) = Eπ
[ H∑
j=h

rj(sj , aj , wj)

∣∣∣∣ sh = s,do(ah = a)

]
, ∀h ∈ [H]. (2.2)
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We assess the performance of an algorithm using the regret against the globally optimal policy
π∗ = {π∗h}h∈[H] in hindsight after K episodes, which is defined as follows,

Regret(T ) = max
π

K∑
k=1

(
V π1 (sk1)− V π

k

1 (sk1)
)

=

K∑
k=1

(
V π
∗

1 (sk1)− V π
k

1 (sk1)
)
. (2.3)

Here T = HK is the total number of steps.

Our goal is to design an algorithm that minimizes the regret defined in (2.3), where π∗ does not
depend on the confounders {wh}h∈[H]. In the online setting that allows for intervention, it is well
understood how to minimize such a regret [2, 14–16]. However, it remains unclear how to efficiently
utilize the observational data obtained in the offline setting, which are possibly confounded. In real-
world applications, e.g., autonomous driving and personalized medicine, such observational data are
often abundant, whereas intervention in the online setting is often restricted. We refer to §C for a
comparison between the confounded MDP and other extensions of MDP, including the dynamics
treatment regime (DTR), partially observable MDP (POMDP), and contextual MDP (CMDP).

Why is Incorporating Confounded Observational Data Challenging? Straightforwardly incor-
porating the confounded observational data into an online algorithm possibly leads to an undesirable
regret due to the mismatch between the online and offline data generating processes. In particular,
due to the existence of the confounders {wh}h∈[H], which are partially observed (§3) or unobserved
(§A), the conditional probability P(sh+1 | sh, ah) in the offline setting is different from the causal
effect P(sh+1 | sh,do(ah)) in the online setting [33]. More specifically, it holds that

P(sh+1 | sh, ah) =
Ewh∼P̃h(· | sh)

[
Ph(sh+1 | sh, ah, wh) · νh(ah | sh, wh)

]
Ewh∼P̃h(· | sh)

[
νh(ah | sh, wh)

] ,

P
(
sh+1

∣∣ sh,do(ah)
)

= Ewh∼P̃h(· | sh)

[
Ph(· | sh, ah, wh)

]
.

In other words, without proper covariate adjustments [32], the confounded observational data may be
not informative for estimating the transition dynamics and the associated action-value function in the
online setting. To this end, we propose an algorithm that incorporates the confounded observational
data in a provably efficient manner. Moreover, our analysis quantifies the amount of information
carried over by the confounded observational data from the offline setting and to what extent it helps
reducing the regret in the online setting.

3 Algorithm and Theory for Partially Observed Confounder

In this section, we propose the Deconfounded Optimistic Value Iteration (DOVI) algorithm. DOVI
handles the case where the confounders are unobserved in the online setting but are partially ob-
served in the offline setting. We then characterize the regret of DOVI. We defer the extension of
DOVI, namely DOVI+, to §A which handles the case where the confounders are unobserved in both
the online setting and the offline setting.

3.1 Algorithm

Backdoor Adjustment. In the online setting that allows for intervention, the causal effect of ah on
sh+1 given sh, that is, P(sh+1 | sh,do(ah)), plays a key role in the estimation of the action-value
function. Meanwhile, the confounded observational data may not allow us to identify the causal
effect P(sh+1 | sh,do(ah)) if the confounder wh is unobserved. However, if the confounder wh is
partially observed in the offline setting, the observed subset uh of wh allows us to identify the causal
effect P(sh+1 | sh,do(ah)), as long as uh satisfies the following backdoor criterion.
Assumption 3.1 (Backdoor Criterion [32, 33]). In the SCM defined in §2 and its induced directed
acyclic graph (DAG), for all h ∈ [H], there exists an observed subset uh of wh that satisfies the
backdoor criterion, that is,

• the elements of uh are not the descendants of ah, and

• conditioning on sh, the elements of uh d-separate every path between ah and sh+1, rh that
has an incoming arrow into ah.
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See Figure 2 for an example that satisfies the backdoor criterion. In particular, we identify the causal
effect P(sh+1 | sh,do(ah)) as follows.

sh+1ah

u1,h

u2,h

w1,h w2,hw3,h

Figure 2: An illustration of the backdoor criterion modified from [32]. The causal diagram corresponds to
the h-th step of the confounded MDP conditioning on sh. Here wh = {w1,h, w2,h, w3,h} is the unobserved
confounders and the subset uh = {u1,h, u2,h} satisfies the backdoor criterion.

Proposition 3.2 (Backdoor Adjustment [32]). Under Assumption 3.1, it holds for all h ∈ [H] that

P
(
sh+1

∣∣ sh,do(ah)
)

= Euh∼P(· | sh)

[
P(sh+1 | sh, ah, uh)

]
,

E
[
rh(sh, ah, wh)

∣∣ sh,do(ah)
]

= Euh∼P(· | sh)

[
E
[
rh(sh, ah, wh)

∣∣ sh, ah, uh]].
Here (sh+1, sh, ah, uh) follows the SCM defined in §2, which generates the confounded observa-
tional data.

Proof. See [32] for a detailed proof.

With a slight abuse of notation, we write P(sh+1 | sh, ah, uh) as Ph(sh+1 | sh, ah, uh) and
P(uh | sh) as P̃h(uh | sh), since they are induced by the SCM defined in §2. In the sequel, we
define U the space of observed state uh and write rh = rh(sh, ah, wh) for notational simplicity.

Backdoor-Adjusted Bellman Equation. We now formulate the Bellman equation for the con-
founded MDP. It holds for all (sh, ah) ∈ S ×A that

Qπh(sh, ah) = Eπ
[ H∑
j=h

rj(sj , aj , uj)

∣∣∣∣ sh,do(ah)

]
= E

[
rh
∣∣ sh,do(ah)

]
+ Esh+1

[
V πh+1(sh+1)

]
,

where Esh+1
denotes the expectation with respect to sh+1 ∼ P(·

∣∣ sh,do(ah)). Here
E[rh

∣∣ sh,do(ah)] and P(·
∣∣ sh,do(ah)) are characterized in Proposition 3.2. In the sequel, we define

the following transition operator and counterfactual reward function,
(PhV )(sh, ah) = Esh+1∼P(· | sh,do(ah))

[
V (sh+1)

]
, ∀V : S 7→ R, (sh, ah) ∈ S ×A, (3.1)

Rh(sh, ah) = E
[
rh
∣∣ sh,do(ah)

]
, ∀(sh, ah) ∈ S ×A. (3.2)

We have the following Bellman equation,
Qπh(sh, ah) = Rh(sh, ah) + (PhV πh+1)(sh, ah), ∀h ∈ [H], (sh, ah) ∈ S ×A. (3.3)

Correspondingly, the Bellman optimality equation takes the following form,
Q∗h(sh, ah) = Rh(sh, ah) + (PhV ∗h+1)(sh, ah), V ∗h (sh) = max

ah∈A
Q∗h(sh, ah), (3.4)

which holds for all h ∈ [H] and (sh, ah) ∈ S × A. Such a Bellman optimality equation allows us
to adapt the least-squares value iteration (LSVI) algorithm [2, 5, 14, 16, 31].

Linear Function Approximation. We focus on the following setting with linear transition kernels
and reward functions [7, 16, 42, 43], which corresponds to a linear SCM [33].
Assumption 3.3 (Linear Confounded MDP). We assume that
Ph(sh+1 | sh, ah, uh) = 〈φh(sh, ah, uh), µh(sh+1)〉, ∀h ∈ [H], (sh+1, sh, ah) ∈ S × S ×A,

where φh(·, ·, ·) and µh(·) = (µ1,h(·), . . . , µd,h(·))> are Rd-valued functions. We assume that∑d
i=1 ‖µi,h‖21 ≤ d and ‖φh(sh, ah, uh)‖2 ≤ 1 for all h ∈ [H] and (sh, ah, uh) ∈ S × A × U .

Meanwhile, we assume that
E[rh | sh, ah, uh] = φh(sh, ah, uh)>θh, ∀h ∈ [H], (sh, ah, uh) ∈ S ×A× U , (3.5)

where θh ∈ Rd and ‖θh‖2 ≤
√
d for all h ∈ [H].
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Such a linear setting generalizes the tabular setting where S , A, and U are finite.
Proposition 3.4. We define the backdoor-adjusted feature as follows,

ψh(sh, ah) = Euh∼P̃h(· | sh)

[
φh(sh, ah, uh)

]
, ∀h ∈ [H], (sh, ah) ∈ S ×A. (3.6)

Under Assumption 3.1, it holds that

P(sh+1 | sh,do(ah)) = 〈ψh(sh, ah), µh(sh+1)〉, ∀h ∈ [H], (sh+1, sh, ah) ∈ S × S ×A.
Moreover, the action-value functions Qπh and Q∗h are linear in the backdoor-adjusted feature ψh for
all π.

Proof. See §F.1 for a detailed proof.

Such an observation allows us to estimate the action-value function based on the backdoor-adjusted
features {ψh}h∈[H] in the online setting. See §D for a detailed discussion. In the sequel, we assume
that either the density of {P̃h(· | sh)}h∈[H] is known or the backdoor-adjusted feature {ψh}h∈[H] is
known.

In the sequel, we introduce the DOVI algorithm (Algorithm 1). Each iteration of DOVI consists of
two components, namely point estimation, where we estimateQ∗h based on the confounded observa-
tional data and the interventional data, and uncertainty quantification, where we construct the upper
confidence bound (UCB) of the point estimator.

Algorithm 1 Deconfounded Optimistic Value Iteration (DOVI) for Confounded MDP

Require: Observational data {(sih, aih, uih, rih)}i∈[n],h∈[H], tuning parameters λ, β > 0, backdoor-
adjusted feature {ψh}h∈[H], which is defined in (3.6).

1: Initialization: Set {Q0
h, V

0
h }h∈[H] as zero functions and V kH+1 as a zero function for k ∈ [K].

2: for k = 1, . . . ,K do
3: for h = H, . . . , 1 do
4: Set ωkh ← argminω∈Rd

∑k−1
τ=1(rτh + V τh+1(sτh+1) − ω>ψh(sτh, a

τ
h))2 + λ‖ω‖22 + Lkh(ω),

where Lkh is defined in (3.8).
5: Set Qkh(·, ·)← min{ψh(·, ·)>ωkh + Γkh(·, ·), H − h}, where Γkh is defined in (3.12).
6: Set πkh(· | sh)← argmaxah∈AQ

k
h(sh, ah) for all sh ∈ S.

7: Set V kh (·)← 〈πkh(· | ·), Qkh(·, ·)〉A.
8: end for
9: Obtain sk1 from the environment.

10: for h = 1, . . . ,H do
11: Take akh ∼ πkh(· | skh). Obtain rkh = rh(skh, a

k
h, u

k
h) and skh+1.

12: end for
13: end for

Point Estimation. To solve the Bellman optimality equation in (3.4), we minimize the empirical
mean-squared Bellman error as follows at each step,

ωkh ← argmin
ω∈Rd

k−1∑
τ=1

(
rτh + V τh+1(sτh+1)− ω>ψh(sτh, a

τ
h)
)2

+ λ‖ω‖22 + Lkh(ω), h = H, . . . , 1,

(3.7)

where we set V kH+1 = 0 for all k ∈ [K] and V τh+1 is defined in Line 7 of Algorithm 1 for all
(τ, h) ∈ [K] × [H − 1]. Here k is the index of episode, λ > 0 is a tuning parameter, and Lkh is a
regularizer, which is constructed based on the confounded observational data. More specifically, we
define

Lkh(ω) =

n∑
i=1

(
rih + V kh+1(sih+1)− ω>φh(sih, a

i
h, u

i
h)
)2
, ∀(k, h) ∈ [K]× [H], (3.8)

which corresponds to the least-squares loss for regressing rih + V kh+1(sih+1) against φh(sih, a
i
h, u

i
h)

for all i ∈ [n]. Here {(sih, aih, uih, rih)}(i,h)∈[n]×[H] are the confounded observational data, where
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uih ∼ P̃h(· | sih), sih+1 ∼ Ph(· | sih, aih, uih), and aih ∼ νh(· | sih, wih) with ν = {νh}h∈[H] being the
behavior policy. Here recall that, with a slight abuse of notation, we write P(sh+1 | sh, ah, uh) as
Ph(sh+1 | sh, ah, uh) and P(uh | sh) as P̃h(uh | sh), since they are induced by the SCM defined in
§2.

