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Abstract

We propose the particle dual averaging (PDA) method, which generalizes the
dual averaging method in convex optimization to the optimization over probability
distributions with quantitative runtime guarantee. The algorithm consists of an inner
loop and outer loop: the inner loop utilizes the Langevin algorithm to approximately
solve for a stationary distribution, which is then optimized in the outer loop. The
method can thus be interpreted as an extension of the Langevin algorithm to
naturally handle nonlinear functional on the probability space. An important
application of the proposed method is the optimization of neural network in the
mean field regime, which is theoretically attractive due to the presence of nonlinear
feature learning, but quantitative convergence rate can be challenging to obtain. By
adapting finite-dimensional convex optimization theory into the space of measures,
we analyze PDA in regularized empirical / expected risk minimization, and establish
quantitative global convergence in learning two-layer mean field neural networks
under more general settings. Our theoretical results are supported by numerical
simulations on neural networks with reasonable size.

1 Introduction

Gradient-based optimization can achieve vanishing training error on neural networks, despite the
apparent non-convex landscape. Among various works that explains the global convergence, one
common ingredient is to utilize overparameterization to translate the training dynamics into function
spaces, and then exploit the convexity of the loss function with respect to the function. Such endeavors
usually consider models in one of the two categories: the mean field regime or the kernel regime.

On one hand, analysis in the kernel (lazy) regime connects gradient descent on wide neural network
to kernel regression with respect to the neural tangent kernel (Jacot et al., 2018), which leads to global
convergence at linear rate (Du et al., 2019; Allen-Zhu et al., 2019; Zou et al., 2020). However, key
to the analysis is the linearization of the training dynamics, which requires appropriate scaling of
the model such that distance traveled by the parameters vanishes (Chizat and Bach, 2018a). Such
regime thus fails to explain the feature learning of neural networks (Yang and Hu, 2020), which is
believed to be an important advantage of deep learning; indeed, it has been shown that deep learning
can outperform kernel models due to this adaptivity (Suzuki, 2018; Ghorbani et al., 2019a).

In contrast, the mean field regime describes the gradient descent dynamics as Wasserstein gradient
flow in the probability space (Nitanda and Suzuki, 2017; Mei et al., 2018; Chizat and Bach, 2018b),
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which captures the potentially nonlinear evolution of parameters travelling beyond the kernel regime.
While the mean field limit is appealing due to the presence of “feature learning”, its characterization is
more challenging and quantitative analysis is largely lacking. Recent works established convergence
rate in continuous time under modified dynamics (Rotskoff et al., 2019), strong assumptions on the
target function (Javanmard et al., 2019), or regularized objective (Hu et al., 2019), but such result can
be fragile in the discrete-time or finite-particle setting — in fact, the discretization error often scales
exponentially with the time horizon or dimensionality, which limits the applicability of the theory.
Hence, an important research problem that we aim to address is

Can we develop optimization algorithms for neural networks in the mean field regime with more
accurate quantitative guarantees the kernel regime enjoys?

We address this question by introducing the particle dual averaging (PDA) method, which globally
optimizes an entropic regularized nonlinear functional. For two-layer mean field network which is an
important application, we establish polynomial runtime guarantee for the discrete-time algorithm; to
our knowledge this is the first quantitative global convergence result under similar settings.

1.1 Contributions

We propose the PDA algorithm, which draws inspiration from the dual averaging method originally
developed for finite-dimensional convex optimization (Nesterov, 2005, 2009; Xiao, 2009). We
iteratively optimize a probability distribution in the form of a Boltzmann distribution, samples from
which can be obtained from the Langevin algorithm (see Figure 1). The resulting algorithm has
comparable per-iteration cost as gradient descent and can be efficiently implemented.

For optimizing two-layer neural network in the mean-field regime, we establish quantitative global
convergence rate of PDA in minimizing an KL-regularized objective: the algorithm requires ~O(��3)

steps and ~O(��2) particles to reach an �-accurate solution, where ~O hides logarithmic factors.
Importantly, our analysis does not couple the learning dynamics with certain continuous time limit,
but directly handles the discrete update. This leads to a simpler analysis that covers more general
settings. We also derive the generalization bound on the solution obtained by the algorithm. From
the viewpoint of the optimization, PDA is an extension of Langevin algorithm to handle entropic-
regularized nonlinear functionals on the probability space. Hence we believe our proposed method
can also be applied to other distribution optimization problems beyond the training of neural networks.

1.2 Related Literature

Mean field limit of two-layer NNs. The key observation for the mean field analysis is that when the
number of neurons becomes large, the evolution of parameters is well-described by a nonlinear partial
differential equation (PDE), which can be viewed as solving an infinite-dimensional convex problem
(Bengio et al., 2006; Bach, 2017). Global convergence can be derived by studying the limiting
PDE (Mei et al., 2018; Chizat and Bach, 2018b; Rotskoff and Vanden-Eijnden, 2018; Sirignano and
Spiliopoulos, 2020), yet quantitative convergence rate generally requires additional assumptions.

Javanmard et al. (2019) analyzed a particular RBF network and established linear convergence (up to
certain error1) for strongly concave target functions. Rotskoff et al. (2019) provided a sublinear rate
in continuous time for a modified gradient flow. In the regularized setting, Chizat (2019) obtained
local linear convergence under certain non-degeneracy assumption on the objective. Wei et al. (2019)
also proved polynomial rate for a perturbed dynamics under weak ‘2 regularization.

1Note that such error yields sublinear rate with respect to arbitrarily small accuracy �.
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Our setting is most related to Hu et al. (2019), who studied the minimization of a nonlinear functional
with KL regularization on the probability space, and showed linear convergence (in continuous time)
of a particle dynamics namedmean �eld Langevin dynamicswhen the regularization is suf�ciently
strong. Chen et al. (2020) also considered optimizing a KL-regularized objective in the in�nite-width
and continuous-time limit, and derived NTK-like convergence guarantee under certain parameter
scaling. Compared to these prior works, we directly handle the discrete time update in the mean-�eld
regime, and our analysis covers a wider range of regularization parameters and loss functions.

Langevin algorithm. Langevin dynamics can be viewed as optimization in the space of probability
measures (Jordan and Kinderlehrer, 1996; Jordan et al., 1998); this perspective has been explored
in Wibisono (2018); Durmus et al. (2019). It is known that the continuous-time Langevin diffusion
converges exponentially fast to target distributions satisfying certain growth conditions (Roberts
and Tweedie, 1996; Mattingly et al., 2002). The discretizedLangevin algorithmhas a sublinear
convergence rate that depends on the numerical scheme (Li et al., 2019) and has been studied under
various metrics (Dalalyan, 2014; Durmus and Moulines, 2017; Cheng and Bartlett, 2017).

The Langevin algorithm can also optimize certain non-convex objectives (Raginsky et al., 2017; Xu
et al., 2018; Erdogdu et al., 2018), in which one �nite-dimensional “particle” can attain approximate
global convergence due to concentration of Boltzmann distribution around the true minimizer. How-
ever, such result often depends on the spectral gap that grows exponentially in dimensionality, which
renders the analysis ineffective for neural net optimization in the high-dimensionalparameter space.

Very recently, convergence of Hamiltonian Monte Carlo in learning certain mean �eld models has
been analyzed in Bou-Rabee and Schuh (2020); Bou-Rabee and Eberle (2021). Compared to these
concurrent results, our formulation covers a more general class of potentials, and in the context of
two-layer neural network, we provide optimization guarantees for a wider range of loss functions.

1.3 Notations

Let R+ denote the set of non-negative real numbers andk � k2 the Euclidean norm. Given a density
functionq : Rp ! R+ , we denote the expectation with respect toq(� )d� by Eq[�]. For a function
f : Rp ! R, we de�neEq[f ] =

R
f (� )q(� )d� whenf is integrable.KL is the Kullback-Leibler

divergence:KL( qkq0) def=
R

q(� ) log
�

q( � )
q0( � )

�
d� . Let P2 denote the set of positive densitiesq onRp

such that the second-order momentEq[k� k2
2] < 1 and entropy�1 < � Eq[log(q)] < + 1 are well

de�ned. N (0; I p) is the Gaussian distribution onRp with mean0 and covariance matrixI p.

2 Problem Setting

We consider the problem of risk minimization with neural networks in the mean �eld regime. For
simplicity, we focus on supervised learning. We here formalize the problem setting and models. Let
X � Rd andY � R be the input and output spaces, respectively. For given input datax 2 X , we
predict a corresponding outputy = h(x) 2 Y through a hypothesis functionh : X ! Y .

2.1 Neural Network and Mean Field Limit

We adopt a neural network in the mean �eld regime as a hypothesis function. Let
 = Rp be a
parameter space andh� : X ! Y (� 2 
) be a bounded function which will be a component of a
neural network. We sometimes denoteh(�; x ) = h� (x). Let q(� )d� be a probability distribution
on the parameter space
 and� = f � r gM

r =1 be the set of parameters� r sampled fromq(� )d� . A
hypothesis is de�ned as an ensemble ofh� r as follows:

h� (x) def=
1

M

MX

r =1

h� r (x): (1)

A typical example in the literature of the above formulation is a two-layer neural network.
Example 1(Two-layer Network). Letar 2 R andbr 2 Rd (r 2 f 1; 2; : : : ; M g) be parameters for

output and input layers, respectively. We set� r = ( ar ; br ) and� = f � r gM
r =1 . Denoteh� r (x) def=

� 2(ar � 1(b>
r x)) ( x 2 X ), where� 1 and� 2 are smooth activation functions. Then the hypothesish�

is a two-layer neural network composed of neuronsh� r : h� (x) = 1
M

P M
r =1 � 2(ar � 1(b>

r x)) :
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Remark. The purpose of� 2 in the last layer is to ensure the boundedness of output (e.g., see
Assumption 2 in Mei et al. (2018)); this nonlinearity can also be removed if parameters of output layer
are �xed. In addition, although we mainly focus on the optimization of two-layer neural network, our
proposed method can also be applied to ensembleh� of deep neural networksh� r .

Suppose the parameters� r follow a probability distributionq(� )d� , thenh� can be viewed as a
�nite-particle discretization of the following expectation,

hq(x) = Eq[h� (x)]: (2)

which we refer to as themean �eld limitof the neural networkh� . As previously discussed, when
h� is overparameterized, optimizingh� becomes “close” to directly optimizing the probability
distribution on the parameter space
 , for which convergence to the optimal solution may be
established under appropriate conditions (Nitanda and Suzuki, 2017; Mei et al., 2018; Chizat and
Bach, 2018b). Hence, the study of optimization ofhq with respect to the probability distribution
q(� )d� may shed light on important properties of overparameterized neural networks.

2.2 Regularized Empirical Risk Minimization

We brie�y outline our setting for regularized expected / empirical risk minimization. The prediction
error of a hypothesis is measured by the loss function`(z; y) (z; y 2 Y ), such as the squared
loss`(z; y) = 0 :5(z � y)2 for regression, or the logistic loss`(z; y) = log(1 + exp( � yz)) for
binary classi�cation. LetD be a data distribution overX � Y . For expected risk minimization,
the distributionD is set to the true data distribution; whereas for empirical risk minimization, we
takeD to be the empirical distribution de�ned by training dataf (x i ; yi )gn

i =1 (x i 2 X ; yi 2 Y )
independently sampled from the data distribution. We aim to minimize the expected / empirical
risk together with a regularization term, which controls the model complexity and also stabilizes the
optimization. The regularized objective can be written as follows: for� 1; � 2 > 0,

min
q2P 2

n
L (q) def= E(X;Y ) �D [`(hq(X ); Y )] + R� 1 ;� 2 (q)

o
; (3)

whereR� 1 ;� 2 is a regularization term composed of the weighted sum of the second-order moment
and negative entropy with regularization parameters� 1, � 2:

R� 1 ;� 2 (q) def= � 1Eq[k� k2
2] + � 2Eq[log(q)]: (4)

Note that this regularization is the KL divergence ofq from a Gaussian distribution. In our setting,
such regularization ensures that the Gibbs distributionsq( t )

� speci�ed in Section 3 are well de�ned.

While our primary focus is the optimization of the objective(3), we can also derive a generalization
error bound for the empirical risk minimizer of order ofO(n� 1=2) for both the regression and binary
classi�cation settings, following Chen et al. (2020). We defer the details to Appendix D.