The update in (3.7) takes the following explicit form,

ωkh ← (Λkh)−1

( k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
V kh+1(sτh+1) + rτh

)
+

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V kh+1(sih+1) + rih

))
, (3.9)

where

Λkh =

k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)> +

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)> + λI. (3.10)

Uncertainty Quantification. We now construct the UCB Γkh(·, ·) of the point estimator ψh(·, ·)>ωkh
obtained from (3.9), which encourages the exploration of the less visited state-action pairs. To this
end, we employ the following notion of information gain to motivate the UCB,

Γkh(skh, a
k
h) ∝ H(ωkh | ξk−1)−H

(
ωkh | ξk−1 ∪ {(skh, akh)}

)
, (3.11)

where H(ωkh | ξk−1) is the differential entropy of the random variable ωkh given the data ξk−1. In
particular, ξk−1 = {(sτh, aτh, rτh)}(τ,h)∈[k−1]×[H] ∪ {(sih, aih, uih, rih)}(i,h)∈[n]×[H] consists of the
confounded observational data and the interventional data up to the (k − 1)-th episode. However, it
is challenging to characterize the distribution of ωkh. To this end, we consider a Bayesian counterpart
of the confounded MDP, where the prior of ωkh is N(0, I/λ) and the residual of the regression
problem in (3.7) is N(0, 1). In such a “parallel” confounded MDP, the posterior of ωkh follows
N(µk,h, (Λ

k
h)−1), where Λkh is defined in (3.10) and µk,h coincides with the right-hand side of

(3.9). Moreover, it holds for all (skh, a
k
h) ∈ S ×A that

H(ωkh | ξk−1) = 1/2 · log det
(
(2πe)d · (Λkh)−1

)
,

H
(
ωkh
∣∣ ξk−1 ∪ {(skh, akh)}

)
= 1/2 · log det

(
(2πe)d ·

(
Λkh + ψh(skh, a

k
h)ψh(skh, a

k
h)>
)−1
)
.

Correspondingly, we employ the following UCB, which instantiates (3.11), that is,

Γkh(skh, a
k
h) = β ·

(
log det

(
Λkh + ψh(skh, a

k
h)ψh(skh, a

k
h)>
)
− log det(Λkh)

)1/2

(3.12)

for all (skh, a
k
h) ∈ S × A. Here β > 0 is a tuning parameter. We highlight that, although the

information gain in (3.11) relies on the “parallel” confounded MDP, the UCB in (3.12), which is used
in Line 5 of Algorithm 1, does not rely on the Bayesian perspective. Also, our analysis establishes
the frequentist regret.

Regularization with Observational Data: A Bayesian Perspective. In the “parallel” confounded
MDP, it holds that

ωkh ∼ N(0, I/λ), ωkh | ξ0 ∼ N
(
µ1,h, (Λ

1
h)−1

)
, ωkh | ξk−1 ∼ N

(
µk,h, (Λ

k
h)−1

)
,

where µk,h coincides with the right-hand side of (3.9) and µ1,h is defined by setting k = 1 in
µk,h. Here ξ0 = {(sih, aih, uih, rih)}(i,h)∈[n]×[H] are the confounded observational data. Hence, the
regularizer Lkh in (3.8) corresponds to using ωkh | ξ0 as the prior for the Bayesian regression problem
given only the interventional data ξk−1 \ ξ0 = {(sτh, aτh, rτh)}(τ,h)∈[k−1]×[H].

3.2 Theory

The following theorem characterizes the regret of DOVI, which is defined in (2.3).
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Theorem 3.5 (Regret of DOVI). Let β = CdH
√

log(d(T + nH)/ζ) and λ = 1, where C > 0 and
ζ ∈ (0, 1] are absolute constants. Under Assumptions 3.1 and 3.3, it holds with probability at least
1− 5ζ/2 that

Regret(T ) ≤ C ′ ·∆H ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
, (3.13)

where C ′ > 0 is an absolute constant and

∆H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

h )− log det(Λ1
h)
)1/2

. (3.14)

Proof. See §F.3 for a detailed proof.

Note that ΛK+1
h � (n + K + λ)I and Λ1

h � λI for all h ∈ [H]. Hence, it holds that ∆H =

O(
√

log(n+K + 1)) in the worst case. Thus, the regret of DOVI isO(
√
d3H3T ) up to logarithmic

factors, which is optimal in the total number of steps T if we only consider the online setting.
However, ∆H is possibly much smaller than O(

√
log(n+K + 1)), depending on the amount of

information carried over by the confounded observational data from the offline setting, which is
quantified in the following.

Interpretation of ∆H : An Information-Theoretic Perspective. Let ω∗h be the parameter of the
globally optimal action-value function Q∗h, which corresponds to π∗ in (2.3). Recall that we de-
note by ξ0 and ξK the confounded observational data {(sih, aih, uih, rih)}(i,h)∈[n]×[H] and the union
{(sih, aih, uih, rih)}(i,h)∈[n]×[H] ∪ {(skh, akh, rkh)}(k,h)∈[K]×[H] of the confounded observational data
and the interventional data up to the K-th episode, respectively. We consider the aforementioned
Bayesian counterpart of the confounded MDP, where the prior of ω∗h is also N(0, I/λ). In such a
“parallel” confounded MDP, we have

ω∗h ∼ N(0, I/λ), ω∗h | ξ0 ∼ N
(
µ∗1,h, (Λ

1
h)−1

)
, ω∗h | ξK ∼ N

(
µ∗K,h, (Λ

K+1
h )−1

)
, (3.15)

where

µ∗1,h = (Λ1
h)−1

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V ∗h+1(sih+1) + rih

)
,

µ∗K,h = (ΛK+1
h )−1

(
Λ1
hµ
∗
1,h +

K∑
τ=1

ψh(sτh, a
τ
h) ·

(
V ∗h+1(sτh+1) + rτh

))
.

It then holds for the right-hand side of (3.14) that

1/2 · log det(ΛK+1
h )− 1/2 · log det(Λ1

h) = H(ω∗h | ξ0)−H(ω∗h | ξK). (3.16)

The left-hand side of (3.16) characterizes the information gain of intervention in the online setting
given the confounded observational data in the offline setting. In other words, if the confounded
observational data are sufficiently informative upon the backdoor adjustment, then ∆H is small,
which implies that the regret is small. More specifically, the matrices (Λ1

h)−1 and (ΛK+1
h )−1 de-

fined in (3.10) characterize the ellipsoidal confidence sets given ξ0 and ξK , respectively. If the
confounded observational data are sufficiently informative upon the backdoor adjustment, ΛK+1

h

is close to Λ1
h. To illustrate, let {ψh(sτh, a

τ
h)}(τ,h)∈[K]×[H] and {φh(sih, a

i
h, u

i
h)}(i,h)∈[n]×[H]

be sampled uniformly at random from the canonical basis {e`}`∈[d] of Rd. It then holds that
ΛK+1
h ≈ (K + n)I/d + λI and Λ1

h ≈ nI/d + λI . Hence, for λ = 1 and sufficiently large n and
K, we have ∆H = O(

√
log(1 +K/(n+ d))) = O(

√
K/(n+ d)). For example, for n = Ω(K2),

it holds that ∆H = O(n−1/2), which implies that the regret of DOVI is O(n−1/2 ·
√
d3H3T ). In

other words, if the confounded observational data are sufficiently informative upon the backdoor
adjustment, the regret of DOVI can be arbitrarily small given a sufficiently large sample size n of
the confounded observational data, which is often the case in practice [8, 9, 21, 22, 29].
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4 Conclusion

In this paper, we propose the deconfounded optimistic value iteration (DOVI) algorithm and its
variant DOVI+, which incorporate the confounded observational data to the online reinforcement
learning in a provably efficient manner. DOVI and DOVI+ explicitly adjust for the confounding bias
in the observational data via the backdoor and frontdoor adjustments, respectively. In both cases,
such adjustments allow us to construct the bonus based on a notion of information gain, which
considers the amount of information acquired from the offline dataset. We further conduct regret
analysis of DOVI and DOVI+. Our analysis suggests that practitioners can tackle the confounding
issue in the offline dataset by estimating the counterfactual reward for value function estimations,
given that a proper adjustment such as the backdoor or frontdoor adjustment is available. In the
case of backdoor and frontdoor adjustment, we prove that the regret of DOVI is smaller than the
optimal regret achievable in the pure online setting when the confounded observational data are
informative upon the adjustments, suggesting that one can exploit the confounded observational data
in reinforcement learning upon proper adjustments. In our future study, we wish to incorporate proxy
variables that are native to MDPs for the adjustments of the offline dataset, such as the variables
exploited by [4, 24, 40].
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A Algorithm and Theory for Unobserved Confounder

In this section, we extend DOVI to handle the case where the confounders are unobserved in both the
online setting and the offline setting. We then characterize the regret of such an extension of DOVI,
namely DOVI+. In comparison with DOVI, DOVI+ additionally incorporates an intermediate state
at each step, which extends the length of each episode from H to 2H .

A.1 Algorithm

Frontdoor Adjustment. Since the confounders {wh}h∈[H] are unobserved in the offline setting,
the confounded observational data {(sih, aih, rih)}(i,h)∈[n]×[H] are insufficient for the identification
of the causal effect P(sh+1 | sh,do(ah)) [32, 33]. However, such a causal effect is identifiable if we
observe the intermediate states {mh}h∈[H] that satisfy the following frontdoor criterion.

Assumption A.1 (Frontdoor Criterion [32, 33]). In the SCM defined in §2, for all h ∈ [H], there
additionally exists an observed intermediate state mh that satisfies the frontdoor criterion, that is,

• mh intercepts every directed path from ah to sh+1,

• conditioning on sh, no path between ah and mh has an incoming arrow into ah, and

• conditioning on sh, ah d-separates every path between mh and sh+1 that has an incoming
arrow into mh.

sh ah

wh

sh+1mh

(a) Offline Setting

sh ah

wh

sh+1mh

(b) Online Setting

Figure 3: Causal diagrams of the h-th step of the confounded MDP with the intermediate state (a) in the offline
setting and (b) in the online setting, respectively.

ah sh+1

w1,h

w2,h

w3,h

mh

Figure 4: An illustration of the frontdoor criterion. The causal diagram corresponds to the h-th step of the
confounded MDP conditioning on sh. Here wh = {w1,h, w2,h, w3,h} is the confounder and the intermediate
state mh satisfies the frontdoor criterion.

See Figure 3 for the causal diagram that describes such an SCM and Figure 4 for an example that
satisfies the frontdoor criterion. Intuitively, Assumption A.1 ensures that, conditioning on sh, (i)
the intermediate state mh is caused by the action ah and the causal effect of the action ah on the
next state sh+1 is summarized by mh, while (ii) the action ah and the intermediate state mh are
not confounded. In the sequel, we denote byM the space of intermediate states and P̆h(· | ·, ·) the
transition kernel that determines mh given sh and ah. The causal effect P(sh+1 | sh,do(ah)) is
identified as follows.
Proposition A.2 (Frontdoor Adjustment [32]). Under Assumption A.1, it holds that

P
(
sh+1

∣∣ sh,do(ah)
)

= Emh,a′h
[
P(sh+1 | sh, a′h,mh)

]
,
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where the expectation Emh,a′h is taken with respect to mh ∼ P̆h(· | sh, ah) and a′h ∼
Ewh∼P̃h(· | sh)[νh(· | sh, wh)]. Here (sh+1, sh, ah,mh) follows the SCM define in §2 with the in-
termediate states {mh}h∈[H] in the offline setting.

Frontdoor-Adjusted Bellman Equation. In the sequel, we assume without loss of generality that
the reward rh is deterministic and only depends on the state sh and the action ah. In parallel to (3.3),
we have

Qπh(sh, ah) = rh(sh, ah) + Esh+1

[
V πh+1(sh+1)

]
, (A.1)

where the expectation Esh+1
is taken with respect to sh+1 ∼ P(· | sh,do(ah)). We define the the

following transition operators,

(Ph+1/2V )(sh,mh) = Esh+1∼P(· | sh,do(mh))

[
V (sh+1)

]
, ∀V : S 7→ R, (sh,mh) ∈ S ×M,

(PhṼ )(sh, ah) = Emh∼P(· | sh,do(ah))

[
Ṽ (sh,mh)

]
, ∀Ṽ : S ×M 7→ R, (sh, ah) ∈ S ×A.