2.3 The Langevin Algorithm

Before presenting our proposed method, we brie�y review the Langevin algorithm. For a given
smooth potential functionf : 
 ! R, the Langevin algorithm performs the following update: given
the initial � (1) � q(1) (� )d� , step size� > 0, and Gaussian noise� (k ) � N (0; I p),

� (k+1)  � (k ) � � r � f (� (k ) ) +
p

2�� (k ) : (5)

Under appropriate conditions onf , it is known that� ( t ) converges to a stationary distribution
proportional toexp(� f (�)) in terms of KL divergence at a linear rate (e.g., Vempala and Wibisono
(2019)) up toO(� )-error, where we hide additional factors in the big-O notation.

Alternatively, note that when the normalization constant
R

exp(� f (� ))d � exists, the Boltzmann
distribution in proportion toexp(� f (�)) is the solution of the following optimization problem,

min
q:density

f Eq[f ] + Eq[log(q)]g : (6)

Hence we may interpret the Langevin algorithm as approximately solving an entropic regularized
linear functional (i.e., free energy functional) on the probability space. This connection between
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sampling and optimization (see Dalalyan (2017); Wibisono (2018); Durmus et al. (2019)) enables us
to employ the Langevin algorithm to obtain (samples from) the closed-form Boltzmann distribution
which is the minimizer of(6); for example, many Bayesian inference problems fall into this category.

However, the objective(3) that we aim to optimize is beyond the scope of Langevin algorithm – due
to thenonlinearityof loss`(z; y) with respect toz, the stationary distribution cannot be described as
a closed-form solution of(6). To overcome this limitation, we develop the particle dual averaging
(PDA) algorithm which ef�ciently solves (3) with quantitative runtime guarantees.

3 Proposed Method

We now propose theparticle dual averagingmethod to approximately solve the problem (3) by
optimizing a two-layer neural network in the mean �eld regime; we also introduce the mean �eld limit
of the proposed method to explain the algorithmic intuition and develop the convergence analysis.

3.1 Particle Dual Averaging

Our proposed particle dual averaging method (Algorithm 1) is an optimization algorithm on the space
of probability measures. The algorithm consists of an inner loop and outer loop; we run Langevin
algorithm in inner loop to approximate a Gibbs distribution, which is optimized in the outer loop
so that it converges to the optimal distributionq� . This outer loop update is designed to extend
the classical dual averaging scheme (Nesterov, 2005, 2009; Xiao, 2009) to in�nite dimensional
optimization problems (described in Section 3.2). Below we provide a more detailed explanation.

� In the outer loop, the last iterate~� ( t ) of the previous inner loop is given. We compute
@z `(h ~� ( t ) (x t ); yt ), which is a component of the Gibbs potential2, and initialize a set of parti-
cles� (1) at ~� ( t ) . In Appendix B we introduce a different “restarting” scheme for the initialization.

� In the inner loop, we run the Langevin algorithm (noisy gradient descent) starting from� (1) , where
the gradient at thek-th inner step is given byr � g( t ) (� (k )

r ), which is a sum of weighted average of
@z `(h ~� ( s ) (xs); ys)@� h(� (k )

r ; xs) and the gradient of̀2-regularization (see Algorithm 1).

Algorithm 1 Particle Dual Averaging (PDA)

Input: data distributionD, initial densityq(1) , number of outer-iterationsT, learning ratesf � t gT
t =1 ,

number of inner-iterationsf Tt gT
t =1

Randomly draw i.i.d. initial parameters~� (1)
r � q(1) (� )d� (r 2 f 1; 2; : : : ; M g)

~� (1)  f ~� (1)
r gM

r =1

for t = 1 to T do
Randomly draw data(x t ; yt ) from D
� (1) = f � (1)

r gM
r =1  ~� ( t )

for k = 1 to Tt do
Run inexact noisy gradient descent forr 2 f 1; 2; : : : ; M g
r � g( t ) (� (k )

r )  2
� 2 ( t +2)( t +1)

P t
s=1 s@z `(h ~� ( s ) (xs); ys)@� h(� (k )

r ; xs) + 2� 1 t
� 2 ( t +2) � (k )

r

� (k+1)
r  � (k )

r � � t r � g( t ) (� (k )
r ) +

p
2� t �

(k )
r (i.i.d. Gaussian noise� (k )

r � N (0; I p))
end for
~� ( t +1)  � (T t +1) = f � (T t +1)

r gM
r =1

end for
Randomly pick upt 2 f 2; 3; : : : ; T + 1g following the probabilityP[t] = 2t

T (T +3) and returnh ~� ( t )

Figure 1 provides a pictorial illustration of Algorithm 1. Note that this procedure is a slight modi�ca-
tion of the normal gradient descent algorithm: the �rst term ofr � g( t ) is similar to the gradient of
the loss@� r `(h� ( k ) (x); y) � @z `(h� ( k ) (x); y)@� h(� (k )

r ; x) where� (k ) = f � (k )
r gM

r =1 . Indeed, if we

2In Algorithm 1, the terms@z `(h ~� ( s ) (xs ); ys ) appear in inner loop; but note that these terms only need to
be computed in outer loop because they are independent to the inner loop iterates.
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set the number of inner-iterationsTt = 1 and replace the directionr � g( t ) (� (k )
r ) with the gradient of

theL 2-regularized loss, then PDA exactly reduces to the standard noisy gradient descent algorithm
considered in Mei et al. (2018). Algorithm 1 can be extended to the minibatch variant in the obvious
manner; for ef�cient implementation in the empirical risk minimization setting see Appendix E. 1.

3.2 Mean Field View of PDA

In this subsection we discuss the mean �eld limit of PDA and explain its algorithmic intuition. Note
that the inner loop of Algorithm 1 is the Langevin algorithm withM particles, which optimizes the
potential function given by the weighted sum:

g( t ) (� ) =
2

� 2(t + 2)( t + 1)

tX

s=1

s
�
@z `(h ~� ( s ) (xs); ys)h(�; x s) + � 1k� k2

2

�
:

Due to the rapid convergence of Langevin algorithm outlined in Subsection 2.3, the particles� (k+1)
r

(r 2 f 1; : : : ; M g) can be regarded as (approximate) samples from the Boltzmann distribution:
exp

�
� g( t )

�
. Hence, the inner loop of PDA returns anM -particle approximation of some stationary

distribution, which is then modi�ed in the outer loop. Importantly, the update on the stationary
distribution is designed so that the algorithm converges to the optimal solution of the problem (3).

We now introduce themean �eld limit of PDA, i.e., taking the number of particlesM ! 1 and
directly optimizing the problem (3) overq. We refer to this mean �eld limit simply as the dual
averaging (DA) algorithm. The dual averaging method was originally developed for the convex
optimization in �nite-dimensional spaces (Nesterov, 2005, 2009; Xiao, 2009), and here we adapt it to
optimization on the probability space. The detail of the DA algorithm is described in Algorithm 2.

Algorithm 2 Dual Averaging (DA)

Input: data distributionD and initial densityq(1)

for t = 1 to T do
Randomly draw a data(x t ; yt ) from D
g( t )  @z `(hq( t ) (x t ); yt )h(�; x t ) + � 1k � k2

2

Obtain an approximationq( t +1) of the density functionq( t +1)
� / exp

�
�

P t
s =1 2sg ( s )

� 2 ( t +2)( t +1)

�

end for
Randomly pick upt 2 f 2; 3; : : : ; T + 1g following the probabilityP[t] = 2t

T (T +3) and returnhq( t )

Algorithm 2 iteratively updates the density functionq( t +1)
� 2 P 2 which is a solution to the objective:

min
q2P 2

(

Eq

h tX

s=1

sg(s)
i

+
� 2

2
(t + 2)( t + 1) Eq[log(q)]

)

; (7)

where the functiong( t ) = @z `(hq( t ) (x t ); yt )h(�; x t ) + � 1k � k2
2 is the functional derivative of

`(hq(x i i ); yt ) + � 1Eq[k� k2
2] with respect toq atq( t ) . In other words, the objective (7) is the sum of

weighted average of linear approximations of loss function and the entropic regularization in the
space of probability distributions. In this sense, the DA method can be seen as an extension of the
Langevin algorithm to handle entropic regularized nonlinear functionals on the probability space by
iterativelylinearizingthe objective.

To sum up, we may interpret the DA method as approximating the optimal distributionq� by iteratively
optimizingq( t )

� , which takes the form of a Boltzmann distribution. In the inner loop of the PDA
algorithm, we obtainM (approximate) samples fromq( t )

� via the Langevin algorithm. In other words,
PDA can be viewed as a �nite-particle approximation of DA – indeed, the stationary distributions
obtained in PDA converges toq( t +1)

� by takingM ! 1 . In the following section, we present
the convergence rate of the DA method, and also take into account the iteration complexity of the
Langevin algorithm; we defer the �nite-particle approximation error analysis to Appendix C.
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4 Convergence Analysis

We now provide quantitative global convergence guarantee for our proposed method in discrete time.
We �rst derive the outer loop complexity, assuming approximate optimality of the inner loop iterates,
which we then verify in the inner loop analysis. The total complexity is then simply obtained by
combining the outer- and inner-loop runtime.

4.1 Outer Loop Complexity

We �rst analyze the convergence rate of the dual averaging (DA) method (Algorithm 2). Our analysis
will be made under the following assumptions.

Assumption 1.

(A1) Y � [� 1; 1]. `(z; y) is a smooth convex function w.r.t.z andj@z `(z; y)j � 2 for y; z 2 Y .

(A2) jh(�; x )j � 1 andh(�; x ) is smooth with respect to� for x 2 X .

(A3) KL( q( t +1) kq( t +1)
� ) � 1=t2.

Remark. (A2) is satis�ed by smooth activation functions such as sigmoid and tanh. Many loss
functions including the squared loss and logistic loss satisfy(A1) under the boundedness assumptions
Y � [� 1; 1] andjh� (x)j � 1. Note that constants in(A1) and(A2) are de�ned for simplicity and
can be relaxed to any value.(A3) speci�es the precision of approximate solutions of sub-problems
(7) to guarantee the global convergence of Algorithm 2, which we verify in our inner loop analysis.

We �rst introduce the following quantity forq 2 P 2,

e(q) def= Eq[log(q)] �
4
� 2

�
p
2

�
exp

�
4
� 2

�
+ log

�
3�� 2

� 1

��
:

Observe that the expression consists of the negative entropy minus its lower bound forq( t )
� under

Assumption(A1), (A2); in other wordse(q( t )
� ) � 0. We have the following convergence rate of DA3.

Theorem 1(Convergence of DA). Under Assumptions(A1), (A2), and(A3), for arbitrary q� 2 P 2,
iterates of the DA method (Algorithm 2) satis�es

2
T(T + 3)

T +1X

t =2

t
�

E[L (q( t ) )] � L (q� )
�

� O
� 1

T2

�
1 + � 1Eq�

�
k� k2

2

��
+

� 2e(q� )
T

+
� 2

T
(1 + exp(8=� 2))p2 log2(T + 2)

�
;

where the expectationE[L (q( t ) )] is taken with respect to the history of examples.

Theorem 1 demonstrates the convergence rate of Algorithm 2 to the optimal value of the regularized
objective(3) in expectation. Note that 2

T (T +3)

P T +1
t =2 tE[L (q( t ) )] is the expectation ofE[L (q( t ) )]

according to the probabilityP[t] = 2t
T (T +3) (t 2 f 2; : : : ; T + 1g) as speci�ed in Algorithm 2. If we

takep; � 1; � 2 as constants and use~O to hide the logarithmic terms, we can deduce that after~O(� � 1)
iterations, an� -accurate solution of the optimal distribution:L (q) � inf q2P 2 L (q) + � is achieved in
expectation. Importantly, this convergence rate applies toanychoice of regularization parameters, in
contrast to the strong regularization required in Hu et al. (2019); Jabir et al. (2019).

On the other hand, due to the exponential dependence on� � 1
2 , our convergence rate is not informative

under weak regularization� 2 ! 0. Such dependence follows from the classical LSI perturbation
lemma (Holley and Stroock, 1987), which is likely unavoidable for Langevin-based methods in the
most general setting (Menz and Schlichting, 2014), unless additional assumptions are imposed (e.g.,
a student-teacher setup); we intend to further investigate these conditions in future work.

3In Appendix B we introduce a more general version of Theorem 1 that allows for inexacthq( t ) (x), which
simpli�es the analysis of �nite-particle discretization presented in Appendix C.
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4.2 Inner Loop Complexity

In order to derive the total complexity (i.e., taking both the outer loop and inner loop into account)
towards a required accuracy, we also need to estimate the iteration complexity of Langevin algorithm.
We utilize the following convergence result under the log-Sobolev inequality (De�nition A):
Theorem 2(Vempala and Wibisono (2019)). Consider a probability densityq(� ) / exp(� f (� ))
satisfying the log-Sobolev inequality with constant� , and assumef is smooth andr f is L -Lipschitz,
i.e.,kr � f (� ) � r � f (� 0)k2 � Lk� � � 0k2. If we run the Langevin algorithm (5) with learning rate
0 < � � �

4L 2 and letq(k ) (� )d� be a probability distribution that� (k ) follows, then we have,

KL( q(k ) kq) � exp(� ��k )KL( q(1) kq) + 8 � � 1�pL 2:

Theorem 2 implies that a� -accurate solution in KL divergence can be obtained by the Langevin

algorithm with� � �
4L 2 min

n
1; �

4p

o
and 1

�� log 2KL( q(1) kq)
� -iterations.

Since the optimal solution of a sub-problem in DA (Algorithm 2) takes the forms ofq( t +1)
� /

exp
�

�
P t

s =1 2sg ( s )

� 2 ( t +2)( t +1)

�
, we can verify the LSI and determine the constant forq( t +1)

� (� )d� based on
the LSI perturbation lemma from Holley and Stroock (1987) (see Lemma B and Example 2 in
Appendix A. 2). Consequently, we can apply Theorem 2 toq( t +1)

� for the inner loop complexity when
r � logq( t +1)

� is Lipschitz continuous, which motivates us to introduce the following assumption.
Assumption 2.

(A4) @� h(�; x) is 1-Lipschitz continuous:k@� h(�; x )� @� h(� 0; x)k2 � k � � � 0k2, 8x 2 X , �; � 0 2 
 .

Remark. (A4) is parallel to (Mei et al., 2018, Assumption A3), and is satis�ed by two-layer neural
network in Example 1 when the output or input layer is �xed and the input spaceX is compact. We
remark that this assumption can be relaxed to Hölder continuity of@� h(�; x) via the recent result
of Erdogdu and Hosseinzadeh (2020), which allows us to extend Theorem 1 to generalL p-norm
regularizer forp > 1. For now we work with(A4) for simplicity of the presentation and proof.

Set� t +1 to be the desired accuracy of an approximate solutionq( t +1) speci�ed in (A3): � t +1 =
1=(t + 1) 2, we have the following guarantee for the inner loop.
Corollary 1 (Inner Loop Complexity). Under(A1), (A2), and(A4), if we run the Langevin algo-

rithm with step size� t = O
�

� 1 � 2 � t +1

p(1+ � 1 )2 exp(8 =� 2 )

�
on (7), then an approximate solution satisfying

KL( q( t +1) kq( t +1)
� ) � � t +1 can be obtained withinO

�
� 2 exp(8 =� 2 )

� 1 � t
log 2KL( q( t ) kq( t +1)

� )
� t +1

�
-iterations.

Moreover,KL( q( t ) kq( t +1)
� ) ( t 2 f 1; 2; : : : ; T + 1g) are uniformly bounded with respect tot as long

asq(1) is a Gaussian distribution and(A3) is satis�ed.

We comment that for the inner loop we utilized theoverdampedLangevin algorithm, since it is the
most standard and commonly used sampling method for the objective(7). Our analysis can easily
incorporate other inner loop updates such as the underdamped Langevin algorithm (Cheng et al.,
2018; Eberle et al., 2019) or the Metropolis-adjusted Langevin algorithm (Roberts and Tweedie,
1996; Dwivedi et al., 2018), which may improve the iteration complexity.

4.3 Total Complexity

Combining Theorem 1 and Corollary 1, we can now derive the total complexity of our proposed
algorithm. For simplicity, we takep; � 1; � 2 as constants and hide logarithmic terms in~O and ~� . The
following corollary establishes a~O(� � 3) total iteration complexity to obtain an� -accurate solution in
expectation becauseTt = ~�( t2) = ~O(� � 2) for t � T .

Corollary 2 (Total Complexity). Let � > 0 be an arbitrary desired accuracy andq(1) be a Gaussian
distribution. Under assumptions(A1), (A2), (A3), and(A4), if we run Algorithm 2 forT = ~�( � � 1)

iterations on the outer loop, and the Langevin algorithm with step size� t = �
�

� 1 � 2 � t +1

p(1+ � 1 )2 exp(8 =� 2 )

�

for Tt = ~�( � � 1
t ) iterations on the inner loop, then an� -accurate solution:L (q) � inf q2P 2 L (q) + �

of the objective(3) is achieved in expectation.

8



Quantitative convergence guarantee. To translate the above convergence rate result to the �nite-
particle PDA (Algorithm 1), we also characterize the �nite-particle discretization error in Appendix C.
For the particle complexity analysis, we consider two versions of particle update: (i ) the warm-
start scheme described in Algorithm 1, in which� (1) is initialized at the last iterate~� ( t ) of the
previous inner loop, and (ii ) the resamplingscheme, in which� (1) is initialized from the initial
distributionq(1) (� )d� (see Appendix B for details). Remarkably, for the resampling scheme, we
provide convergence rate guarantee in time- and space-discretized settings that ispolynomial in both
the iterations and particle size; speci�cally, the particle complexity of~O(� � 2), together with the
total iteration complexity of~O(� � 3), suf�ces to obtain an� -accurate solution to the objective(3) (see
Appendix B and C for precise statement).

5 Experiments

5.1 Experiment Setup

We employ our proposed algorithm in both synthetic student-teacher settings (see Figure 2(a)(b))
and real-world dataset (see Figure 2(c)). For the student-teacher setup, the labels are generated as
yi = f � (x i ) + " i , wheref � is the teacher model (target function), and" is zero-mean i.i.d. label
noise. For the student modelf , we follow Mei et al. (2018, Section 2.1) and parameterize a two-layer
neural network with �xed second layer as:

f (x) =
1

M �

MX

r =1

� (w>
r x + br ); (8)

which we train to minimize the objective(3) using PDA. Note that� = 1 corresponds to the mean
�eld regime (which we are interested in), whereas setting� = 1=2 leads to the kernel (NTK) regime4.

Synthetic student-teacher setting. For Figure 2(a)(b) we design synthetic experiments for both re-
gression and classi�cation tasks, where the student model is a two-layer tanh network withM = 500.
For regression, we take the target functionf � to be a multiple-index model withm neurons:f � (x) =

1p
m

P m
i =1 � � (hw�

i ; xi ), and the input is drawn from a unit GaussianN (0; I p). For binary classi�-
cation, we consider a simple two-dimensional dataset fromsklearn.datasets.make circles
(Pedregosa et al., 2011), in which the goal is to separate two groups of data on concentric circles (red
and blue in Figure 2(b)). We include additional experimental results in Appendix F.

PDA hyperparameters. We optimize thesquared lossfor regression and thelogistic lossfor binary
classi�cation. The model is trained by PDA with batch size 50. We scale the number of inner loop
stepsTt with t, and the step size� t with 1=

p
t, wheret is the outer loop iteration; this heuristic is

consistent with the required inner-loop accuracy in Theorem 1 and Proposition 2.

(a) objective value
(regression).

(b) parameter trajectory
(classi�cation).

(c) MNIST odd vs. even
(classi�cation).

Figure 2: (a) Iteration complexity of PDA: theO(T � 1) rate on the outer loop agrees with Theorem 1. (b)
Parameter trajectory of PDA: darker color (purple) indicates earlier in training, and vice versa. (c) odd vs. even
classi�cation on MNIST; we report the training loss (red) as well as the train and test accuracy (blue and green).

4We use the termkernel regimeonly to indicate the parameter scaling� ; this does not necessarily imply that
the NTK linearization is an accurate description of the trained model.
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5.2 Empirical Findings

Convergence rate. In Figure 2(a) we verify theO(T � 1) iteration complexity of the outer loop
in Theorem 1. We apply PDA to optimize the expected risk (analogous to one-pass SGD) in the
regression setting, in which the input dimensionalityp = 1 and the target function is a single-index
model (m = 1 ) with tanh activation. We employ theresampledupdate (i.e., without warm-start; see
Appendix B) with hyperparameters� 1 = 10 � 2; � 2 = 10 � 3. To compute the entropy in the objective
(3), we adopt thek-nearest neighbors estimator (Kozachenko and Leonenko, 1987) withk = 10.

Presence of feature learning. In Figure 2(b) we visualize the evolution of neural network parame-
ters optimized by PDA in a 2-dimensional classi�cation problem. Due to structure of the input data
(concentric rings), we expect that for a two-layer neural network to be a good separator, its parameters
should also distribute on a circle. Indeed the converged solution of PDA (bright yellow) agrees with
this intuition and demonstrates that PDA learns useful features beyond the kernel regime.

Binary classi�cation on MNIST. In Figure 2(c) we report the training and test performance of PDA
in separating odd vs. even digits from the MNIST dataset. We subsamplen = 2500 training examples
with binary labels, and learn a two-layer tanh network with widthM = 2500. We use the resampled
update of PDA to optimize the cross entropy loss, with hyperparameters� 1 = 10 � 2; � 2 = 10 � 4.
Observe that the algorithm achieves good generalization performance (green) and roughly maintains5

theO(T � 1) iteration complexity (red) in optimizing the training objective (3).

Conclusion

We proposed the particle dual averaging (PDA) algorithm for optimizing two-layer neural networks
in the mean �eld regime. Leveraging tools from �nite-dimensional convex optimization developed
in the original dual averaging method, we establishedquantitativeconvergence rate of PDA for
regularized empirical and expected risk minimization. We also provided particle complexity analysis
and generalization bounds for both regression and classi�cation problems. Our theoretical �ndings
are aligned with experimental results on neural network optimization. Looking forward, we plan to
investigate speci�c problem instances in which convergence rate can be obtained under vanishing
regularization. It is also important to consider accelerated variants of PDA to further improve the
convergence rate in the empirical risk minimization setting. Another interesting direction would be to
explore other applications of PDA beyond two-layer neural networks, such as deep models (Araújo
et al., 2019; Nguyen and Pham, 2020; Lu et al., 2020; Pham and Nguyen, 2021), as well as other
optimization problems for entropic regularized nonlinear functional.

Acknowledgment

The authors would like to thank Murat A. Erdogdu and anonymous NeurIPS reviewers for their
helpful feedback. AN was partially supported by JSPS Kakenhi (19K20337) and JST-PRESTO
(JPMJPR1928). DW was partially supported by NSERC and LG Electronics. TS was partially
supported by JSPS KAKENHI (18H03201), Japan Digital Design and JST CREST.

References
Allen-Zhu, Z. and Li, Y. (2019). What can resnet learn ef�ciently, going beyond kernels? InAdvances

in Neural Information Processing Systems, pages 9017–9028.

Allen-Zhu, Z. and Li, Y. (2020). Backward feature correction: How deep learning performs deep
learning.arXiv preprint arXiv:2001.04413.

Allen-Zhu, Z., Li, Y., and Song, Z. (2019). A convergence theory for deep learning via over-
parameterization. InProceedings of International Conference on Machine Learning 36, pages
242–252.
5Note that the estimated training objective (red) slightly deviates from the ideal1=T-rate; this may be due to

inaccuracy in the entropy estimation, or non-convergence of the algorithm (i.e., overestimation ofL (q� )).

10
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Menz, G. and Schlichting, A. (2014). Poincaré and logarithmic sobolev inequalities by decomposition
of the energy landscape.The Annals of Probability, 42(5):1809–1884.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012).Foundations of Machine Learning. The
MIT Press.

Nesterov, Y. (2005). Smooth minimization of non-smooth functions.Mathematical programming,
103(1):127–152.

Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems.Mathematical program-
ming, 120(1):221–259.

Nguyen, P.-M. and Pham, H. T. (2020). A rigorous framework for the mean �eld limit of multilayer
neural networks.arXiv preprint arXiv:2001.11443.

Nitanda, A., Chinot, G., and Suzuki, T. (2019). Gradient descent can learn less over-parameterized
two-layer neural networks on classi�cation problems.arXiv preprint arXiv:1905.09870.

Nitanda, A. and Suzuki, T. (2017). Stochastic particle gradient descent for in�nite ensembles.arXiv
preprint arXiv:1712.05438.