We highlight that, under Assumption A.1, the causal effect P(mh | sh,do(ah)) coincides with the
conditional probability P(mh | sh, ah), since ah and mh are not confounded given sh. In the sequel,
we define the value function at the intermediate state by V πh+1/2(sh,mh) = (Ph+1/2V

π
h+1)(sh,mh).

We have the following Bellman equation,

Qπh(sh, ah) = rh(sh, ah) +
(
Ph(Ph+1/2V

π
h+1)

)
(sh, ah)

= rh(sh, ah) + (PhV πh+1/2)(sh, ah). (A.2)

Correspondingly, the Bellman optimality equation takes the following form,

Q∗h(sh, ah) = rh(sh, ah) + (PhV ∗h+1/2)(sh, ah),

V ∗h+1/2(sh,mh) = (Ph+1/2V
∗
h+1)(sh,mh), V ∗h (sh) = max

ah∈A
Q∗h(sh, ah). (A.3)

Linear Function Approximation. In parallel to Assumption 3.3, we focus on the following setting
with linear transition kernels and reward functions [7, 16, 42, 43], which corresponds to a linear
SCM [33].

Assumption A.3 (Linear Confounded MDP). We assume that

Ph(sh+1 | sh,mh, wh) = 〈ρh(sh,mh, wh), µh(sh+1)〉, ∀h ∈ [H], (sh,mh, wh) ∈ S ×M×W,

P̆h(mh | sh, ah) = 〈γh(sh, ah), µh(mh)〉, ∀h ∈ [H], (mh, sh, ah) ∈M× S ×A.

where ρh(·, ·, ·), γh(·, ·), µh(·) = (µ1,h(·), . . . , µd,h(·))>, and µh(·) = (µ1,h(·), . . . , µd,h(·))> are
Rd-valued functions. We assume that ‖ρh(sh,mh, wh)‖2 ≤ 1, ‖γh(sh, ah)‖2 ≤ 1,

∑d
i=1 ‖µi,h‖21 ≤

d, and
∑d
i=1 ‖µi,h‖21 ≤ d for all h ∈ [H] and (sh, ah,mh, wh) ∈ S × A ×M×W . Meanwhile,

we assume that

rh(sh, ah) = γh(sh, ah)>θh, ∀(h, k) ∈ [H]× [K],

where θh ∈ Rd and ‖θh‖2 ≤
√
d for all h ∈ [H].

Proposition A.4. We define ν̃h(ah | sh) = Ewh∼P̃h(· | sh)[νh(ah | sh, wh)], where ν = {νh}h∈[H]

is the behavior policy. With a slight abuse of notation, we define the frontdoor-adjusted feature as
follows,

φh(sh, ah,mh) =
Ewh∼P̃h(· | sh)

[
ρh(sh,mh, wh) · νh(ah | sh, wh)

]
ν̃h(ah | sh)

, ∀h ∈ [H]. (A.4)

Under Assumption A.3, it holds that

P(sh+1 | sh, ah,mh) = 〈φh(sh, ah,mh), µh(sh+1)〉. (A.5)

Proof. See §F.2 for a detailed proof.
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Algorithm 2 DOVI+ for Confounded MDP.

Require: Observational data {(sih, aih,mi
h, r

i
h)}i∈[n],h∈[H], tuning parameters λ, β > 0, features

{φh}h∈[H] and {ψh}h∈[H], which are defined in (A.4) and (A.6), respectively.
1: Initialization: Set {Q0

h, V
0
h+1/2, V

0
h }h∈[H] as zero functions and V kH+1 as a zero function for

k ∈ [K].
2: for k = 1, . . . ,K do
3: for h = H, . . . , 1 do
4: Update V kh+1/2:
5: Set ωk1,h ← argminω∈Rd

∑k−1
τ=1(V τh+1(sτh+1) − ω>ψh(sτh,m

τ
h))2 + λ‖ω‖22 + Lk1,h(ω),

where Lk1,h is defined in (A.9).
6: Set V kh+1/2(sh,mh) ← min{ψh(sh,mh)>ωk1,h + Γkh+1/2(sh,mh), H − h} for all

(sh,mh) ∈ S ×M, where Γkh+1/2 is defined in (A.12).
7: Update Qkh:
8: Set ωk2,h ← argminω∈Rd

∑k−1
τ=1(rkh + V kh+1/2(sτh,m

τ
h) − ω>γh(sτh, a

τ
h))2 + λ‖ω‖22 +

Lk2,h(ω), where Lk2,h is defined in (A.14).
9: Set Qkh(sh, ah)← min{γh(sh, ah)>ωk2,h + Γkh(sh, ah), H − h} for all (sh, ah) ∈ S ×A,

where Γkh is defined in (A.15).
10: Update πkh and V kh :
11: Set πkh(· | sh)← argmaxah∈AQ

k
h(sh, ah) for all sh ∈ S.

12: Set V kh (·)← 〈πkh(· | ·), Qkh(·, ·)〉A.
13: end for
14: Obtain sk1 from the environment.
15: for h = 1, . . . ,H do
16: Take akh ∼ πkh(· | skh). Obtain rkh = rh(skh, a

k
h), mk

h, and skh+1.
17: end for
18: end for

DOVI+: Update of V kh+1/2. With a slight abuse of notation, we define the following feature,

ψh(sh,mh) = Ewh∼P̃h(· | sh)

[
ρh(sh,mh, wh)

]
. (A.6)

Conditioning on the state sh, the confounder wh satisfies the backdoor criterion for identifying the
causal effect P(sh+1 | sh,do(mh)), although it is unobserved. In the sequel, we assume that either
the density of {P̃h(· | sh)}h∈[H] is known to us or the features {φh}h∈[H] and {ψh}h∈[H] are known
to us. Following from (A.6), Proposition 3.2, and Assumption A.3, it holds for all h ∈ [H] and
(sh+1, sh,mh) ∈ S × S ×M that

P
(
sh+1

∣∣ sh,do(mh)
)

= 〈ψh(sh,mh), µh(sh+1)〉. (A.7)

Hence, by the Bellman equation and the Bellman optimality equation in (A.2) and (A.3), respec-
tively, the value functions at the intermediate state V πh+1/2 and V ∗h+1/2 are linear in the feature ψh
for all π. To solve for V ∗h+1/2 in the Bellman optimality equation in (A.3), we minimize the follow-
ing empirical mean-squared Bellman error as follows at each step,

ωk1,h ← argmin
ω∈Rd

k−1∑
τ=1

(
V τh+1(sτh+1)− ω>ψh(sτh,m

τ
h)
)2

+ λ‖ω‖22 + Lk1,h(ω), h = H, . . . , 1,

(A.8)

where we set V kH+1 = 0 for all k ∈ [K] and V τh+1 is defined in Line 12 of Algorithm 2 for all
(τ, h) ∈ [K] × [H − 1]. Here k is the index of episode, λ > 0 is a tuning parameter, and Lk1,h is a
regularizer, which is constructed based on the confounded observational data. More specifically, we
define

Lk1,h(ω) =

n∑
i=1

(
V τh+1(sih+1)− ω>φh(sih, a

i
h,m

i
h)
)2
, ∀(k, h) ∈ [K]× [H], (A.9)
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which corresponds to the least-squares loss for regressing V τh+1(sih+1) against φh(sih, a
i
h,m

i
h) for

all i ∈ [n]. Here {(sih, aih,mi
h, r

i
h)}(i,h)∈[n]×[H] are the confounded observational data, where

sih+1 ∼ Ph(· | sih, aih, wih), mi
h ∼ P̆h(· | sih, aih), and aih ∼ νh(· | sih, wih) with ν = {νh}h∈[H] being

the behavior policy.

The update in (A.8) takes the following explicit form,

ωk1,h ← (Λk1,h)−1

( k−1∑
τ=1

ψh(sτh,m
τ
h) · V kh+1(sτh+1) +

n∑
i=1

φh(sih, a
i
h,m

i
h) · V kh+1(sih+1)

)
, (A.10)

where

Λk1,h =

k−1∑
τ=1

ψh(sτh,m
τ
h)ψh(sτh,m

τ
h)> +

n∑
i=1

φh(sih, a
i
h,m

i
h)φh(sih, a

i
h,m

i
h)> + λI. (A.11)

Meanwhile, we employ the following UCB of ψh(skh,m
k
h)>ωk1,h for all (skh,m

k
h) ∈ S ×M,

Γkh+1/2(skh,m
k
h) = β ·

(
log det

(
Λk1,h + ψh(skh,m

k
h)ψh(skh,m

k
h)>
)
− log det(Λk1,h)

)1/2

. (A.12)

The update of V kh+1/2 is defined in Line 6 of Algorithm 2.

DOVI+: Update of Qkh. Upon obtaining V kh+1/2, we solve for Qkh by minimizing the following
empirical mean-squared Bellman error as follows at each step,

ωk2,h ← argmin
ω∈Rd

k−1∑
τ=1

(
rkh + V kh+1/2(sτh,m

τ
h)− ω>γh(sτh, a

τ
h)
)2

+ λ‖ω‖22 + Lk2,h(ω), h = H, . . . , 1. (A.13)

Here Lk2,h is a regularizer, which is defined as follows,

Lk2,h(ω) =

n∑
i=1

(
rih + V kh+1/2(sih,m

i
h)− ω>γh(sih, a

i
h)
)2
, ∀(k, h) ∈ [K]× [H]. (A.14)

The update in (A.13) takes the following explicit form,

ωk2,h ← (Λk2,h)−1

( k−1∑
τ=1

γh(sτh, a
τ
h) ·

(
V kh+1/2(sτh,m

τ
h) + rτh

)
+

n∑
i=1

γh(sih, a
i
h) ·

(
V kh+1/2(sih,m

i
h) + rih

))
,

where

Λk2,h =

k−1∑
τ=1

γh(sτh, a
τ
h)γh(sτh, a

τ
h)> +

n∑
i=1

γh(sih, a
i
h)γh(sih, a

i
h)> + λI.

We employ the following UCB of γh(skh, a
k
h)>ωk2,h for all (skh, a

k
h) ∈ S ×A,

Γkh(skh, a
k
h) = β ·

(
log det

(
Λk2,h + γh(skh, a

k
h)γh(skh, a

k
h)>
)
− log det(Λk2,h)

)1/2

. (A.15)

The update of Qkh is defined in Line 9 of Algorithm 2.

A.2 Theory

In parallel to Theorem 3.5, the following theorem characterizes the regret of DOVI+, which is defined
in (2.3)

Theorem A.5 (Regret of DOVI+). Let β = CdH
√

log(d(T + nH)/ζ) and λ = 1, where C > 0
and ζ ∈ (0, 1] are absolute constants. Under Assumptions A.1 and A.3, it holds with probability at
least 1− 5ζ that

Regret(T ) ≤ C ′ · (∆1,H + ∆2,H) ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
,
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where C ′ > 0 is an absolute constant and

∆1,H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

1,h )− log det(Λ1
1,h)
)1/2

,

∆2,H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

2,h )− log det(Λ1
2,h)
)1/2

.

Proof. See §F.4 for a detailed proof.

See the discussion of Theorem 3.5 in §3, where ∆H corresponds to ∆1,H and ∆2,H in Theorem
A.5. In particular, ∆1,H and ∆2,H admit the same information-theoretic interpretation.

B Literature Review on Causal Bandit

In this section, we present literature review on causal bandit that are closely related to our work.
[26] propose the causal upper confidence bound (C-UCB) and causal Thompson Sampling (C-TS)
algorithms, which attain the

√
T -regret. [34] propose an algorithm based on importance sampling

in policy evaluation. In the pure offline setting, [17, 18] propose algorithms for contextual bandit
with confounders in the observational data. Their algorithms are based on the analysis of sensitivity
[3, 27, 38, 44], which characterizes the worst-case difference between the causal effect and the
conditional density obtained from the confounded observational data. In a combination of the online
setting and the offline setting, [11] study multi-armed bandit with both the interventional data and the
confounded observational data. In contrast to this line of work, we study causal RL in a combination
of the online setting and the offline setting. Causal RL is more challenging than causal bandit, which
corresponds to H = 1, as it involves the transition dynamics and is more challenging in exploration.