Nitanda, A. and Suzuki, T. (2020). Optimal rates for averaged stochastic gradient descent under
neural tangent kernel regime.arXiv preprint arXiv:2006.12297.

Otto, F. and Villani, C. (2000). Generalization of an inequality by talagrand and links with the
logarithmic sobolev inequality.Journal of Functional Analysis, 173(2):361–400.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python.Journal of
Machine Learning Research, 12:2825–2830.

13



Pham, H. T. and Nguyen, P.-M. (2021). Global convergence of three-layer neural networks in the
mean �eld regime. InInternational Conference on Learning Representations.

Raginsky, M., Rakhlin, A., and Telgarsky, M. (2017). Non-convex learning via stochastic gradient
langevin dynamics: a nonasymptotic analysis.arXiv preprint arXiv:1702.03849.

Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of langevin distributions and
their discrete approximations.Bernoulli, 2(4):341–363.

Rotskoff, G. M., Jelassi, S., Bruna, J., and Vanden-Eijnden, E. (2019). Global convergence of neuron
birth-death dynamics. InProceedings of International Conference on Machine Learning 36, pages
9689–9698.

Rotskoff, G. M. and Vanden-Eijnden, E. (2018). Trainability and accuracy of neural networks: An
interacting particle system approach.arXiv preprint arXiv:1805.00915.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with relu activation
function. The Annals of Statistics, 48(4):1875–1897.

Shalev-Shwartz, S. and Ben-David, S. (2014).Understanding machine learning: From theory to
algorithms. Cambridge university press.

Sirignano, J. and Spiliopoulos, K. (2020). Mean �eld analysis of neural networks: A central limit
theorem.Stochastic Processes and their Applications, 130(3):1820–1852.

Suzuki, T. (2018). Adaptivity of deep relu network for learning in besov and mixed smooth besov
spaces: optimal rate and curse of dimensionality.arXiv preprint arXiv:1810.08033.

Suzuki, T. (2020). Generalization bound of globally optimal non-convex neural network train-
ing: Transportation map estimation by in�nite dimensional langevin dynamics.arXiv preprint
arXiv:2007.05824.

Suzuki, T. and Nitanda, A. (2019). Deep learning is adaptive to intrinsic dimensionality of model
smoothness in anisotropic besov space.arXiv preprint arXiv:1910.12799.

Vempala, S. and Wibisono, A. (2019). Rapid convergence of the unadjusted langevin algorithm:
Isoperimetry suf�ces. InAdvances in Neural Information Processing Systems, pages 8094–8106.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. (2019). Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. InAdvances in Neural Information Processing
Systems, pages 9712–9724.

Wibisono, A. (2018). Sampling as optimization in the space of measures: The langevin dynamics as
a composite optimization problem. InProceedings of Conference on Learning Theory 31, pages
2093–3027.

Xiao, L. (2009). Dual averaging method for regularized stochastic learning and online optimization.
In Advances in Neural Information Processing Systems 22, pages 2116–2124.

Xu, P., Chen, J., Zou, D., and Gu, Q. (2018). Global convergence of langevin dynamics based
algorithms for nonconvex optimization. InAdvances in Neural Information Processing Systems,
pages 3122–3133.

Yang, G. and Hu, E. J. (2020). Feature learning in in�nite-width neural networks.arXiv preprint
arXiv:2011.14522.

Yehudai, G. and Shamir, O. (2019). On the power and limitations of random features for understanding
neural networks. InAdvances in Neural Information Processing Systems, pages 6598–6608.

Ying, L. (2020). Mirror descent algorithms for minimizing interacting free energy.Journal of
Scienti�c Computing, 84(3):1–14.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. (2020). Gradient descent optimizes over-parameterized deep
relu networks.Machine Learning, 109(3):467–492.

14



Table of Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem Setting 3

2.1 Neural Network and Mean Field Limit . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Regularized Empirical Risk Minimization . . . . . . . . . . . . . . . . . . . . . . 4

2.3 The Langevin Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Proposed Method 5

3.1 Particle Dual Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Mean Field View of PDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Convergence Analysis 7

4.1 Outer Loop Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Inner Loop Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Total Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Experiments 9

5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2 Empirical Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A Preliminaries 17

A. 1 Entropic Regularized Linear Functional . . . . . . . . . . . . . . . . . . . . . . . 17

A. 2 Log-Sobolev and Talagrand's Inequalities . . . . . . . . . . . . . . . . . . . . . . 17

B Proof of Main Results 19

B. 1 Extension of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B. 2 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B. 3 Outer Loop Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B. 4 Inner Loop Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

C Discretization Error of Finite Particles 28

C. 1 Case of Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C. 2 Case of Warm-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D Generalization Bounds for Empirical Risk Minimization 32

D. 1 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

D. 2 Generalization Bound on the Binary Classi�cation Problems . . . . . . . . . . . . 33

D. 3 Generalization Bound on the Regression Problem . . . . . . . . . . . . . . . . . . 34

15



E Additional Discussions 35

E. 1 Ef�cient Implementation of PDA . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

E. 2 Extension to Multi-class Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . 36

E. 3 Correspondence with Finite-dimensional Dual Averaging Method . . . . . . . . . 37

F Additional Experiments 37

F. 1 Comparison of Generalization Error . . . . . . . . . . . . . . . . . . . . . . . . . 37

F. 2 PDA Beyond̀ 2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

F. 3 On the Role of Entropy Regularization . . . . . . . . . . . . . . . . . . . . . . . . 39

F. 4 Adaptivity of Mean Field Neural Networks . . . . . . . . . . . . . . . . . . . . . 39

G Additional Related Work 40

16



MISSING PROOFS

A Preliminaries

A. 1 Entropic Regularized Linear Functional

In this section, we explain the property of the optimal solution of the entropic regularized linear
functional. We here de�ne the gradient of the negative entropyEq[log(q)] with respect toq over the
probability space asr qEq[log(q)] = log( q). Note that this gradient is well de�ned up to constants
as a linear operator on the probability space:q0 7!

R
(q0 � q)( � ) log(q(� ))d � . The following lemma

shows the strong convexity of the negative entropy.
Lemma A. Letq; q0 be probability densities such that the entropy and Kullback-Leibler divergence

KL( q0kq) =
R

q0(� ) log
�

q0( � )
q( � )

�
d� are well de�ned. Then, we have

Eq[log(q)] +
Z

(q0 � q)( � )r qEq[log(q)]d� + KL( q0kq) = Eq0[log(q0)];

Eq[log(q)] +
Z

(q0 � q)( � )r qEq[log(q)]d� +
1
2

kq0 � qk2
L 1 (d � ) � Eq0[log(q0)]:

The �rst equality of this lemma can be shown by the direct computation of the entropy, and the second
inequality can be obtained by Pinsker's inequality1

2 kq0 � qk2
L 1 (d � ) � KL( q0kq).

Recall thatP2 is the set of positive densities onRp such that the second momentEq[k� k2
2] < 1

and entropy�1 < � Eq[log(q)] < + 1 are well de�ned. We here consider the minimization
problem of entropic regularized linear functional onP2. Let � 1; � 2 > 0 be positive real numbers and
H : Rp ! R be a bounded continuous function.

min
q2P 2

n
F (q) def= Eq[H (� )] + � 1Eq[k� k2

2] + � 2Eq[log(q(� ))]
o

: (9)

Then, we can showq / exp
�

� H (� )+ � 1 k� k2
2

� 2

�
is an optimal solution of the problem (9) as follow.

Clearly,q 2 P 2 and the assumption onq in Lemma A withq0 2 P 2 holds. Hence, for8q0 2 P 2,
F (q) = Eq[H (� )] + � 1Eq[k� k2

2] + � 2Eq[log(q(� ))]

= Eq0[H (� )] + � 1Eq0[k� k2
2] + � 2Eq0[log(q0(� ))]

+
Z

(q � q0)( � )
�
H (� ) + � 1k� k2

2

�
d� + � 2 (Eq[log(q(� ))] � Eq0[log(q0(� ))])

= F (q0) +
Z

(q � q0)( � )
�
H (� ) + � 1k� k2

2

�
d� + � 2 (Eq[log(q(� ))] � Eq0[log(q0(� ))])

� F (q0) +
Z

(q � q0)( � )
�
H (� ) + � 1k� k2

2

�
d� � � 2

� Z
(q0 � q)( � )r qEq[log(q)]d� +

1
2

kq0 � qk2
L 1 (d � )

�

= F (q0) +
Z

(q � q0)( � )
�
H (� ) + � 1k� k2

2 + � 2 log(q(� ))
�

d� �
� 2

2
kq0 � qk2

L 1 (d � )

= F (q0) �
� 2

2
kq0 � qk2

L 1 (d � ) : (10)

For the inequality we used Lemma A and for the last equality we usedq / exp
�

� H (� )+ � 1 k� k2
2

� 2

�
.

Therefore, we conclude thatq is a minimizer ofF on P2 and the strong convexity ofF holds atq
with respect toL 1(d� )-norm. This crucial property is used in the proof of Theorem 1.

A. 2 Log-Sobolev and Talagrand's Inequalities

The log-Sobolev inequality is useful in establishing the convergence rate of Langevin algorithm.
De�nition A (Log-Sobolev inequality). Letd� = p(� )d� be a probability distribution with a positive
smooth densityp > 0 onRp. We say that� satis�es the log-Sobolev inequality with constant� > 0
if for any smooth functionf : Rp ! R,

E� [f 2 log f 2] � E� [f 2] logE� [f 2] �
2
�

E� [kr f k2
2]:
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This inequality is analogous to strong convexity in optimization: letd� = q(� )d� be a probability
distribution onRp such thatq is smooth and positive. Then, if� satis�es the log-Sobolev inequality
with � , it follows that

KL( � jj � ) �
1

2�
E� [kr � logqk2

2]:

The above relation is directly obtained by settingf =
p

q in the de�nition of log-Sobolev inequality.
Note that the right hand side is nothing else but the squared norm of functional gradient ofKL( � k� )
with respect to a transport map for� .

It is well-known that strong log-concave densities satisfy the LSI with a dimension-free constant (up
to the spectral norm of the covariance).

Example 2(Bakry andÉmery (1985)). Letq / exp(� f ) be a probability density, wheref : Rp ! R
is a smooth function. If there existsc > 0 such thatr 2f � cIp, thenq(� )d� satis�es Log-Sobolev
inequality with constantc.

In addition, the LSI is preserved under bounded perturbation, as originally shown in Holley and
Stroock (1987). We also provide a proof for completeness.
Lemma B (Holley and Stroock (1987)). Let q(� )d� be a probability distribution onRp satisfying
the log-Sobolev inequality with a constant� . For a bounded functionB : Rp ! R, we de�ne a
probability distributionqB (� )d� as follows:

qB (� )d� =
exp(B (� ))q(� )
Eq[exp(B (� ))]

d�:

Then,qB d� satis�es the log-Sobolev inequality with a constant�= exp(4kB k1 ).

Proof. Taking an expectationEqB of the Bregman divergence de�ned by a convex functionx logx,
for 8a > 0,

0 � EqB

�
f 2(� ) log(f 2(� )) � (a log(a) + (log( a) + 1)( f 2(� ) � a))

�

= EqB

�
f 2(� ) log(f 2(� )) � (f 2(� ) log(a) + f 2(� ) � a)

�
:

Since the minimum is attained ata = EqB [f 2(� )],

0 � EqB

�
f 2(� ) log(f 2(� ))

�
� EqB [f 2(� )] log EqB [f 2(� )]

= inf
a> 0

EqB

�
f 2(� ) log(f 2(� )) � (f 2(� ) log(a) + f 2(� ) � a)

�

� exp(2kB k1 ) inf
a> 0

Eq
�
f 2(� ) log(f 2(� )) � (f 2(� ) log(a) + f 2(� ) � a)

�

= exp(2kB k1 )
�
Eq

�
f 2(� ) log(f 2(� ))

�
� Eq[f 2(� )] log Eq[f 2(� )]

�

�
2 exp(2kB k1 )

�
Eq

�
kr f k2

2

�

=
2 exp(2kB k1 )

�
EqB

�
Eq[exp(B (� ))]

exp(B (� ))
kr f k2

2

�

�
2 exp(4kB k1 )

�
EqB

�
kr f k2

2

�
;

where we used the non-negativity of the integrand for the second inequality.

We next introduce Talagrand's inequality.
De�nition B (Talagrand's inequality). We say that a probability distributionq(� )d� satis�es Tala-
grand's inequality with a constant� > 0 if for any probability distributionq0(� )d� ,

�
2

W 2
2 (q0; q) � KL( q0kq);

whereW2(q0; q) denotes the2-Wasserstein distance betweenq(� )d� andq0(� )d� .

The next theorem gives a relationship between KL divergence and2-Wasserstein distance.
Theorem C(Otto and Villani (2000)). If a probability distributionq(� )d� satis�es the log-Sobolev
inequality with constant� > 0, thenq(� )d� satis�es Talagrand's inequality with the same constant.
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B Proof of Main Results

B. 1 Extension of Algorithm

In this section, we prove the main theorem that provides the convergence rate of the dual averaging
method. We �rst introduce a slight extension of PDA (Algorithm 1) which incorporates two different
initializations at each outer loop step. We refer to the two versions as thewarm-startand the
resampledupdate, respectively. Note that Algorithm 1 in the main text only includes the warm-start
update. In Appendix C we provide particle complexity analysis for both updates. We remark that the
bene�t of resampling strategy is the simplicity of estimation of approximation errorjh( t )

x � hq( t ) (x t )j,

becauseh( t )
x is composed of i.i.d particles and a simple concentration inequality can be applied to

estimate this error.

Algorithm 3 Particle Dual Averaging (general version)

Input: data distributionD, initial densityq(1) , number of outer-iterationsT, learning ratesf � t gT
t =1 ,

number of inner-iterationsf Tt gT
t =1

Randomly draw i.i.d. initial parameters~� (1)
r � q(1) (� )d� (r 2 f 1; 2; : : : ; M g)

~� (1)  f ~� (1)
r gM

r =1

for t = 1 to T do
Randomly draw a data(x t ; yt ) from D
Either � (1) = f � (1)

r gM
r =1  ~� ( t ) (warm-start)

Or randomly initialize� (1) from q(1) (� )d� (resampling)
for k = 1 to Tt do

Run an inexact noisy gradient descent forr 2 f 1; 2; : : : ; M g
r � g( t ) (� (k )

r )  2
� 2 ( t +2)( t +1)

P t
s=1 s@z `(h ~� ( s ) (xs); ys)@� h(� (k )

r ; xs) + 2� 1 t
� 2 ( t +2) � (k )

r

� (k+1)
r  � (k )

r � � t r � g( t ) (� (k )
r ) +

p
2� t �

(k )
r (i.i.d. Gaussian noise� (k )

r � N (0; I p))
end for
~� ( t +1)  � (T t +1) = f � (T t +1)

r gM
r =1

end for
Randomly pick upt 2 f 2; 3; : : : ; T + 1g following the probabilityP[t] = 2t

T (T +3) and returnh ~� ( t )

We also extend the mean �eld limit (Algorithm 2) to take into account the inexactness in computing
hq( t ) (t). This relaxation is useful in convergence analysis of Algorithm 3 with resampling because it
allows us to regard this method as an instance of the generalized DA method (Algorithm 4) by setting
an inexact estimateh( t )

x = h ~� ( t ) (x t ), instead of the exact value ofhq( t ) (t), which is actually used
to de�ned the potential for which Langevin algorithm run in Algorithm 3. This means convergence
analysis of Algorithm 4 (Theorem D) immediately provides a convergence guarantee for Algorithm 3
if the discretization errorjh( t )

x � hq( t ) (x t )j can be estimated (as in the resampling scheme).

On the other hands, the convergence analysis of warm-start scheme requires the convergence of mean
�eld limit due to certain technical dif�culties, that is, we show the convergence of Algorithm 3 with
warm-start by coupling the update with its mean �eld limit (Algorithm 2) and taking into account the
discretization error which stems from �nite-particle approximation.

We now present generalized version of the outer loop convergence rate of DA. We highlight the
tolerance factor� in the generalized assumption(A3') in blue.

Assumption C. Let � > 0 be a given accuracy.

(A1') Y � [� 1; 1]. `(z; y) is a smooth convex function w.r.t.z andj@z `(z; y)j � 2 for y; z 2 Y and
@(̀�; y) is 1-Lipschitz continuous fory 2 Y .

(A2') jh� (x)j � 1 andh(�; x ) is smooth w.r.t.� for x 2 X .

(A3') KL( q( t +1) kq( t +1)
� ) � 1=t2 andjh( t )

x � hq( t ) (x t )j � � for t � 1.
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Algorithm 4 Dual Averaging (general version)

Input: data distributionD and initial densityq(1)

for t = 1 to T do
Randomly draw a data(x t ; yt ) from D
Compute an approximationh( t )

x of hq( t ) (x t )

g( t )  @z `(h( t )
x ; yt )h(�; x t ) + � 1k � k2

2

Obtain an approximationq( t +1) of the density functionq( t +1)
� / exp

�
�

P t
s =1 2sg ( s )

� 2 ( t +2)( t +1)

�

end for
Randomly pick upt 2 f 2; 3; : : : ; T + 1g following the probabilityP[t] = 2t

T (T +3) and returnhq( t )

Remark. The new condition of(A3') allows for inexactness of computinghq( t ) (x t ). When showing
solely the convergence of the Algorithm 2 which is the exact mean-�eld limit, the original assumptions
(A1), (A2), and(A3) are suf�cient, in other words, we can take� = 0 and Lipschitz continuity of
@z `(�; y) in (A1') can be relaxed.
Theorem D(Convergence of general DA). Under Assumptions(A1') , (A2') , and(A3') with � � 0,
for arbitrary q� 2 P 2, iterates of the general DA method (Algorithm 4) satis�es

2
T(T + 3)

T +1X

t =2

t
�

E[L (q( t ) )] � L (q� )
�

� 2� + O
� 1

T2

�
1 + � 1Eq�

�
k� k2

2

��
+

� 2e(q� )
T

+
� 2

T
(1 + exp(8=� 2))p2 log2(T + 2)

�
;

where the expectationE[L (q( t ) )] is taken with respect to the history of examples.

Notation. In the proofs, we use the following notations which are consistent with the description of
Algorithm 3 and 4:

g( t ) = @z `(h( t )
x ; yt )h(�; x t ) + � 1k � k2

2;

g( t ) =
2

� 2(t + 2)( t + 1)

tX

s=1

sg(s)

=
2

� 2(t + 2)( t + 1)

tX

s=1

s@z `(h(s)
x ; ys)h(�; xs) +

� 1t
� 2(t + 2)

k � j22;

q( t +1)
� / exp

�
� g( t )

�

= exp

 

�
P t

s=1 2sg(s)

� 2(t + 2)( t + 1)

!

:

When considering the resampling scheme,h( t )
x is set to the approximationh ~� ( t ) (x t ), whereas when

considering the warm-start scheme,h( t )
x is set tohq( t ) (x t ) with the mean �eld limitM ! 1 and

without tolerance (� = 0 ).

B. 2 Auxiliary Lemmas

We introduce several auxiliary results used in the proof of Theorem 1 (Theorem D) and Corollary 1.
The following lemma provides a tail bound for Chi-squared variables (Laurent and Massart, 2000).
Lemma C (Tail bound for Chi-squared variable). Let � � N (0; � 2I p) be a Gaussian random
variable onRp. Then, we get for8c � p� 2,

P
�
k� k2

2 � 2c
�

� exp
�

�
c

10� 2

�
:

Based on Lemma C, we get the following bound.
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Lemma D. Let � � N (0; � 2I p) be Gaussian random variable on� = Rp. Then, we get for
8R � p� 2,

E
�
k� k2

21[k� k2
2 > 2R]

�
=

1
Z

Z

k� k2
2 > 2R

k� k2
2 exp

�
�

k� k2
2

2� 2

�
d� � 2(R + 10� 2) exp

�
�

R
10� 2

�
;

whereZ =
R

exp
�

� k� k2
2

2� 2

�
d� .

Proof. We setp(� ) = exp( �k � k2
2=2� 2)=Z. Then,

Z

k� k2
2 > 2R

k� k2
2p(� )d� =

Z

�
p(� )1[k� k2

2 > 2R]
Z 1

0
1[k� k2

2 > r ]dr d�

=
Z

�

Z 1

0
p(� )1

�
k� k2

2 > maxf 2R; r g
�

dr d�

� 2R
Z

�
p(� )1

�
k� k2

2 > 2R
�

d� +
Z

�

Z 1

2R
p(� )1

�
k� k2

2 > r
�

dr d�

= 2RP[k� k2
2 > 2R] +

Z 1

2R
P[k� k2

2 > r ]dr

� 2R exp
�

�
R

10� 2

�
+

Z 1

2R
exp

�
�

r
20� 2

�
dr

� 2(R + 10� 2) exp
�

�
R

10� 2

�
:

Proposition A (Continuity). Letq� (� ) / exp
�
� H (� ) � � k� k2

2

�
(� > 0) be a density onRp such

that kH k1 � c. Then, for8� > 0 and a density8q 2 P 2,
�
�
�
�

Z
k� k2

2(q � q� )( � )d�

�
�
�
� �

(2 + � + 1=� ) exp(4c)
�

KL( qkq� ) +
� (1 + � )pexp(2c)

2�
;

�
�
�
�

Z
q(� ) log(q(� ))d � �

Z
q� (� ) log(q� (� ))d �

�
�
�
� � (1 + (2 + � + 1=� ) exp(4c)) KL( qkq� ) + c

p
2KL( qkq� )

+
� (1 + � )pexp(2c)

2
:

Proof. Let  be an optimal coupling betweenqd� andq� d� . Using Young's inequality, we have
Z

k� k2
2q(� )d� =

Z
k� k2

2d (�; � 0)

=
Z �

k� � � 0k2
2 + k� 0k2

2 + 2( � � � 0)> � 0� d (�; � 0)

�
Z �

k� � � 0k2
2 + k� 0k2

2 +
1
�

k� � � 0k2
2 + � k� 0k2

2

�
d (�; � 0)

= (1 + 1 =� )
Z

k� � � 0k2
2d (�; � 0) + (1 + � )

Z
k� 0k2

2q� (� 0)d� 0

= (1 + 1 =� )W 2
2 (q; q� ) + (1 + � )

Z
k� 0k2

2q� (� 0)d� 0: (11)

The last term can be bounded as follows:
Z

k� k2
2q� (� )d� =

Z
k� k2

2
exp

�
� H (� ) � � k� k2

2

�
R

exp (� H (� ) � � k� k2
2) d�

d�

� exp(2c)
Z

k� k2
2

exp
�
� � k� k2

2

�
R

exp (� � k� k2
2) d�

d�

=
pexp(2c)

2�
; (12)
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where the last equality comes from the variance of Gaussian distribution.

From (11) and (12),
Z

k� k2
2(q � q� )( � )d� � (1 + 1=� )W 2

2 (q; q� ) + �
Z

k� k2
2q� (� )d�

� (1 + 1=� )W 2
2 (q; q� ) +

�p exp(2c)
2�

:

From the symmetry of (11), and applying (11) again with (12),
Z

k� k2
2(q� � q)( � )d� � (1 + 1=� )W 2

2 (q; q� ) + �
Z

k� k2
2q(� )d�

� (2 + � + 1=� )W 2
2 (q; q� ) + � (1 + � )

Z
k� k2

2q� (� )d�

� (2 + � + 1=� )W 2
2 (q; q� ) +

� (1 + � )pexp(2c)
2�

:

From Lemma B and Example 2, we seeq� satis�es the log-Sobolev inequality with a constant
2�= exp(4c). As a result,q� satis�es Talagrand's inequality with the same constant from Theorem C.
Hence, by combining the above two inequalities, we have

�
�
�
�

Z
k� k2

2(q � q� )( � )d�

�
�
�
� � (2 + � + 1=� )W 2

2 (q; q� ) +
� (1 + � )pexp(2c)

2�

�
(2 + � + 1=� ) exp(4c)

�
KL( qkq� ) +

� (1 + � )pexp(2c)
2�

Therefore, we know that
�
�
�
�

Z
q(� ) log(q(� ))d � �

Z
q� (� ) log(q� (� ))d �

�
�
�
�

� KL( qkq� ) +

�
�
�
�

Z
(q� � q)( � )

�
H (� ) + � k� k2

2

�
d�

�
�
�
�

� KL( qkq� ) + ckq � q� kL 1 (d � ) + (2 + � + 1=� ) exp(4c)KL( qkq� ) +
� (1 + � )pexp(2c)

2

� KL( qkq� ) + c
p

2KL( qkq� ) + (2 + � + 1=� ) exp(4c)KL( qkq� ) +
� (1 + � )pexp(2c)

2
:

where we used Pinsker's theorem for the last inequality. This �nishes the proof.