C Connection Between Confounded MDP and Other Extensions of MDP

In what follows, we discuss the connection between confounded MDP and other extensions of MDP
and SCM.

• Dynamic Treatment Regimes (DTR). In a DTR [45], all the states {sh}h∈[H] are con-
founded by a global confounder w, whereas in a confounded MDP, each state sh depends
on an individual confounder wh−1, which further depends on the previous state sh−1. If
wh−1 does not depend on sh−1, the confounded MDP reduces to a DTR by summarizing
the confounders into w = (w1, . . . , wH). In addition, we remark that our proposed DOVI
and DOVI+ can handle global confounders as long as the backdoor and frontdoor criterion
holds, respectively.

• Contextual MDP (CMDP). A confounded MDP is similar to a CMDP [12] if we cast the
confounders {wh}h∈[H] as the context therein. In a CMDP, which focuses on the online
setting, the context is fixed throughout an episode, whereas in a confounded MDP, the
confounders {wh}h∈[H] vary across the H steps. Moreover, in a CMDP, the goal is to
minimize the regret against the globally optimal policy that depends on the context, which
is a stronger benchmark than π∗ in (2.3), since π∗ does not depend on the confounders
{wh}h∈[H].

• Partially Observable MDP (POMDP). A confounded MDP is a simplified POMDP [39]
if we cast the confounders {wh}h∈[H] as the hidden states therein (assuming that the con-
founders are unobserved in the offline setting as in §A). A POMDP is more challenging to
solve, since marginalizing over the hidden states does not yield an MDP, which is the case
in a confounded MDP.

D Mechanism of Utilizing Confounded Observational Data

In this section, we discuss the mechanism of incorporating the confounded observational data.
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D.1 Partially Observed Confounder

Corresponding to Line 4 of Algorithm 1, DOVI effectively estimates the causal effect
P(· | sh,do(ah)) using

ψh(sh, ah)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) · δsτh+1

(·) +

n∑
i=1

φh(sih, a
i
h, u

i
h) · δsih+1

(·)
)
, (D.1)

where we denote by δs(·) the Dirac measure at s. To see why it works, let the tuning parameter λ be
sufficiently small. By the definition of Λkh in (3.10), we have

P
(
·
∣∣ sh,do(ah)

)
= 〈ψh(sh, ah), µh(·)〉

≈ ψh(sh, ah)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) · 〈ψh(sτh, a

τ
h), µh(·)〉

+

n∑
i=1

φh(sih, a
i
h, u

i
h) · 〈φh(sih, a

i
h, u

i
h), µh(·)〉

)
. (D.2)

Meanwhile, Assumption 3.3 and Proposition 3.4 imply

P
(
·
∣∣ sh,do(ah)

)
= 〈ψh(sh, ah), µh(·)〉,

Ph(· | sh, ah, uh) = 〈φh(sh, ah, uh), µh(·)〉,

which rely on the backdoor adjustment. Since sτh+1 and sih+1 in (D.1) are sampled following
P(· | sτh,do(aτh)) andPh(· | sih, aih, uih), respectively, (D.1) approximates the right-hand side of (D.2)
as its empirical version. As k, n → +∞, (D.1) converges to the right-hand side of (D.2) as well as
the causal effect P(· | sh,do(ah)).

D.2 Unobserved Confounder

If the confounders {wh}h∈[H] are unobserved in the offline setting, the backdoor adjustment in §3
is not applicable. Alternatively, the intermediate states {mh}h∈[H] allow us to estimate the causal
effect without observing the confounders. The key is that the frontdoor criterion in Assumption A.1
implies

P
(
sh+1

∣∣ sh,do(ah)
)

=

∫
M

P
(
sh+1

∣∣ sh,do(mh)
)
· P
(
mh

∣∣ sh,do(ah)
)
dmh. (D.3)

It remains to estimate P(sh+1 | sh,do(mh)) and P(mh | sh,do(ah)) on the right-hand side of (D.3).
Since ah and mh are not confounded given sh, the causal effect P(mh | sh,do(ah)) coincides with
the conditional distribution P(mh | sh, ah), which can be estimated based on the observational data.
To estimate the causal effect P(sh+1 | sh,do(mh)), we utilize the backdoor adjustment in Proposi-
tion 3.2 with uh replaced by ah, which is enabled by Assumption A.1. More specifically, it holds
that

P
(
sh+1

∣∣ sh,do(mh)
)

= Ea′h∼P(· | sh)

[
Ph(sh+1

∣∣ sh, a′h,mh)
]
. (D.4)

Correspondingly, we construct the value function at the intermediate state Vh+1/2 and adapt the
value iteration following the Bellman optimality equation in (A.3). To estimate the value functions
{V kh+1/2}h∈[H] based on the confounded observational data, we utilize the adjustment in (D.4). Cor-
responding to Line 5 of Algorithm 2, DOVI+ effectively estimates the causal effect P(· | sh,do(mh))
using

ψh(sh,mh)>(Λk1,h)−1

(k−1∑
τ=1

ψh(sτh,m
τ
h) · δsτh+1

(·) +

n∑
i=1

φh(sih, a
i
h,m

i
h) · δsih+1

(·)
)
, (D.5)
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To see why it works, let the tuning parameter λ be sufficiently small. By the definition of Λk1,h in
(A.11), we have

P
(
·
∣∣ sh,do(mh)

)
= 〈ψh(sh,mh), µh(·)〉

≈ ψh(sh,mh)>(Λk1,h)−1

(k−1∑
τ=1

ψh(sτh,m
τ
h) · 〈ψh(sτh,m

τ
h), µh(·)〉

+

n∑
i=1

φh(sih, a
i
h,m

i
h) · 〈φh(sih, a

i
h,m

i
h), µh(·)〉

)
. (D.6)

Meanwhile, Assumption A.3 and Proposition A.4 imply

P
(
·
∣∣ sh,do(mh)

)
= 〈ψh(sh,mh), µh(·)〉,

P(· | sh, ah,mh) = 〈φh(sh, ah,mh), µh(·)〉.

Since sτh+1 and sih+1 in (D.6) are sampled following P(· | sτh,do(mτ
h)) and P(· | sih, aih,mi

h), re-
spectively, (D.5) approximates the right-hand side of (D.6) as its empirical version. As k, n→ +∞,
(D.5) converges to the right-hand side of (D.6) as well as the causal effect P(· | sh,do(mh)).

E Limitation and Future Study

In this paper, we propose confounded MDP, which captures the data generating processes in both
the offline setting and the online setting as well as their mismatch due to the confounding issue. We
propose DOVI and DOVI+, which handles the confounding issue if backdoor or frontdoor criteria
hold, respectively. Nevertheless, our work requires knowing the linear features in the transition dy-
namics. Moreover, our work requires taking expectations over the feature embeddings with respect
to the variable for adjustment. In reality, such feature and expectation are in general unavailable. It
remains unknown if efficient reinforcement learning is possible without knowning the features a pri-
ori, which we left as our future study. Moreover, our study is restricted to two types of adjustment,
namely, the backdoor and frontdoor adjustment, respectively. The design of DOVI and DOVI+ is
tightly related to the estimation equation corresponding to the backdoor and frontdoor adjustments,
respectively, which estimates the counterfactual effect of actions on the cumulative rewards. In our
future study, we also want to generalize our work for general adjustment with estimation equations
given.

F Proof of Main Result

F.1 Proof of Proposition 3.4

Proof. Following from Assumption 3.3 and Proposition 3.2, it holds for all (sh, ah) ∈ S ×A that

P
(
sh+1 | sh,do(ah)

)
= Euh∼P̃h(· | sh)

[
Ph(· | sh, ah, uh)

]
= Euh∼P̃h(· | sh)

[
〈φh(sh, ah, uh), µh(sh+1)〉

]
= 〈ψh(sh, ah), µh(sh+1)〉,

where

ψh(sh, ah) = Euh∼P̃h(· | sh)

[
φh(sh, ah, uh)

]
, ∀(sh, aH) ∈ S ×A.

Similarly, following from Assumption 3.3 and Proposition 3.2, it holds for all (sh, ah) ∈ S ×A that

Rh(sh, ah) = E
[
rh
∣∣ sh,do(ah)

]
= Euh∼P̃h(· | sh)

[
φh(sh, ah, uh)>θh

]
= ψh(sh, ah)>θh.

Hence, following from the Bellman equations in (3.3) and (3.4), the action-value functions Qπh
and Q∗h are linear in the backdoor-adjusted feature ψh for all π. Thus, we complete the proof of
Proposition 3.4.
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F.2 Proof of Proposition A.4

Proof. It holds for all h ∈ [H] and (sh+1, sh, ah,mh) ∈ S × S ×A×M that

P(sh+1, sh, ah,mh)

=

∫
W
Ph(sh+1 | sh, au, wh) · νh(ah | sh, wh) · P̃h(wh | sh) · P̆h(mh | sh, ah) · P(sh)dwh.

Meanwhile, it holds for all h ∈ [H] and (sh, ah,mh) ∈ S ×A×M that

P(sh, ah,mh) =

∫
W
νh(ah | sh, wh) · P̃h(wh | sh) · P̆h(mh | sh, ah) · P(sh)dwh.

Hence, we have

P(sh+1 | sh, ah,mh) =
P(sh+1, sh, ah,mh)

P(sh, ah,mh)

=

∫
W Ph(sh+1 | sh, au, wh) · νh(ah | sh, wh) · P̃h(wh | sh)dwh∫

W νh(ah | sh, wh) · P̃h(wh | sh)dwh
. (F.1)

Meanwhile, following from Assumption A.3, we have

Ph(sh+1 | sh, ah, wh) = 〈ρh(sh, ah, wh), µh(sh+1)〉. (F.2)

Recall that we define ν̃h(ah | sh) = Ewh∼P̃h(· | sh)[π(ah | sh, uh)]. Hence, by plugging (F.2) into
(F.1), we obtain that

P(sh+1 | sh, ah,mh) = 〈φh(sh, ah,mh), µh(sh+1)〉,

where we define for all h ∈ [H] and (sh, ah,mh) ∈ S ×A×M that

φh(sh, ah,mh) =

∫
W ρh(sh, au, wh) · νh(ah | sh, wh) · P̃h(wh | sh)dwh∫

W νh(ah | sh, wh) · P̃h(wh | sh)dwh

=
Ewh∼P̃h(· | sh)

[
ρh(sh,mh, wh) · νh(ah | sh, wh)

]
ν̃h(ah | sh)

.

Thus, we complete the proof of Proposition A.4.

F.3 Proof of Theorem 3.5

Proof. We first define for all (k, h) ∈ [K]× [H] the model prediction error ιkh as follows,

ιkh(sh, ah) = −Qkh(sh, ah) +Rh(sh, ah) + (PhV kh+1)(sh, ah), ∀(sh, ah) ∈ S ×A. (F.3)

We define the filtrations associated with Algorithm 1 as follows.
Definition F.1 (Filtration). For all (k, h) ∈ [K]× [H], we define Fk,h,1 the σ-algebra generated by
the following set,

Bk,h,1 =
{

(sih, a
i
h, u

i
h, r

i
h)
}

(i,h)∈[n]×[H]
∪
{

(sτj , a
τ
j , r

τ
j )
}

(τ,j)∈[k−1]×[H]

∪
{

(skj , a
k
j , r

k
j )
}
j∈[h−1]

∪
{

(skh, a
k
h)
}
. (F.4)

Similarly, we define Fk,h,2 the σ-algebra generated by the following set,

Bk,h,2 = Bk,h,1 ∪ {skh+1} ∪ {rkh}. (F.5)

Moreover, we define F0,h,2 the σ-algebra generated by the set {(sih, aih, uih, rih)}(i,h)∈[n]×[H] for all
h ∈ [H]. We define the timestep index as follows,

t(k, h,m) = 2H · k + 2(h− 1) +m. (F.6)

It then holds for t(k, h,m) ≤ t(k′, h′,m′) that Fk,h,m ⊆ Fk′,h′,m′ . Hence, the set of σ-algebra
{Fk,h,m}(k,h,m)∈[K]×[H]×[2] is a filtration with the timestep index t(·, ·, ·) defined in (F.6).
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The following lemma characterizes the model prediction errors defined in (F.3).

Lemma F.2. Let β = CdH
√

log(d(T + nH)/ζ) and ζ ∈ (0, 1]. Under Assumption 3.3, it holds
with probability at least 1− 2ζ that

−2Γkh(sh, ah) ≤ ιkh(sh, ah) ≤ 0, ∀(k, h) ∈ [K]× [H], (sh, ah) ∈ S ×A.

Proof. See §G.1 for a detailed proof.

In the sequel, we define the following operators,

(Jhf)(s) = 〈f(s, ·), π∗h(· | s)〉A, (Jk,hf)(s) = 〈f(s, ·), πkh(· | s)〉A, ∀s ∈ S.

Meanwhile, recall that we define

(PhV )(sh, ah) = Esh+1∼P(· | sh,do(ah))

[
V (sh+1)

]
, ∀(sh, ah) ∈ S ×A.

We define the following martingale adapted to the filtration {Fk,h,m}(k,h,m)∈[K]×[H]×[2],

Mk,h,m =
∑

(τ,i,`)∈[K]×[H]×[2]
t(τ,i,`)≤t(k,h,m)

Dτ,i,`,

where

Dk,h,1 =
(
Jk,h(Qkh −Q

πk,k
h )

)
(skh)− (Qkh −Q

πk,k
h )

)
(skh, a

k
h), ∀(k, h) ∈ [K]× [H],

Dk,h,2 =
(
Ph(V kh+1 − V

πk,k
h+1 )

)
(skh, a

k
h)− (V kh+1 − V

πk,k
h+1 )(skh+1), ∀(k, h) ∈ [K]× [H].

The following lemma is adapted from [7].
Lemma F.3 (Lemma 4.2 of [7]). It holds that

Regret(T ) =

K∑
k=1

V π
∗

1 (xk1)− V πk1 (xk1)

= Y +MK,H,2 +

K∑
k=1

H∑
h=1

(
Eπ∗

[
ιkh(sh, ah)

∣∣ s1 = sk1
]
− ιkh(skh, a

k
h)
)
, (F.7)

where

Y =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)〉

∣∣ s1 = sk1
]
. (F.8)

Proof. See [7] for a detailed proof.

In what follows, we upper bound the right-hand side of (F.7) in Lemma F.3. By Algorithm 1, it holds
that πkh is the greedy policy with respect to the action-value function Qkh. Hence, for Y defined in
(F.8) of Lemma F.3, we have

Y =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)〉

∣∣ s1 = sk1
]
≤ 0. (F.9)

Meanwhile, following from the proof of Theorem 3.1 in [7], it holds with probability at least 1−ζ/2
that

MK,H,2 ≤ C0 ·
√
d3H3T ·

√
log(1/ζ), (F.10)

where C0 > 0 is an absolute constant. In addition, following from Lemma F.2, it holds with
probability at least 1− 2ζ that

K∑
k=1

H∑
h=1

(
Eπ∗

[
ιkh(sh, ah)

∣∣ s1 = sk1
]
− ιkh(skh, a

k
h)
)
≤ 2

K∑
k=1

H∑
h=1

Γkh(skh, a
k
h). (F.11)
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Recall that for all (sh, ah) ∈ S ×A, we define

Γkh(sh, ah) = β ·
(

log det
(
Λkh + ψh(sh, ah)ψh(sh, ah)>

)
− log det(Λkh)

)1/2

. (F.12)

Hence, by the Cauchy-Schwartz inequality, we obtain that
K∑
k=1

H∑
h=1

Γkh(skh, a
k
h) = β

K∑
k=1

H∑
h=1

(
log det

(
Λkh + ψh(skh, a

k
h)ψh(skh, a

k
h)>
)
− log det(Λkh)

)1/2

≤ β
H∑
h=1

(
K

K∑
k=1

(
log det(Λk+1

h )− log det(Λkh)
))1/2

= β
√
K

H∑
h=1

(
log det(ΛK+1

h )− log det(Λ1
h)
)1/2

. (F.13)

In what follows, we define

∆H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

h )− log det(Λ1
h)
)1/2

. (F.14)

Thus, by plugging (F.14) and β = CdH ·
√

log(d(T + nH)/ζ) into (F.13), it holds with probability
at least 1− 2ζ that,

K∑
k=1

H∑
h=1

Γkh(skh, a
k
h) ≤ C ·∆H ·

√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
, (F.15)

where recall that we define T = HK. By further plugging (F.15) into (F.11), it holds with probabil-
ity at least 1− 2ζ that,

K∑
k=1

H∑
h=1

(
Eπ∗

[
ιkh(sh, ah)

∣∣ s1 = sk1
]
− ιkh(skh, a

k
h)
)

≤ 2C ·∆H ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
. (F.16)

Finally, combining Lemma F.3, (F.9), (F.10), and (F.16), it holds with probability at least 1 − 5ζ/2
that

Regret(T ) ≤ C ′ ·∆H ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
,

where C ′ > 0 is an absolute constant and

∆H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

h )− log det(Λ1
h)
)1/2

.

Thus, we complete the proof of Theorem 3.5.

F.4 Proof of Theorem A.5

Proof. In the sequel, we define the following operators,

(Jhf)(s) = 〈f(s, ·), π∗h(· | s)〉A, (Jk,hf)(s) = 〈f(s, ·), πkh(· | s)〉A. (F.17)

Meanwhile, recall that we define the following transition operators,

Ph+1/2V (sh,mh) = E
[
V (sh+1)

∣∣∣ sh+1 ∼ P
(
·
∣∣ sh,do(mh)

)]
, ∀V : S 7→ R, (sh,mh) ∈ S ×M.

PhV ′(sh, ah) = E
[
V ′(sh,mh)

∣∣mh ∼ P̆h(· | s, a)
]
, ∀V ′ : S ×M 7→ R, (sh, ah) ∈ S ×A.

We further define for all (k, h) ∈ [K]× [H] the following transition operator,

P̃h+1/2V (sh, ah,mh) = E
[
V (sh+1)

∣∣ sh+1 ∼ P(· | sh, ah,mh)
]
, ∀V : S 7→ R, (sh, ah,mh) ∈ S ×A×M.
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We define the following model prediction errors,

ιkh(sh, ah) = −Qkh(sh, ah) + rh(sh, ah) + (PhV kh+1/2)(sh, ah), ∀(sh, ah) ∈ S ×A,

ιkh+1/2(sh,mh) = −V kh+1/2(sh,mh) + (Ph+1/2V
k
h+1)(sh,mh), ∀(sh,mh) ∈ S ×M. (F.18)

In parallel to Definition F.1, we define the following filtrations that correspond to Algorithm 2.

Definition F.4 (Filtration). For (k, h) ∈ [K]× [H], we define F ′k,h,1 the σ-algebra generated by the
following set,

B′k,h,1 =
{

(sih, a
i
h,m

i
h, r

i
h)
}

(i,h)∈[n]×[H]
∪
{

(sτj , a
τ
j ,m

τ
j , r

τ
j )
}

(τ,j)∈[k−1]×[H]

∪
{

(skj , a
k
j ,m

k
j , r

k
j )
}
j∈[h−1]

∪
{

(skh, a
k
h)
}
. (F.19)

Similarly, we define F ′k,h,2 the σ-algebra generated by the following set,

B′k,h,2 = B′k,h,1 ∪ {mk
h} ∪ {rkh}, (F.20)

and we define F ′k,h,3 the σ-algebra generated by the following set,

B′k,h,3 = B′k,h,2 ∪ {skh+1}, (F.21)

Moreover, we define F ′0,h,3 the σ-algebra generated by the set {(sih, aih,mi
h, r

i
h)}(i,h)∈[n]×[H] for

all h ∈ [H]. We define the timestep index as follows,

t′(k, h,m) = 3H · k + 3(h− 1) +m. (F.22)

It then holds for t′(k, h,m) ≤ t′(k′, h′,m′) that F ′k,h,m ⊆ F ′k′,h′,m′ . Hence, the set of σ-algebra
{F ′k,h,m}(k,h,m)∈[K]×[H]×[3] is a filtration with the timestep index t′(·, ·, ·) defined in (F.22).

The following lemma characterizes the model prediction errors defined in (F.18).

Lemma F.5. Let β = CdH
√

log(d(T + nH)/ζ) and ζ ∈ (0, 1]. Under Assumption A.3, it holds
with probability at least 1− 4ζ that

− 2Γkh+1/2(sh,mh) ≤ ιkh+1/2(sh,mh) ≤ 0, ∀(k, h) ∈ [K]× [H], (sh,mh) ∈ S ×M, (F.23)

− 2Γkh(sh, ah) ≤ ιkh(sh, ah) ≤ 0, ∀(k, h) ∈ [K]× [H], (sh, ah) ∈ S ×A. (F.24)

Proof. See §G.2 for a detailed proof.

Our goal is to upper bound the regret, which takes the following form,

Regret(T ) =

K∑
k=1

V π
∗

1 (sk1)− V π
k

1 (sk1)

=

K∑
k=1

(
V π
∗

1 (sk1)− V k1 (xk1)
)

︸ ︷︷ ︸
(i)

+

K∑
k=1

(
V k1 (sk1)− V π

k

1 (xk1)
)

︸ ︷︷ ︸
(ii)

, (F.25)

where {V kh }(k,h)∈[K]×[H] is the output of Algorithm 2. In what follows, we calculate terms (i) and
(ii) on the right-hand side of (F.25) separately.

Term (i). We now calculate term (i) on the right-hand side of (F.25). By (F.17), for all h ∈ [H], it
holds that

V π
∗

h − V kh = JhQπ
∗

h + Jk,hQkh = Jh(Qπ
∗

h −Qkh) + (Jh − Jk,h)Qkh. (F.26)

We first calculate the term Qπ
∗

h −Qkh on the right-hand side of (F.26). Recall that we define

ιkh = −Qkh + rh + PhV kh+1/2, ιkh+1/2 = −V kh+1/2 + Ph+1/2V
k
h+1.
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Meanwhile, following from the Bellman equation in (A.2), we obtain that

Qπ
∗

h = rh + PhV π
∗

h+1/2, V π
∗

h+1/2 = Ph+1/2V
π∗

h+1.

Thus, it holds that

Qπ
∗

h −Qkh = ιkh + Ph(V π
∗

h+1/2 − V
k
h+1/2) = ιkh + Phιkh+1/2 + PhPh+1/2(V π

∗

h+1 − V kh+1). (F.27)

Recall that we set V π
∗

H+1 = V kH+1 = 0. Hence, upon recursion, we obtain from (F.26) and (F.27)
that

V π
∗

1 − V k1 =

( H∏
h=1

JhPhPh+1/2

)
(V π

∗

H+1 − V kH+1) +

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
Jhιkh (F.28)

+

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
JhPhιkh+1/2 +

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
(Jh − Jk,h)Qkh

=

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
(Jhιkh + JhPhιkh+1/2) +

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
(Jh − Jk,h)Qkh.

By the definition of Jh and Jk,h in (F.17), we further obtain from (F.28) that

K∑
k=1

(
V π
∗

1 (sk1)− V k1 (sk1)
)

=

K∑
k=1

H∑
h=1

Eπ∗
[
ιkh(sh, ah) + ιkh+1/2(sh,mh)

∣∣ s1 = sk1
]

(F.29)

+

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)

∣∣ s1 = sk1
]
,

which completes the calculation of term (i) on the right-hand side of (F.25).