Proposition B (Maximum Entropy). Let q� (� ) / exp
�
� H (� ) � � k� k2

2

�
(� > 0) on Rp be a

density such thatkH k1 � c. Then,

� Eq� [log(q� )] � 2c +
p
2

�
exp(2c) + log

� �
�

��
:

Proof. It follows that

� Eq� [log(q� )] = Eq� [H (� ) + � k� k2
2] + log

Z
exp(� H (� ) � � k� k2

2)d�

� c + � Eq� [k� k2
2] + log

Z
exp(c � � k� k2

2)d�

= 2c + � Eq� [k� k2
2] + log

Z
exp(� � k� k2

2)d�

� 2c +
pexp(2c)

2
+

p
2

log
� �

�

�
;

where we used (12) and Gaussian integral for the last inequality.
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Proposition C (Boundedness of KL-divergence). Let q� (� ) / exp
�
� H � (� ) � � � k� k2

2

�
(� � > 0)

be a density onRp such thatkH � k1 � c� , andq] (� ) / exp
�
� H ] (� ) � � ] k� k2

2

�
(� ] > 0) be a

density onRp such thatkH ] k1 � c] . Then, for any densityq,

KL( qkq� ) � 4c� + 2c] +
3
2

�
1 +

� �

� ]

�
pexp(2c] ) +

p
2

log
�

� ]

� �

�

+
�

1 + 4
�

1 +
� �

� ]

�
exp(4c] )

�
KL( qkq] ) + c]

q
2KL( qkq] ):

Proof. Applying Proposition A with� = 1 ,

KL( qkq� ) =
Z

q(� ) log
�

q(� )
q� (� )

�
d�

=
Z

q] (� ) log
�

q] (� )
q� (� )

�
d� +

Z
(q] (� ) � q(� )) log(q� (� ))d �

+
Z

q(� ) log(q(� ))d � �
Z

q] (� ) log(q] (� ))d �

�
Z

q] (� ) log
�
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+ (1 + 4 exp(4 c] ))KL( qkq] ) + c]

q
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q
2KL( qkq] ) + pexp(2c] ):

We next bound the �rst term in the last equation as follows.
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p
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� �

�
;

where for the �rst inequality we used a similar inequality as in (12) and for the second inequality we
used the Gaussian integral. Hence, we get

KL( qkq� ) � 4c� + 2c] +
3
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�
1 +
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� ]

�
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p
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1 + 4
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� ]
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KL( qkq] ) + c]

q
2KL( qkq] ):

Lemma E. Suppose Assumption(A1') and(A2') hold. If KL( q( t ) kq( t )
� ) � 1

t 2 for t � 2, then

t

�
�
�
�

Z
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� (� ))d �

�
�
�
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�
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� = O (1 + � 2 + p� 2 exp(8=� 2)) :
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Proof. Recall the de�nition ofg( t ) ; g( t ) andq( t )
� (see notations in subsection B. 1). We set t +1 =

P t
s =1 s

� 2
P t +1

s =1 s
= t

� 2 ( t +2) . Note that fort � 1,

� 2 + � 1k� k2
2 � g( t ) (� ) � 2 + � 1k� k2

2; (13)

 t +1 (� 2 + � 1k� k2
2) � g( t ) (� ) �  t +1 (2 + � 1k� k2

2); (14)
1

3� 2
�  t +1 �

1
� 2

: (15)

Therefore, we have fort � 2 from Proposition A with� = 1=t < 1,

t
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Z
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Moreover, we have fort � 2,
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2
� 2(t � 1)

+
pexp(4=� 2)

t
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= O (1 + � 2 + p� 2 exp(8=� 2)) :

This �nishes the proof.

B. 3 Outer Loop Complexity

Based on the auxiliary results and the convex optimization theory developed in Nesterov (2009);
Xiao (2009), we now prove Theorem D which is an extension of Theorem 1.

Proof of Theorem D.For t � 1 we de�ne,

Vt (q) = � Eq

"
tX

s=1

sg(s)

#

� � 2e(q)
t +1X

s=1

s:

From the de�nition, the densityq( t +1)
� 2 P 2 calculated in Algorithm 4 maximizesVt (q). We denote

V �
t = V(q( t +1)

� ). Then, fort � 2, we get
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+ t

�
�
�
�

Z
g( t ) (� )(q( t ) (� ) � q( t )

� (� ))d �

�
�
�
� + t

Z
(q( t )

� � q( t +1)
� )( � )g( t ) (� )d�
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� 2
P t

s=1 s
2
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(q( t )
� � q( t +1)

� )( � )g( t ) (� )d� + O(1 + � 2 + p� 2 exp(8=� 2)) ; (16)

where for the �rst inequality we used the optimality ofq( t )
� and the strong convexity (10) atq( t )

� , and
for the �nal inequality we used Lemma E.

We setRt =
�

3
2 p + 15

� � 2
� 1

log(1 + t) and also t +1 =
P t

s =1 s
� 2

P t +1
s =1 s

= t
� 2 ( t +2) , as done in the proof of

Lemma E.

From Assumptions(A1') , (A2') andq( t )
� = exp

�
�
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s =1 sg ( s )

� 2
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s =1 s

�
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R
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� 2

P t
s =1 s

�
d� (t �
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Using (17) and applying Lemma D with� 2 = 1
2 t � 1

; 1
2 t +1 � 1

andR = Rt , we have fort � 2,
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where for the �fth inequality we used (15) and for the sixth inequality we used15� 2=� 1 � Rt .
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Combining (16) and (18), we have fort � 2,
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From Proposition B, (14), and (15),
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Using(A1') , (A2') , and(A3') , we have for any density functionq,
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Hence, from (20), (21), (22), and the convexity of the loss,
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Taking the expectation with respect to the history of examples, we have
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B. 4 Inner Loop Complexity

We next prove Corollary 1 which gives an estimate of inner loop iteration complexity. This result is
derived by utilizing the convergence rate of the Langevin algorithm under LSI developed in Vempala
and Wibisono (2019). We here consider the ideal Algorithm 2 (i.e., warm-start and exact mean �eld
limit ( � = 0 )).

Proof of Corollary 1. We verify the assumptions required in Theorem 2. We recall thatq( t +1)
� takes

the form of Boltzmann distribution: fort � 1,
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Therefore, from Example 2 and Lemma B, we know thatq( t +1)
� satis�es the log-Sobolev in-

equality with a constant 2� 1
3� 2 exp(8 =� 2 ) ; in addition, the gradient oflog(q( t +1)

� ) is 2
� 2

(1 + � 1)-
Lipschitz continuous. Therefore, from Theorem 2 we deduce that Langevin algorithm with
learning rate� t � � 1 � 2 � t +1

96p(1+ � 1 )2 exp(8 =� 2 ) yields qt +1 satisfyingKL( q( t +1) kq( t +1)
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We next boundKL( q( t ) kq( t +1)
� ). Apply Proposition C withq = q( t ) , q� = q( t +1)

� , andq] = q( t )
� .

Note that in this setting, constantsc� ; c] ; � � ; and� ] satisfy
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Then, we get
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� ):

Hence, we can concludeKL( q( t ) kq( t +1)
� ) are uniformly bounded with respect tot 2 f 1; : : : ; Tg as

long asKL( q( t ) kq( t )
� ) � � t andq(1) is a Gaussian distribution.

Case of resampling. We note that for resampling scheme, the similar inner loop complexity of

O
�

� 2 exp(8 =� 2 )
� 1 � t

log 2KL( q(1) kq( t +1)
� )

� t +1

�
can be immediately obtained by replacing the initial distribution

of Langevin algorithm withq(1) (� )d� . Moreover, the uniform boundedness ofKL( q(1) kq( t +1)
� ) with

respect tot is also guaranteed by applying Proposition C withq = q] = q(1) andq� = q( t +1)
� as long

asq(1) (� )d� is a Gaussian distribution.

ADDITIONAL RESULTS AND DISCUSSIONS

C Discretization Error of Finite Particles

C. 1 Case of Resampling

As discussed in subsection B. 1, to establish the �nite-particle convergence guarantees of Algorithm
3 with resampling up toO(� )-error, we need to show thath( t )

x = h ~� ( t ) (x t ) satis�es the condition

jh( t )
x � hq( t ) (x t )j � � in (A3') . Hence, we are interested in characterizing the discretization error

that stems from using �nitely many particles.

For the resampling scheme, we can easily derive that the required number of particles is
O(� � 2 log(T=� )) with high probability1 � � , because i.i.d. particles are obtained by the Langevin
algorithm and Hoeffding's inequality is applicable.
Lemma F (Hoeffding's inequality). LetZ; Z 1; : : : ; Zm be i.i.d. random variables taking values in
[� a; a] for a > 0. Then, for any� > 0, we get

P

" �
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�
�
�

1
M

MX

r =1

Z r � E[Z ]

�
�
�
�
�

> �

#

� 2 exp
�

�
� 2M
2a2

�
:

C. 2 Case of Warm-start

We next consider the warm-start scheme. Note that the convergence of PDA with warm-start is
guaranteed by coupling it with its mean-�eld limitM ! 1 and applying Theorem 1 without
tolerance (i.e.,� = 0 ). To analyze the particle complexity, we make an additional assumption
regarding the regularity of the loss function and the model.
Assumption D.

(A5) h(�; x) is 1-Lipschitz continuous6 for 8x 2 X .

6WLOG the Lipschitz constant is set to 1, since the same analysis works for any �xed constant.
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Remark. The above regularity assumption is common in the literature and cover many important
problem settings in the optimization of two-layer neural network in the mean �eld regime. Indeed,
(A5) is satis�ed for two-layer network in Example 1 when the output or input layer is �xed and when
the activation function is Lipschitz continuous.

The following proposition shows the convergence of Algorithm 1 to Algorithm 2 asM ! 1 .
Proposition D (Finite Particle Approximation). For training examplesf x t gT

t =1 and any example~x,
de�ne

� T;M = max
s2f 1;:::;T g

t 2f 1;:::;T +1 g

�
�hq( t ) (xs) � h ~� ( t ) (xs)

�
� _

�
�hq( t ) (~x) � h ~� ( t ) (~x)

�
� :

Under(A1') , (A2), (A4), and(A5), if we run PDA (Algorithm 1) on~� and the corresponding mean
�eld limit DA (Algorithm 2) onq, then with high probabilitylimM !1 � T;M = 0 : Moreover, if we set
� t � � 2

2� 1
, � 1 � 3

2 , andTt � 3� 2 log(4)
(2 � 1 � 1) � t

, then with probability at least1 � � ,

� T;M �
�

1 +
4

2� 1 � 1

� s
2

M
log

�
2(T + 1) 2

�

�
:

Remark. Proposition D together with Corollary 2 imply that under appropriate regularization, a
prediction on any point with an� -gap from an� -accurate solution of the regularized objective(4)
can be achieved with high probability by running PDA with warm-start (Algorithm 1) inpoly(� � 1)
steps usingpoly(� � 1) particles, where we omit dependence on hyperparameters and logarithmic
factors. Note that speci�c choices of hyper-parameters in Proposition D are consistent with those in
Corollary 2. We also remark that under weak regularization (vanishing� 1), our current derivation
suggests that the required particle size could be exponential in the time horizon, due to the particle
correlation in the warm-start scheme. Finally, we remark that for the empirical risk minimization, the
termlog(2(T + 1) 2=� ) could be changed tolog(2n(T + 1) =� ) in the obvious way.

Proof of Proposition D.We analyze an error of �nite particle approximation for a �xed history of
dataf x t gT

t =1 . To Algorithm 2 with the corresponding particle dynamics (Algorithm 1), we construct
ansemi particle dual averagingupdate, which is an intermediate of these two algorithms. In particular,
the semi particle dual averaging method is de�ned by replacingh ~� ( t ) in Algorithm 1 withhq( t ) for

q( t ) in Algorithm 2. Let ~� 0( t ) = f ~� 0( t )
r gM

r =1 be parameters obtained in outer loop of the semi particle
dual averaging. We �rst estimate the gap between Algorithm 2 and the semi particle dual averaging.