Term (ii). We now calculate term (ii) on the right-hand side of (F.25). By (F.17), for all h ∈ [H],
we have

V kh (skh)− V π
k

h (skh) =
(
Jk,h(Qkh −Qπ

k

h )
)
(skh). (F.30)

Meanwhile, by (F.18) it holds that

ιkh(skh, a
k
h) = rh(skh, a

k
h) + (PhV kh+1/2)(skh, a

k
h)−Qkh(skh, a

k
h)

= rh(skh, a
k
h)−Qπ

k

h (skh, a
k
h) + PhV kh+1/2(skh, a

k
h) + (Qπ

k

h −Qkh)(skh, a
k
h)(skh, a

k
h)

=
(
Ph(V kh+1/2 − V

πk

h+1/2)
)
(skh, a

k
h)− (Qkh −Qπ

k

h )(skh, a
k
h), (F.31)

where the second equality follows from the Bellman equation Qπ
k

h (sh, ah) = rh(sh, ah) +

(PhV π
k

h+1/2)(sh, ah). Similarly, we have

ιkh+1/2(skh,m
k
h) =

(
Ph+1/2(V kh+1 − V π

k

h+1)
)
(skh,m

k
h)− (V kh+1/2 − V

πk

h+1/2)(skh,m
k
h). (F.32)

Thus, by combining (F.30), (F.31), and (F.32), we have

(V kh − V π
k

h )(skh) + ιkh(skh, a
k
h) + ιkh+1/2(skh,m

k
h)

= (V kh+1 − V π
k

h+1)(skh+1) +
(
Jk,h(Qkh −Qπ

k

h )
)
(skh)− (Qkh −Qπ

k

h )(skh, a
k
h)︸ ︷︷ ︸

Dk,h,1

(F.33)

+
(
Ph(V kh+1/2 − V

πk

h+1/2)
)
(skh, a

k
h)− (V kh+1/2 − V

πk

h+1/2)(skh,m
k
h)︸ ︷︷ ︸

Dk,h,2

+
(
Ph+1/2(V kh+1 − V π

k

h+1)
)
(skh,m

k
h)− (V kh+1 − V π

k

h+1)(skh+1)︸ ︷︷ ︸
Dk,h,3

.
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Meanwhile, note that V π
k

H+1 = V kH+1 = 0. Hence, by recursively applying (F.33), we obtain that

(V k1 − V π
k

1 )(sk1)

=

H∑
h=1

(Dk,h,1 +Dk,h,2 +Dk,h,3)−
H∑
h=1

(
ιkh(skh, a

k
h) + ιkh+1/2(skh,m

k
h)
)
. (F.34)

By the definition of filtration in (F.4), for the terms Dk,h,1, Dk,h,2 and Dk,h,3 on the right-hand side
of (F.33), it holds for all (k, h) ∈ [K]× [H] that

Dk,h,1 ∈ Fk,h,1, Dk,h,2 ∈ Fk,h,2, Dk,h,3 ∈ Fk,h,3.

Moreover, it holds that

E[Dk,h,1 | Fk,h−1,3] = E[Dk,h,2 | Fk,h,1] = E[Dk,h,3 | Fk,h,2] = 0.

Hence, the termsDk,h,1,Dk,h,2 andDk,h,3 defines a martingaleM ′k,h,m with respect to the timestep
index t′(·, ·, ·) as follows,

M ′k,h,m =
∑

(τ,i,`)∈[K]×[H]×[3]
t′(τ,i,`)≤t′(k,h,m)

Dτ,i,`, (F.35)

where t′(·, ·, ·) is defined in (F.22) of Definition F.4. In specific, we have

M ′K,H,3 =

K∑
k=1

H∑
h=1

(Dk,h,1 +Dk,h,2 +Dk,h,3). (F.36)

By further taking sum of (F.34) over k ∈ [K], we obtain from (F.36) that

K∑
k=1

(V k1 − V π
k

1 )(sk1) = M ′K,H,3 −
K∑
k=1

H∑
h=1

(
ιkh(skh, a

k
h) + ιkh+1/2(skh,m

k
h)
)
, (F.37)

which completes the calculation of term (ii) on the right-hand side of (F.25).

Finally, by plugging (F.29) and (F.37) into (F.25), we conclude that

Regret(T ) =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)

∣∣ s1 = sk1
]

+M ′K,H,3 (F.38)

+

K∑
k=1

H∑
h=1

Eπ∗
[
ιkh(sh, ah) + ιkh+1/2(sh,mh)

∣∣ s1 = sk1
]

−
K∑
k=1

H∑
h=1

(
ιkh(skh, a

k
h) + ιkh+1/2(skh,m

k
h)
)
,

where M ′K,H,3 is defined in (F.36).

We now upper bound the right-hand side of (F.38). The following proof is similar to that of Theorem
3.5 in §F.3. In the sequel, we define

Y ′ =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)

∣∣ s1 = sk1
]
,

Z ′ =

K∑
k=1

H∑
h=1

Eπ∗
[
ιkh(sh, ah) + ιkh+1/2(sh,mh)

∣∣ s1 = sk1
]
−

K∑
k=1

H∑
h=1

(
ιkh(skh, a

k
h) + ιkh+1/2(skh,m

k
h)
)
.

It then follows from (F.38) that

Regret(T ) = Y ′ +M ′K,H,3 + Z ′. (F.39)
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Recall that we set πkh to be the greedy policy with respect to the action-value function Qkh. Thus, it
holds that

Y ′ =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)

∣∣ s1 = sk1
]
≤ 0. (F.40)

Meanwhile, following from the truncation of Qkh in Algorithm 2 and the assumption that rh ∈ [0, 1],
for terms Dk,h,i defined in (F.33), we have

|Dk,h,i| ≤ 2H, ∀(k, h, i) ∈ [K]× [H]× [3].

Hence, by the Azumas-Hoeffding lemma, it holds with probability at least 1− ζ that

M ′K,H,3 ≤ C1 ·
√
d3H3T ·

√
log(dT/ζ), (F.41)

where M ′K,H,3 is the martingale defined in (F.35), C1 > 0 is an absolute constant, and T = HK.
Following from Lemma F.5, it holds with probability at least 1− 4ζ that

Z ′ ≤ 2

K∑
k=1

H∑
h=1

Γkh+1/2(skh,m
k
h) + 2

K∑
k=1

H∑
h=1

Γkh(skh, a
k
h). (F.42)

Following from the definition of Γkh+1/2 in (A.12), we obtain that

K∑
k=1

H∑
h=1

Γkh+1/2(skh,m
k
h) = 2β

K∑
k=1

H∑
h=1

(
log det

(
Λk1,h + ψh(skh,m

k
h)ψh(sh,mh)>

)
− log det(Λk1,h)

)1/2

= 2β

K∑
k=1

H∑
h=1

(
log det(Λk+1

1,h )− log det(Λk1,h)
)1/2

. (F.43)

Thus, by the Cauchy-Schwartz inequality, we obtain from (F.43) that

K∑
k=1

H∑
h=1

Γkh+1/2(skh,m
k
h) ≤ β

H∑
h=1

(
K ·

K∑
k=1

(
log det(Λk+1

1,h )− log det(Λ1
1,h)
))1/2

≤ β ·
√
K

H∑
h=1

(
log det(ΛK+1

1,h )− log det(Λ1
1,h)
)1/2

. (F.44)

Similarly, we obtain that
K∑
k=1

H∑
h=1

Γkh(skh, a
k
h) ≤ β ·

√
K

H∑
h=1

(
log det(Λk+1

2,h )− log det(Λ1
2,h)
)1/2

. (F.45)

In what follows, we define

∆1,H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

1,h )− log det(Λ1
1,h)
)1/2

,

∆2,H =
1√
dH2

H∑
h=1

(
log det(Λk+1

2,h )− log det(Λ1
2,h)
)1/2

.

By plugging (F.44), (F.45), and β = CdH ·
√

log(d(T + nH)/ζ) into (F.42), we obtain that

Z ′ ≤ 2C · (∆1,H + ∆2,H) ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
, (F.46)

which holds with probability at least 1 − 4ζ. Here recall that we define T = HK. Finally, by
plugging (F.40), (F.41), and (F.46) into (F.39), it holds with probability at least 1− 5ζ that

Regret(T ) ≤ C ′ · (∆1,H + ∆2,H) ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
,

where C ′ > 0 is an absolute constant. Thus, we complete the proof of Theorem A.5.
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G Proof of Auxiliary Result

G.1 Proof of Lemma F.2

Proof. Recall that we define

(PhV )(sh, ah) = E
[
V (sh+1)

∣∣∣ sh+1 ∼ P
(
·
∣∣ sh,do(ah)

)]
= E

[
V (sh+1)

∣∣ sh+1 ∼ Ph(· | sh, ah, uh), uh ∼ P̃h(· | sh)
]
,

where the second equality follows from Proposition 3.2. In the sequel, we define

(P̃hV )(sh, ah, uh) = E
[
V (sh+1)

∣∣∣ sh+1 ∼ Ph
(
·
∣∣ sh, ah, uh)].

By Assumption 3.3, we obtain that

PhV kh+1 = ψ>h 〈µh, V kh+1〉 = ψ>h (Λkh)−1Λkh〈µh, V kh+1〉, P̃hV kh+1 = φ>h 〈µh, V kh+1〉. (G.1)
Recall that

Λkh =

k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)> +

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)> + λI.

Therefore, by (G.1), we obtain that

(PhV kh+1)(·, ·) = ψh(·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)>〈µh, V kh+1〉+ λ · 〈µh, V kh+1〉

+

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)>〈µh, V kh+1〉

)

= ψh(·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) · (PhV kh+1)(sτh, a

τ
h) + λ · 〈µh, V kh+1〉 (G.2)

+

n∑
i=1

φh(sih, a
i
h, u

i
h) · (P̃hV kh+1)(sih, a

i
h, u

i
h)

)
.

Recall that we define the counterfactual reward as follows,
Rh(sh, ah) = Euh

[
r(sh, ah, uh)

∣∣Sh = sh
]
, ∀(sh, ah) ∈ S ×A. (G.3)

It then follows from Assumption 3.3 and Proposition 3.4 thatRh(·, ·) = ψh(·, ·)>θh. Hence, it holds
for all h ∈ [H] that

rh(·, ·, ·) = φh(·, ·, ·)>θh = φh(·, ·, ·)>(Λkh)−1Λkhθh

= φh(·, ·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)>θh + λ · 〈µh, V kh+1〉

+

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)>θh

)

= φh(·, ·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) ·Rh(sτh, a

τ
h) + λ · θh

+

n∑
i=1

φh(sih, a
i
h, u

i
h) · E[rh | sih, aih, uih]

)
. (G.4)

Meanwhile, following from the explicit update of ωkh in (3.9), we obtain that

ψh(·, ·)>ωkh = ψh(·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
V kh+1(sτh+1) + rτh

)
(G.5)

+

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V kh+1(sih+1) + rih

))
.
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Hence, combining (G.2), (G.4), and (G.5), we obtain that

ψh(·, ·)>ωkh −Rh(·, ·)− (PhV kh+1)(·, ·)
= ψh(·, ·)>(Λkh)−1(S1,h + S2,h + S3,h + S4,h)− ψh(·, ·)>λ ·

(
〈µh, V kh+1〉+ θh

)
, (G.6)

where we define

S1,h =

k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
V kh+1(sτh+1)− (PhV kh+1)(sτh, a

τ
h)
)
, (G.7)

S2,h =

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V kh+1(sih+1)− (P̃hV kh+1)(sih, a

i
h, u

i
h)
)
,

S3,h =

k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
rτh −R(sτh, a

τ
h)
)
, and S4,h =

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
rih − E[rh | sih, aih, uih]

)
.

In what follows, we upper bound the right-hand side of (G.6). By the Cauchy-Schwartz inequality,
we obtain that

|ψh(·, ·)>ωkh −Rh(·, ·)− (PhV kh+1)(·, ·)| (G.8)

≤
(
ψh(·, ·)>(Λkh)−1ψh(·, ·)

)1/2 · (∥∥∥∥ 4∑
`=1

S`,h

∥∥∥∥
(Λkh)−1

+ λ ·
(
‖〈µh, V kh+1〉‖(Λkh)−1 + ‖θh‖(Λkh)−1

))
,

where S1,h, S2,h, S3,h, and S4,h are defined in (G.7). By Lemma H.6, for λ = 1, it holds with
probability at least 1− 2ζ that∥∥∥∥ 4∑

`=1

S`,h

∥∥∥∥
(Λkh)−1

≤ C ′dH
√

log
(
2(C + 1)d(T + nH)/ζ

)
, (G.9)

where C > 0 and C ′ > 0 are absolute constants. Meanwhile, by Assumption 3.3, it holds that

‖〈µh, V kh+1〉‖(Λkh)−1 ≤ ‖〈µh, V kh+1〉‖2/
√
λ

≤
( d∑
`=1

‖µ`,h‖21
)1/2

· ‖V hk+1‖∞/
√
λ ≤ H

√
d/λ, (G.10)

where the first inequality follows from the fact that Λkh � λI , the second inequality follows from the
Hölder’s inequality, and the third inequality follows from Assumption 3.3 and the fact that V hk+1 ≤
H . Similarly, it holds from Assumption 3.3 that

‖θh‖(Λkh)−1 ≤ ‖θh‖2/
√
λ ≤

√
d/λ. (G.11)

Finally, by plugging (G.9), (G.10), and (G.11) into (G.8) with λ = 1, it holds with probability at
least 1− 2ζ that

|ψh(·, ·)>ωkh −Rh(·, ·)− (PhV kh+1)(·, ·)| ≤ β/
√

2 ·
(
ψh(·, ·)>(Λkh)−1ψh(·, ·)

)1/2
, (G.12)

where we set β = C ′′dH
√

log(d(T + nH)/ζ) for a sufficiently large absolute constant C ′′ > 0.
By further applying Lemma H.7 to (G.12), for λ = 1, it holds with probability at least 1− 2ζ that

|ψh(·, ·)>ωkh −Rh(·, ·)− (PhV kh+1)(·, ·)|

≤ β ·
(

log det
(
Λkh + ψh(·, ·)ψh(·, ·)>

)
− log det(Λkh)

)1/2

= Γkh(·, ·). (G.13)

Recall that we set

Qkh(·, ·) = min
{
ψh(·, ·)>ωkh + Γkh(·, ·), H − h

}
.