Note that there is no interaction among~�
0( t ) ; in other words these are i.i.d. particles sampled

from q( t ) , and we can thus apply Hoeffding's inequality (Lemma F) toh ~� 0( t ) (~x) andh ~� 0( t ) (xs)
(s 2 f 1; : : : ; Tg; t 2 f 1; : : : ; T +1g). Hence, for8� > 0, 8s 2 f 1; : : : ; Tg, and8t 2 f 1; : : : ; T +1g,
with the probability at least1 � �

�
�h ~� 0( t ) (xs) � hq( t ) (xs)

�
� =

�
�
�
�
�

1
M

MX

r =1

h~� 0( t )
r

(xs) � hq( t ) (xs)

�
�
�
�
�

�

s
2

M
log

�
2(T + 1) 2

�

�
; (23)

�
�h ~� 0( t ) (~x) � hq( t ) (~x)

�
� =

�
�
�
�
�

1
M

MX

r =1

h~� 0( t )
r

(~x) � hq( t ) (~x)

�
�
�
�
�

�

s
2

M
log

�
2(T + 1) 2

�

�
: (24)

We next bound the gap between the semi particle dual averaging and Algorithm 1 sharing a history
of Gaussian noises and initial particles. That is,~� (1)

r = ~� 0(1)
r . Let � (k ) = f � (k )

r gr =1 and� 0(k ) =
f � 0(k )

r gr =1 denote inner iterations of these methods.

(i ) Here we show the �rst statement of the proposition. We set� 1 = 0 and� 1 = 0 . We de�ne� t and
� t recursively as follows.

� t +1
def=

�
1 +

2(1 + � 1)t� t

� 2(t + 2)

� T t

� t

+
t� t

� 2(t + 2)

 

� t +

s
2

M
log

�
2(T + 1) 2

�

� !
T t � 1X

s=0

�
1 +

2(1 + � 1)t� t

� 2(t + 2)

� s

; (25)
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and� t +1 = max s2f 1;:::;t +1 g � s. We show that for any event where (23) and (24) hold,k~� ( t )
r �

~� 0( t )
r k2 � � t (8t 2 f 1; : : : ; T + 1g, 8r 2 f 1; : : : ; M g) by induction. Supposek~� (s)

r � ~� 0(s)
r k2 � � s

(8s 2 f 1; : : : ; tg, 8r 2 f 1; : : : ; M g) holds. Then, for anyx ands 2 f 1; : : : ; tg

jh ~� ( s ) (x) � h ~� 0( s ) (x)j �
1

M

MX

r =1

�
�
�h(~� (s)

r ; x) � h(~� 0(s)
r ; x)

�
�
�

�
1

M

MX

r =1



 ~� (s)

r � ~� 0(s)
r





2
� � s: (26)

Consider the inner loop att-the outer step. Then, for an event where (23) holds,

k� (k+1)
r � � 0(k+1)

r k2

�




 � (k )

r �
2� t

� 2(t + 2)( t + 1)

tX

s=1

s
�

@z `(h ~� ( s ) (xs); ys)@� h(� (k )
r ; xs) + 2 � 1� (k )

r

�

� � 0(k )
r +

2� t

� 2(t + 2)( t + 1)

tX

s=1

s
�

@z `(hq( s ) (xs); ys)@� h(� 0(k )
r ; xs) + 2 � 1� 0(k )

r

� 




2

�
�

1 +
2� 1t� t

� 2(t + 2)

�
k� (k )

r � � 0(k )
r k2

+
2� t

� 2(t + 2)( t + 1)

tX

s=1

sk@z `(h ~� ( s ) (xs); ys)@� h(� (k )
r ; xs) � @z `(hq( s ) (xs); ys)@� h(� 0(k )

r ; xs)k2

�
�

1 +
2� 1t� t

� 2(t + 2)

�
k� (k )

r � � 0(k )
r k2

+
2� t

� 2(t + 2)( t + 1)

tX

s=1

s


 (@z `(h ~� ( s ) (xs); ys) � @z `(hq( s ) (xs); ys))@� h(� (k )

r ; xs)




2

+
2� t

� 2(t + 2)( t + 1)

tX

s=1

s


 @z `(hq( s ) (xs); ys)(@� h(� 0(k )

r ; xs) � @� h(� (k )
r ; xs))





2

�
�

1 +
2(1 + � 1)t� t

� 2(t + 2)

�
k� (k )

r � � 0(k )
r k2 +

2� t

� 2(t + 2)( t + 1)

tX

s=1

s
�
�h ~� ( s ) (xs) � hq( s ) (xs)

�
�

�
�

1 +
2(1 + � 1)t� t

� 2(t + 2)

�
k� (k )

r � � 0(k )
r k2 +

2� t

� 2(t + 2)( t + 1)

tX

s=1

s

 

� s +

s
2

M
log

�
2(T + 1) 2

�

� !

�
�

1 +
2(1 + � 1)t� t

� 2(t + 2)

�
k� (k )

r � � 0(k )
r k2 +

t� t

� 2(t + 2)

 

� t +

s
2

M
log

�
2(T + 1) 2

�

� !

:

Expanding this inequality,

k~� ( t +1)
r � ~� 0( t +1)

r k2

�
�

1 +
2(1 + � 1)t� t

� 2(t + 2)

� T t

� t +
t� t

� 2(t + 2)

 

� t +

s
2

M
log

�
2(T + 1) 2

�

� !
T t � 1X

s=0

�
1 +

2(1 + � 1)t� t

� 2(t + 2)

� s

= � t +1 :

Hence,k~� ( t )
r � ~� 0( t )

r k2 � � T +1 for 8t 2 f 1; : : : ; T + 1g.

Noting that� 1 = 0 and

� t +1 =

 �
1 +

2(1 + � 1)t� t

� 2(t + 2)

� T t

+
t� t

� 2(t + 2)

T t � 1X

s=0

�
1 +

2(1 + � 1)t� t

� 2(t + 2)

� s
!

� t

30



+
t� t

� 2(t + 2)

s
2

M
log

�
2(T + 1) 2

�

� T t � 1X

s=0

�
1 +

2(1 + � 1)t� t

� 2(t + 2)

� s

;

we see� T +1 ! 0 asM ! + 1 . Then, the proof is �nished because for8t 2 f 1; : : : ; T + 1g and
8s 2 f 1; : : : ; Tg with high probability1 � � ,

�
�h ~� ( t ) (xs) � hq( t ) (xs)

�
� � j h ~� ( t ) (xs) � h ~� 0( t ) (xs)j +

�
�h ~� 0( t ) (xs) � hq( t ) (xs)

�
�

� � T +1 +

s
2

M
log

�
2(T + 1) 2

�

�
;

�
�h ~� ( t ) (~x) � hq( t ) (~x)

�
� � j h ~� ( t ) (~x) � h ~� 0( t ) (~x)j +

�
�h ~� 0( t ) (~x) � hq( t ) (~x)

�
�

� � T +1 +

s
2

M
log

�
2(T + 1) 2

�

�
:

(ii ) We next show the second statement of the proposition. We change the de�nition (25) of� t +1 as
follows:

� t +1
def=

3
4

� t +
1

2� 1 � 1

s
2

M
log

�
2(T + 1) 2

�

�
:

We prove that for any event where (23) and (24) hold,k~� ( t )
r � ~� 0( t )

r k2 � � t (8t 2 f 1; : : : ; T + 1g,
8r 2 f 1; : : : ; M g) by induction. Supposek~� (s)

r � ~� 0(s)
r k2 � � s (8s 2 f 1; : : : ; tg, 8r 2 f 1; : : : ; M g)

holds. Consider the inner loop att-step. Note that� t � � 2
2� 1

implies1 � 2� 1 t� t
� 2 ( t +2) > 0. Therefore, by

the similar argument as above, we get

k� (k+1)
r � � 0(k+1)

r k2

�




 � (k )

r �
2� t

� 2(t + 2)( t + 1)

tX

s=1

s
�

@z `(h ~� ( s ) (xs); ys)@� h(� (k )
r ; xs) + 2 � 1� (k )

r

�

� � (k )
r +

2� t

� 2(t + 2)( t + 1)

tX

s=1

s
�

@z `(hq( s ) (xs); ys)@� h(� 0(k )
r ; xs) + 2 � 1� 0(k )

r

� 




2

�
�

1 �
2� 1t� t

� 2(t + 2)

�
k� (k )

r � � 0(k )
r k2

+
2� t

� 2(t + 2)( t + 1)

tX

s=1

sk@z `(h ~� ( s ) (xs); ys)@� h(� (k )
r ; xs) � @z `(hq( s ) (xs); ys)@� h(� 0(k )

r ; xs)k2

�
�

1 +
(1 � 2� 1)t� t

� 2(t + 2)

�
k� (k )

r � � 0(k )
r k2 +

t� t

� 2(t + 2)

 

� t +

s
2

M
log

�
2(T + 1) 2

�

� !

:

Expanding this inequality,

k~� ( t +1)
r � ~� 0( t +1)

r k2

�
�

1 +
(1 � 2� 1)t� t

� 2(t + 2)

� T t

� t +
t� t

� 2(t + 2)

 

� t +

s
2

M
log

�
2(T + 1) 2

�

� !
T t � 1X

s=0

�
1 +

(1 � 2� 1)t� t

� 2(t + 2)

� s

�

 �
1 +

(1 � 2� 1)t� t

� 2(t + 2)

� T t

+
1

2� 1 � 1

!

� t +
1

2� 1 � 1

s
2

M
log

�
2(T + 1) 2

�

�

�

 �
1 +

(1 � 2� 1)t� t

� 2(t + 2)

� T t

+
1
2

!

� t +
1

2� 1 � 1

s
2

M
log

�
2(T + 1) 2

�

�
;

where we used0 < 1 + (1 � 2� 1 ) t� t

� 2 ( t +2) < 1 and� 1 � 3
2 .
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Noting that(1 � x)1=x � exp(� 1) for 8x 2 (0; 1], we see that
�

1 �
(2� 1 � 1)t� t

� 2(t + 2)

� T t

�
�

1 �
(2� 1 � 1)t� t

� 2(t + 2)

� 3 � 2
(2 � 1 � 1) � t

log(4)

=
�

1 �
(2� 1 � 1)t� t

� 2(t + 2)

� � 2 ( t +2)
(2 � 1 � 1) t� t

3 t
t +2 log(4)

� exp
�

�
3t

t + 2
log (4)

�

� exp (� log (4))

=
1
4

;

where we usedTt � 3� 2 log(4)
(2 � 1 � 1) � t

. Hence, we know that fort,

k~� ( t +1)
r � ~� 0( t +1)

r k2 �
3
4

� t +
1

2� 1 � 1

s
2

M
log

�
2(T + 1) 2

�

�
: (27)

This means thatk~� ( t +1)
r � ~� 0( t +1)

r k2 � � t +1 and �nishes the induction.

Next, we show

� t �
4

2� 1 � 1

s
2

M
log

�
2(T + 1) 2

�

�
: (28)

This inequality obviously holds fort = 1 because� 1 = 0 . We suppose it is true fort � T . Then,

� t +1 =
3
4

� t +
1

2� 1 � 1

s
2

M
log

�
2(T + 1) 2

�

�

�
4

2� 1 � 1

s
2

M
log

�
2(T + 1) 2

�

�
:

Hence, the inequality (28) holds for8t 2 f 1; : : : ; T + 1g, yielding

k~� ( t +1)
r � ~� 0( t +1)

r k2 �
4

2� 1 � 1

s
2

M
log

�
2(T + 1) 2

�

�
:

In summary, it follows that for8t 2 f 1; : : : ; T + 1g and8s 2 f 1; : : : ; Tg with high probability1� � ,
�
�h ~� ( t ) (xs) � hq( t ) (xs)

�
� � j h ~� ( t ) (xs) � h ~� 0( t ) (xs)j +

�
�h ~� 0( t ) (xs) � hq( t ) (xs)

�
�

�
�

1 +
4

2� 1 � 1

� s
2

M
log

�
2(T + 1) 2

�

�
;

�
�h ~� ( t ) (~x) � hq( t ) (~x)

�
� � j h ~� ( t ) (~x) � h ~� 0( t ) (~x)j +

�
�h ~� 0( t ) (xs) � hq( t ) (xs)

�
�

�
�

1 +
4

2� 1 � 1

� s
2

M
log

�
2(T + 1) 2

�

�
;

where we used (26). This completes the proof.