Hence, by (G.13), it holds with probability at least 1− 2ζ that

−ιkh(·, ·) = Qkh(·, ·)−Rh(·, ·)− (PhV kh+1)(·, ·)
≤ ψh(·, ·)>ωkh + Γkh(·, ·)−Rh(·, ·)− (PhV kh+1)(·, ·) ≤ 2Γkh(·, ·),
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and

ιkh(·, ·) = −Qkh(·, ·) +Rh(·, ·) + (PhV kh+1)(·, ·)
≤ max

{
(PhV kh+1)(·, ·) +Rh(·, ·)− ψh(·, ·)>ωkh − Γkh, Rh(·, ·) + (PhV kh+1)(·, ·)−H + h

}
≤ 0,

where the second inequality follows from (G.13) the facts that V kh+1 ≤ H − h− 1 and Rh ≤ 1. In
conclusion, it holds with probability at least 1− 2ζ that

−2Γkh(·, ·) ≤ ιkh(·, ·) ≤ 0,

which concludes the proof of Lemma F.2.

G.2 Proof of Lemma F.5

Proof. Recall that we define the following transition operators,

Ph+1/2V (sh,mh) = E
[
V (sh+1)

∣∣∣ sh+1 ∼ P
(
·
∣∣ sh,do(mh)

)]
P̃h+1/2V (sh, ah,mh) = E

[
V (sh+1)

∣∣ sh+1 ∼ P(· | sh, ah,mh)
]
. (G.14)

Following from Assumption A.3 and (A.7), we have

Ph+1/2V
k
h+1 = ψ>h 〈µh, V kh+1〉 = ψ>h (Λk1,h)−1Λk1,h〈µh, V kh+1〉, (G.15)

P̃h+1/2V
k
h+1 = φ>h 〈µh, V kh+1〉, (G.16)

where we define

Λk1,h =

k−1∑
τ=1

ψh(sτh,m
τ
h)ψ(sτh,m

τ
h)> +

n∑
i=1

φh(sih, a
i
h,m

i
h)φh(sih, a

i
h,m

i
h)> + λI. (G.17)

Hence, following from (G.15), it holds for all (sh,mh) ∈ S ×M that

Ph+1/2V
k
h+1(sh,mh)

= ψh(sh,mh)>(Λk1,h)−1

(k−1∑
τ=1

ψh(sτh,m
τ
h)ψ(sτh,m

τ
h)>〈µh, V kh+1〉+ λ · 〈µh, V kh+1〉 (G.18)

+

n∑
i=1

φh(sih, a
i
h,m

i
h)φh(sih, a

i
h,m

i
h)>〈µh, V kh+1〉

)
.

By plugging (G.15) and (G.16) into (G.18), we further obtain that

Ph+1/2V
k
h+1(sh,mh)

= ψh(sh,mh)>(Λk1,h)−1

(k−1∑
τ=1

ψh(sτh,m
τ
h) · (Ph+1/2V

k
h+1)(sτh,m

τ
h) + λ · 〈µh, V kh+1〉 (G.19)

+

n∑
i=1

φh(sih, a
i
h,m

i
h) · (P̃h+1/2V

k
h+1)(sih, a

i
h,m

i
h)

)
.

Following from the update of ωk1,h in (A.10), it holds for all h ∈ [H] and (sh,mh) ∈ S ×M that

ψh(sh,mh)>ωk1,h = ψh(sh,mh)>(Λk1,h)−1

( k−1∑
τ=1

ψh(sτh,m
τ
h) · V kh+1(sτh+1) (G.20)

+

n∑
i=1

φh(sih, a
i
h,m

i
h) · V kh+1(sih+1)

)
.

Hence, combining (G.19) and (G.20), we obtain for all h ∈ [H] and (sh,mh) ∈ S ×M that

ψh(sh,mh)>ωk1,h − Ph+1/2V
k
h+1(sh,mh)

= ψh(sh,mh)>(Λk1,h)−1(S′1,h + S′2,h) + λ · ψh(s,m)>〈µh, V kh+1〉, (G.21)
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where we define

S′1,h =

k−1∑
τ=1

ψh(sτh,m
τ
h) ·

(
V kh+1(sτh+1)− (Ph+1/2V

k
h+1)(sτh,m

τ
h)
)
,

S′2,h = φh(sih, a
i
h,m

i
h) ·

(
V kh+1(sih+1)− (P̃h+1/2V

k
h+1)(sih, a

i
h,m

i
h)
)
.

We now upper bound the right-hand side of (G.21). By the Cauchy-Schwartz inequality, we obtain
from (G.21) that

|ψ>h ωk1,h − Ph+1/2V
k
h+1|

≤
(
ψ>h (Λk1,h)−1ψh

)1/2 · (‖S′1,h + S′2,h‖(Λkh)−1 + λ · ‖〈µh, V kh+1〉‖(Λkh)−1

)
. (G.22)

Following from similar analysis to the proof of Lemma H.6 in §H, for λ = 1, it holds with probability
at least 1− 2ζ that

‖S′1,h + S′2,h‖(Λkh)−1 ≤ C ′dH
√

log
(
2(C + 1)d(T + nH)/ζ

)
. (G.23)

Meanwhile, by Assumption A.3, we have

‖〈µh, V kh+1〉‖(Λkh)−1 ≤ ‖〈µh, V kh+1〉‖2/
√
λ

≤
( d∑
`=1

‖µ`,h‖21
)1/2

· ‖V hk+1‖∞/
√
λ ≤ H

√
d/λ, (G.24)

where the first inequality follows from the fact that Λk1,h � λI , the second inequality follows from
the Hölder’s inequality, and the third inequality follows from Assumption A.3 and the fact that
V hk+1 ≤ H . Finally, by plugging (G.23) and (G.24) into (G.22), we obtain for all (sh,mh) ∈ S×M
that

|ψh(sh,mh)>ωk1,h − (Ph+1/2V
k
h+1)(sh,mh)|

≤ β/
√

2 ·
(
ψh(sh,mh)>(Λk1,h)−1ψh(sh,mh)

)1/2
≤ β ·

(
log det

(
Λk1,h + ψh(sh,mh)ψh(sh,mh)>

)
− log det(Λk1,h)

)1/2

= Γkh+1/2(sh,mh), (G.25)

where we set β = C ′′dH
√

log(d(T + nH)/ζ) for a sufficiently large absolute constant C ′′ > 0

and the last inequality follows from Lemma H.7. Here Γkh+1/2 is the UCB defined in (A.12). Recall
that for all (sh,mh) ∈ S ×M, we define

V kh+1/2(sh,mh) = min
{
ψh(sh,mh)>ωk1,h + Γkh+1/2(sh,mh), H − h

}
.

Hence, by (G.25), for all (sh,mh) ∈ S ×M, it holds with probability at least 1− 2ζ that

−ιkh+1/2(sh,mh) = V kh+1/2(sh,mh)− (Ph+1/2V
k
h+1)(sh,mh)

≤ ψh(sh,mh)>ωkh + Γkh+1/2(sh,mh)− (Ph+1/2V
k
h+1)(sh,mh) ≤ 2Γkh+1/2(sh,mh),

and
ιkh+1/2(sh,mh) = −V kh+1/2(sh,mh) + (Ph+1/2V

k
h+1)(sh,mh)

≤ max
{

(Ph+1/2V
k
h+1)(sh,mh)− ψh(sh,mh)>ωk1,h − Γkh+1/2(sh,mh),

(Ph+1/2V
k
h+1)(sh,mh)−H + h

}
≤ 0,

where the second inequality follows from (G.25) and the fact that V kh+1 ≤ H−h−1. In conclusion,
it holds with probability at least 1− 2ζ that

−2Γkh+1/2(sh,mh) ≤ ιkh+1/2(sh,mh) ≤ 0.

Similarly, following from the proof of Lemma F.2 with Lemma H.5 in place of Lemma H.4, the
reward rh in place of Rh, and the feature γh in place of both ψh and φh, for all (sh, ah) ∈ S × A,
it holds with probability at least 1− 2ζ that

−2Γkh(sh, ah) ≤ ιkh(sh, ah) ≤ 0.

Thus, we complete the proof of Lemma F.5.
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H Auxiliary Lemma

Lemma H.1 (Concentration of Self-Normalized Process [1, 16]). Let {εt}∞t=1 be a real-valued
stochastic process adapted to the filtration {Ft}∞t=0. Let εt | Ft−1 be zero-mean and σ-sub-Gaussian.
Let {ψt}∞t=0 be an Rd-valued stochastic process with ψt ∈ Ft−1. Let Λt = Λ0 +

∑t
τ=1 ψτψ

>
τ ,

where Λ0 is a positive definite matrix. Let δ > 0 be an absolute constant. It then holds with
probability at least 1− δ that∥∥∥∥ t∑

τ=1

ψτ · ετ
∥∥∥∥2

Λ
−1
t

≤ 2σ2 · log
(√

det(Λt)/det(Λ0) · δ−1
)
, ∀t ≥ 0.

Proof. See [1] for a detailed proof.

Lemma H.2 (Lemma D.4 of [16]). Let {st}∞t=1 and {ψt}∞t=1 with ‖ψt‖2 ≤ 1 be S-valued and
Rd-valued stochastic processes adopted to the filtration {Ft}∞t=0, respectively. Let Λt = Λ0 +∑t
τ=1 ψτψ

>
τ , where Λ0 � λI is a positive definite matrix. Let sups∈S |V (s)| ≤ H for all V ∈ V .

Let δ > 0 be an absolute constant. It then holds with probability at least 1− δ that∥∥∥∥ t∑
τ=1

ψτ ·
(
V (sτ )− E

[
V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 4H2 ·
(
d/2 · log

(
det(Λt)/ det(Λ0)

)
+ log(Nε/δ)

)
+ 8t2ε2/λ.

HereNε is the ε-covering number of V with respect to the metric d(V, V ′) = sups∈S |V (s)−V ′(s)|
for all V, V ′ ∈ V .

Proof. The proof technique is similar to that of Lemma D.4 by [16]. For all V ∈ V , there exist an
element Ṽ in the ε-covering of V satisfying

d(V, Ṽ ) = sup
s∈S
|V (s)− Ṽ (s)| ≤ ε. (H.1)

In the sequel, we define

∆V (·) = V (·)− Ṽ (·). (H.2)

It then holds that ∥∥∥∥ t∑
τ=1

ψτ ·
(
V (sτ )− E

[
V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 2

∥∥∥∥ t∑
τ=1

ψτ ·
(
Ṽ (sτ )− E

[
Ṽ (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

(H.3)

+ 2

∥∥∥∥ t∑
τ=1

ψτ ·
(

∆V (sτ )− E
[
∆V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

.

Note that |Ṽ (s)| ≤ H for all s ∈ S. Hence, following from Lemma H.1 and a union bound
argument, it holds with probability at least 1− δ that

2

∥∥∥∥ t∑
τ=1

ψτ ·
(
Ṽ (sτ )− E

[
Ṽ (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 4H2 ·
(
d/2 · log

(
det(Λt)/det(Λ0)

)
+ log(Nε/δ)

)
, (H.4)

whereNε is the ε-covering number of V . Meanwhile, it follows from (H.1) and (H.2) that |∆V (s)| ≤
ε for all s ∈ S. Hence, we have

2

∥∥∥∥ t∑
τ=1

ψτ ·
(

∆V (sτ )− E
[
∆V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 8t2ε2/λ, (H.5)
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where the inequality follows from the fact that Λt � λI . By plugging (H.4) and (H.5) into (H.3), it
holds with probability at least 1− δ that∥∥∥∥ t∑

τ=1

ψτ ·
(
V (sτ )− E

[
V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 4H2 ·
(
d/2 · log

(
det(Λt)/ det(Λ0)

)
+ log(Nε/δ)

)
+ 8t2ε2/λ,

which concludes the proof of Lemma H.2.

Lemma H.3 (Upper Bound of Parameter [16]). Under Assumption 3.3, It holds that

‖ωkh‖2 ≤ H
(
d(k + n)/λ

)1/2
, ∀(k, h) ∈ [K]× [H]. (H.6)

Proof. See [16] for a detailed proof.

Lemma H.4 (Covering Number of V [16]). Let V be a class of functions V satisfying
V (·) = min

{
max
a∈A

ψ(·, a)>ω + Γ(·, a), H − h
}
, (H.7)

where

Γ(·, ·) =
√

2β ·
(

log det
(
Λ + ψ(·, ·)ψ(·, ·)>

)
− log det(Λ)

)1/2

. (H.8)

Here the function V is parameterized by (ω,Λ) and the parameter β is fixed. Let ψ(·, ·) be an
Rd-valued function and Λ ∈ Rd×d. Let ‖ψ(s, a)‖2 ≤ 1 for all (s, a) ∈ S × A. For ‖ω‖2 ≤ L,
Λ � λI , β ∈ [0, B], and ε > 0, there exist an ε-covering of V with respect to the metric d(V, V ′) =
sups∈S |V (s)− V ′(s)|, such that the covering number Nε is upper bounded as follows,

logNε ≤ d · log(1 + 4L/ε) + d2 · log
(
1 + 16B2d1/2/(ε2λ)

)
.

Proof. The proof technique is similar to that of Lemma D.6 by [16]. Let V1 and V2 be the functions
defined in (H.7), which are parameterized by (ω1,Λ1) and (ω2,Λ2), respectively. Note that

d(V1, V2) ≤ sup
s∈S

∣∣min
{

max
a∈A

ψ(s, a)>ω1 + Γ1(s, a), H − h
}

−min
{

max
a∈A

ψ(s, a)>ω2 + Γ2(s, a), H − h
}∣∣

≤ sup
(s,a)∈S×A

|ψ(s, a)>(ω1 − ω2) + Γ1(s, a)− Γ2(s, a)|, (H.9)

where the second inequality follows from the fact that min{·, H − h} and maxa∈A are contraction
mappings. Here we define Γ1 and Γ2 in (H.8) with Λ = Λ1 and Λ = Λ2, respectively. Meanwhile,
following from the matrix determinant lemma, we have

Γ1(s, a) =
√

2β ·
(

log det
(
Λ1 + ψ(s, a)ψ(s, a)>

)
− log det(Λ1)

)1/2

=
√

2β ·
(

log
(
1 + ψ(s, a)>Λ−1

1 ψ(s, a)
))1/2

, ∀(s, a) ∈ S ×A.

Thus, following from the inequalities |
√
x−√y| ≤

√
|x− y| and | log(1+x)−log(1+y)| ≤ |x−y|

for all x, y ≥ 0, we have

|Γ1(s, a)− Γ2(s, a)| ≤
√

2β ·
(∣∣log

(
1 + ψ(s, a)>Λ−1

1 ψ(s, a)
)
− log

(
1 + ψ(s, a)>Λ−1

2 ψ(s, a)
)∣∣)1/2

≤
√

2β ·
(
|ψ(s, a)>(Λ−1

1 − Λ−1
2 )ψ(s, a)|

)1/2

. (H.10)

Combining (H.14) and (H.10), we have
d(V1, V2) ≤ sup

(s,a)∈S×A
|ψ(s, a)>(ω1 − ω2) + Γ1(s, a)− Γ2(s, a)|

≤ sup
‖ψ‖2≤1

|ψ>(ω1 − ω2)|+
√

2β · sup
‖ψ‖2≤1

(
|ψ>(Λ−1

1 − Λ−1
2 )ψ|

)1/2
= ‖ω1 − ω2‖2 + ‖2β2 · Λ−1

1 − 2β2 · Λ−1
2 ‖

1/2
OP

≤ ‖ω1 − ω2‖2 + ‖2β2 · Λ−1
1 − 2β2 · Λ−1

2 ‖
1/2
F , (H.11)
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where we denote by ‖ · ‖OP and ‖ · ‖F the operator norm and Frobenius norm, respectively. For
Λ � λI and β ∈ [0, B], it holds that ‖2β2 · Λ−1‖F ≤ 2B2d1/2λ−1. Meanwhile, let Nω,ε be
the ε/2-covering number of {ω ∈ Rd : ‖ω‖2 ≤ L}, and NA,ε be the ε2/4-covering number of
{A ∈ Rd×d : ‖A‖F ≤ 2B2d1/2λ−1}. It is known that [41]

Nω,ε ≤ (1 + 4L/ε)d, NA,ε ≤
(
1 + 16B2d1/2/(λε2)

)d2
.

Hence, by (H.11), we obtain that

logNε ≤ log(Nω,ε · NA,ε) ≤ d · log(1 + 4L/ε) + d2 · log
(
1 + 16B2d1/2/(ε2λ)

)
,

which concludes the proof of Lemma H.4.

Lemma H.5 (Covering Number of Q [16]). Let Q be a class of functions Q satisfying

Q(·, ·) = min
{
ψ(·, ·)>ω + Γ(·, ·), H − h

}
, (H.12)

where

Γ(·, ·) =
√

2β ·
(

log det
(
Λ + ψ(·, ·)ψ(·, ·)>

)
− log det(Λ)

)1/2

. (H.13)

Here the function Q is parameterized by (ω,Λ) and the parameter β is fixed. Let ψ(·, ·) be an Rd-
valued function and Λ ∈ Rd×d. Let ‖ψ(s,m)‖2 ≤ 1 for all (s,m) ∈ S ×M. For ‖ω‖2 ≤ L,
Λ � λI , β ∈ [0, B], and ε > 0, there exist an ε-covering ofQ with respect to the metric d(V, V ′) =
sup(s,m)∈S×M |Q(s,m)−Q′(s,m)|, such that the covering numberNε is upper bounded as follows,

logNε ≤ d · log(1 + 4L/ε) + d2 · log
(
1 + 16B2d1/2/(ε2λ)

)
.

Proof. The proof is similar to that of Lemma H.4. LetQ1 andQ2 be the functions defined in (H.12),
which are parameterized by (ω1,Λ1) and (ω2,Λ2), respectively. Note that

d(Q1, Q2) ≤ sup
min
{

(s,m)∈S×M

∣∣ψ(s,m)>ω1 + Γ1(s,m), H − h
}

−min
{
ψ(s,m)>ω2 + Γ2(s,m), H − h

}∣∣
≤ sup

(s,m)∈S×M
|ψ(s,m)>(ω1 − ω2) + Γ1(s,m)− Γ2(s,m)|, (H.14)

where the second inequality follows from the fact that min{·, H − h} is a contraction mapping.
Here we define Γ1 and Γ2 in (H.13) with Λ = Λ1 and Λ = Λ2, respectively. The rest of the proof
is the same as that of Lemma H.4. We omit the proof and refer to the proof of Lemma H.4 for the
details.

Lemma H.6 (Concentration of Self-Normalized Process). Let λ = 1 and β =
CdH

√
log(d(T + nH)/ζ). Let ζ > 0 be an absolute constant. It holds with probability at least

1− 2ζ that∥∥∥∥ 4∑
`=1

S`,h

∥∥∥∥
(Λkh)−1

≤ C ′dH
√

log
(
2(C + 1)d(T + nH)/ζ

)
, ∀(k, h) ∈ [K]× [H].

where C and C ′ are positive absolute constants and C ′ is independent of C.

Proof. Recall that we define

S1,h =

k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
V kh+1(sτh+1)− (PhV kh+1)(sτh, a

τ
h)
)
,

S2,h =

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V kh+1(sih+1)− (P̃hV kh+1)(sih, a

i
h, u

i
h)
)
,

S3,h =

k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
rτh −R(sτh, a

τ
h)
)
, S4,h =

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
rih − E[rh | sih, aih, uih]

)
.
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We define F−n+i the σ-algebra generated by the set {(s`h, a`h, u`h, r`h)}(`,h)∈[i]×[H] with timestep
index −n+ i. The set of σ-algebra {F−n+i}i∈[n] captures the data generation process in the offline
setting. We attach {F−n+i}i∈[n] to the σ-algebra {Fk,h,m}(k,h,m)∈[K,H,2] with timestep index t
defined in Definition F.1 to obtain the complete filtration. By Lemma H.1 with such a complete
filtration, it holds with probability at least 1− ζ that

‖S1,h + S2,h‖(Λkh)−1

≤ 4H2 ·
(
d/2 · log

(
det(Λkh)/ det(Λ0)

)
+ log(2Nε/ζ)

)
+ 8(n+ k)2ε2/λ, (H.15)

where Λ0 = λI and

Λkh =

k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)> +

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)> + λI.

Similarly, by Lemma H.1, it holds with probability at least 1− ζ that

‖S3,h + S4,h‖(Λkh)−1 ≤ 4H2 ·
(
d/2 · log

(
det(Λkh)/ det(Λ0)

))
. (H.16)

Note that

Λkh =

k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)> +

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)> + λI

� (k + n+ λ)I.

Meanwhile, recall that Λ0 = λI . Thus, we obtain that

det(Λkh)/ det(Λ0) ≤ (k + n+ λ)/λ. (H.17)

On the other hand, we obtain from Lemma H.3 and Lemma H.4 that

logNε ≤ d ·
(
1 + 4H

√
d(n+ k)/(ε

√
λ)
)

+ d2 · log
(
1 + 16β2

√
d/(ε2λ)

)
, (H.18)

where we set β = CdH
√

log(d(T + nH)/ζ). Finally, by setting ε = dH/(n + k) in (H.15),
plugging (H.17) and (H.18) into (H.15) and (H.16), respectively, and setting λ = 1, we obtain that∥∥∥∥ 4∑

`=1

S`,h

∥∥∥∥
(Λkh)−1

≤ ‖S1,h + S2,h‖(Λkh)−1 + ‖S3,h + S4,h‖(Λkh)−1

≤ C ′dH
√

log
(
2(C + 1)d(T + nH)/ζ

)
,

which holds with probability at least 1−2ζ. Here T = HK and C, C ′ are absolute constants, where
C ′ is independent of C. Thus, we complete the proof of Lemma H.6.

Lemma H.7. Let Λt ∈ Rd×d be a positive definite matrix satisfying Λt � I . Let ψt(·, ·) be a
Rd-valued function such that ‖ψt(·, ·)‖2 ≤ 1. Let Λt+1(·, ·) = Λt + ψt(·, ·)ψt(·, ·)>. It then holds
that

ψt(·, ·)>(Λt)
−1ψt(·, ·) ≤ 2 log det

(
Λt+1(·, ·)

)
− 2 log det(Λt).

Proof. Note that Λt � I . Thus, it holds that

0 ≤ ψt(·, ·)>(Λt)
−1ψt(·, ·) ≤ ‖ψt(·, ·)‖22 ≤ 1.

It then follows from the inequality x ≤ 2 log(1 + x) for all x ∈ [0, 1] that

ψt(·, ·)>(Λt)
−1ψt(·, ·) ≤ 2 log

(
1 + ψt(·, ·)>(Λt)

−1ψt(·, ·)
)
. (H.19)

Meanwhile, it follows from the matrix determinant lemma that

det
(
Λt+1(·, ·)

)
= det(Λt) ·

(
1 + ψt(·, ·)>(Λt)

−1ψt(·, ·)
)
. (H.20)

Finally, combining (H.19) and (H.20), we conclude that

ψt(·, ·)>(Λt)
−1ψt(·, ·) ≤ 2 log det

(
Λt+1(·, ·)

)
− 2 log det(Λt),

which concludes the proof of Lemma H.7.
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