D Generalization Bounds for Empirical Risk Minimization

In this section, we give generalization bounds for the problem (3) in the context ofempirical risk
minimization, by using techniques developed by Chen et al. (2020). We consider the smoothed hinge
loss and squared loss for binary classi�cation and regression problems, respectively.
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D. 1 Auxiliary Results

For a setF of functions from a spaceZ to R and a setS = f zi gn
i =1 � Z , the empirical Rademacher

complexity<̂ S (F ) is de�ned as follows:

<̂ S (F ) = E�

"

sup
f 2F

1
n

nX

i =1

� i f (zi )

#

;

where� = ( � i )n
i =1 are i.i.d random variables taking� 1 or 1 with equal probability.

We introduce the uniform bound using the empirical Rademacher complexity (see Mohri et al.
(2012)).

Lemma G (Uniform bound). Let F be a set of functions fromZ to [� C; C] (C 2 R) andD be a
distribution overZ . LetS = f zi gn

i =1 � Z be a set of sizen drawn fromD. Then, for any� 2 (0; 1),
with probability at least1 � � over the choice ofS, we have

sup
f 2F

(

EZ �D [f (Z )] �
1
n

nX

i =1

f (zi )

)

� 2<̂ S (F ) + 3 C

r
1

2n
log

2
�

:

The contraction lemma (see Shalev-Shwartz and Ben-David (2014)) is useful in estimating the
Rademacher complexity.

Lemma H (Contraction lemma). Let � i : R ! R (i 2 f 1; : : : ; ng) be� -Lipschitz functions andF
be a set of functions fromZ to R. Then it follows that for anyf zi gn

i =1 � Z ,

E�

"

sup
f 2F

1
n

nX

i =1

� i � i � f (zi )

#

� � E�

"

sup
f 2F

1
n

nX

i =1

� i � f (zi )

#

:

Let p0(� )d� be a distribution in proportion toexp
�

� � 1
� 2

k� k2
2

�
d� . We de�ne a family of mean �eld

neural networks as follows: forR > 0,

FKL (R) = f hq : X ! R j q 2 P 2; KL( qkp0) � Rg:

The Rademacher complexity of this function class is obtained by Chen et al. (2020).

Lemma I (Chen et al. (2020)). Supposejh� (x)j � 1 holds for8� 2 
 and8x 2 X . We have for
any constantR � 1

2 and setS � X of sizen,

<̂ S (FKL (R)) � 2

r
R
n

:

D. 2 Generalization Bound on the Binary Classi�cation Problems

We here give a generalization bound for the binary classi�cation problems. Hence, we suppose
Y = f� 1; 1g and consider the problem (3) with the smoothed hinge loss de�ned below.

`(z; y) =

8
<

:

0 if zy � 1=2;
(1 � 2zy)2 if 0 � zy < 1=2;
1 � 4zy else:

We also de�ne the0-1 loss as̀ 01(z; y) = 1[zy < 0].

Theorem E. LetD be a distribution overX � Y . Suppose there exists a true distributionq� 2 P 2
satisfyinghq� (x)y � 1=2 for 8(x; y) 2 supp(D) andKL( q� kp0) � 1=2. LetS = f (x i ; yi )gn

i =1 be
training examples independently sampled fromD. Supposejh� (x)j � 1 holds for8(�; x ) 2 
 � X .
Then, for the minimizerq� 2 P 2 of the problem (3), it follows that with probability at least1 � � over
the choice ofS,

E(X;Y ) �D [`01(hq� (X ); Y )] � � 2KL( q� kp0) + 16

r
KL( q� kp0)

n
+ 15

r
1

2n
log

2
�

:
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Proof. We �rst estimate a radiusR to satisfyq� 2 F KL (R). Note that the regularization term
of objectiveL (q) is � 2KL( qkp0) and that̀ (hq� (x i ); yi ) = 0 from the assumption onq� and the
de�nition of the smoothed hinge loss. SinceL (q� ) � L (q� ), we get

KL( q� kp0) �
1
� 2

L (q� ) = KL( q� kp0); (29)

1
n

nX

i =1

`(hq� (x i ); yi ) � L (q� ) = � 2KL( q� kp0): (30)

Especially, settingR = KL( q� kp0), we seeq� 2 F KL (R).

We next de�ne the set of composite functions of loss and mean �eld neural networks as follows:

F (R) = f (x; y) 2 X � Y 7�! `(h(x); y) j h 2 F KL (R)g: (31)

Since`(z; y) is 4-Lipschitz continuous with respect toz, we can estimate the Rademacher complexity
<̂ S (F (R)) by using Lemma H with� i (�) = `(�; yi ) as follows:

<̂ S (F (R)) = E�

"

sup
h2F KL (R )

1
n

nX

i =1

� i `(h(x i ); yi )

#

� 4E�

"

sup
h2F KL (R )

1
n

nX

i =1

� i h(x i )

#

= 4 <̂ f x i gn
i =1

(FKL (R))

� 8

r
R
n

; (32)

where we used Lemma I for the last inequality.

From the boundedness assumption onhq, we have0 � `(hq(x); y) � 5 for 8q 2 P 2. Applying
Lemma G withF = F (R), we have with probability at least1 � � ,

E(X;Y ) �D [`01(hq� (X ); Y )] � E(X;Y ) �D [`(hq� (X ); Y )]

�
1
n

nX

i =1

`(hq� (x i ); yi ) + 2 <̂ S (F (R)) + 15

r
1

2n
log

2
�

� � 2KL( q� kp0) + 16

r
R
n

+ 15

r
1

2n
log

2
�

= � 2KL( q� kp0) + 16

r
KL( q� kp0)

n
+ 15

r
1

2n
log

2
�

;

where we used̀01(z; y) � `(z; y), (30) and (32).

This theorem results in the following corollary:

Corollary C. Suppose the same assumptions in Theorem E hold. Moreover, we set� 1 = �=
p

n
(� > 0) and� 2 = 1=

p
n. Then, the following bound holds with the probability at least1 � � over

the choice of training examples,

E(X;Y ) �D [`01(hq� (X ); Y )] �
KL( q� kp0

0)
p

n
+ 16

r
KL( q� kp0

0)
n

+ 15

r
1

2n
log

2
�

;

wherep0
0 is the Gaussian distribution in proportion toexp(� � k � k2

2).

D. 3 Generalization Bound on the Regression Problem

We here give a generalization bound for the regression problems. We consider the squared loss
`(z; y) = 0 :5(z � y)2 and the bounded labelY � [� 1; 1].
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Theorem F. LetD be a distribution overX � Y . Suppose there exists a true distributionq� 2 P 2
satisfyingy = hq� (x) for 8(x; y) 2 supp(D) andKL( q� kp0) � 1=2. Let S = f (x i ; yi )gn

i =1 be
training examples independently sampled fromD. Supposejh� (x)j � 1 holds for8(�; x ) 2 
 � X .
Then, for the minimizerq� 2 P 2 of the problem (3), it follows that with probability at least1 � � over
the choice ofS,

E(X;Y ) �D [`(hq� (X ); Y )] � � 2KL( q� kp0) + 8

r
KL( q� kp0)

n
+ 6

r
1

2n
log

2
�

:

Proof. The proof is very similar to that of Theorem E. Note that`(hq� (x i ); yi ) = 0 from the
assumption onq� and that inequalities (29) and (30) hold in this case too. Hence, settingR =
KL( q� kp0), we seeq� 2 F KL (R).

Since`(z; y) is 2-Lipschitz continuous with respect toz 2 [� 1; 1] for anyy 2 Y � [� 1; 1], we
can estimate the Rademacher complexity<̂ S (F (R)) of F (R) (de�ned in (31)) in the same way as
Theorem E:

<̂ S (F (R)) � 4

r
R
n

: (33)

From the boundedness assumption onhq andY, we have0 � `(hq(x); y) � 2 for 8q 2 P 2. Hence,
applying Lemma G withF = F (R), we have with probability at least1 � � ,

E(X;Y ) �D [`(hq� (X ); Y )] �
1
n

nX

i =1

`(hq� (x i ); yi ) + 2 <̂ S (F (R)) + 6

r
1

2n
log

2
�

� � 2KL( q� kp0) + 8

r
KL( q� kp0)

n
+ 6

r
1

2n
log

2
�

;

where we used (30) and (33).

This theorem results in the following corollary:

Corollary D. Suppose the same assumptions in Theorem F hold. Moreover, we set� 1 = �=
p

n
(� > 0) and� 2 = 1=

p
n. Then, the following bound holds with the probability at least1 � � over

the choice of training examples,

E(X;Y ) �D [`(hq� (X ); Y )] �
KL( q� kp0

0)
p

n
+ 8

r
KL( q� kp0

0)
n

+ 6

r
1

2n
log

2
�

;

wherep0
0 is the Gaussian distribution in proportion toexp(� � k � k2

2).

E Additional Discussions

E. 1 Ef�cient Implementation of PDA

Note that similar to SGD, Algorithm 1 only requires gradient queries (and additional Gaussian
noise); in particular, a weighted averageg( t ) of functionsg( t ) is updated and its derivative with
respect to parameters is calculated. In the case of empirical risk minimization, this procedure can
be implemented as follows. We usef wi gn

i =1 (initialized as zeros) to store the weighted sums of
@z `(h ~� ( t ) (x i t ); yi t ). At stept in the outer loop,wi t is updated as

wi t  wi t + t@z `(h ~� ( t ) (x i t ); yi t ):

The averager � r g( t ) (� (k ) ) can then be computed as

2
� 2(t + 2)( t + 1)

nX

i =1

wi @� h(� (k )
r ; x i ) +

2� 1t
� 2(t + 2)

� (k )
r ;
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where we usef � (k )
r gM

k=1 to denote parameters� (k ) at stepk of the inner loop. This formulation
makes Algorithm 1 straightforward to implement.

In addition, the PDA algorithm can also be implemented with mini-batch update, in which a set of
data indicesI t = f i t; 1; : : : ; i t;b g � f 1; 2; : : : ; ng is selected per outer loop step instead of one single
indexi t . Due to the reduced variance, mini-batch update can stabilize the algorithm and lead to faster
convergence. Our theoretical results in the sequel trivially extends to the mini-batch setting.

E. 2 Extension to Multi-class Classi�cation

We give a natural extension of PDA method to multi-class classi�cation settings. LetCdenote the
�nite set of all class labels andjCj denote its cardinality. For multi-class classi�cation problems, we
de�ne a componenth(�; x ) of an ensemble as follows. Letar 2 RjCj andbr 2 Rd (r 2 f 1; : : : ; M g)
be parameters for output and input layers, respectively, and set� r = ( ar ; br ) and� = f � r gM

r =1 .
Then, we de�neh� r (x) = h(�; x ) = � 2(ar � 1(b>

r x))7 which is a neural network with one hidden
neuron, and denote

h� (x) =
1

M

MX

r =1

h� r (x):

Note thath� (x) is a natural two-layer neural network with multiple outputs. Suppose that each
parameter� r follows q(� )d� . Then the mean �eld limit can be de�ned as

hq(�) = E� � q[h� (�)] : Rd ! RjCj :

Let `(z; y) (z = f zy gy2C 2 RjCj ; y 2 C) be the loss for multi-class classi�cation problems. A typical
choice is the cross-entropy loss with the soft-max activation, that is

`(z; y) = � log
exp(zy )

P
y02C exp(zy0)

= � zy + log
X

y02C

exp(zy0):

In this case, the functional derivative of`(hq(x); y) with respect toq is

� hy (�; x ) +

P
y02C exp(hq;y 0(x))hy0(�; x )

P
y02C exp(hq;y 0(x))

where we supposed the outputs ofh� andhq are also indexed byC. Hence, the counterpart ofg( t ) in
Algorithm 2 in this setting is

g( t ) = � hy t (�; x t ) +

P
y02C exp(hq( t ) ;y 0(x t ))hy0(�; x t )

P
y02C exp(hq( t ) ;y 0(x t ))

+ � 1k � k2
2:

Using this function, the DA method for multi-class classi�cation problems can be obtained in the same
manner as Algorithm 2. Moreover, its discretization can be also immediately derived by replacing the
functiong( t ) used in Algorithm 1 with

g( t ) =
2

� 2(t + 2)( t + 1)

tX

s=1

s

 

� hys (�; xs) +

P
y02C exp(h ~� ( s ) ;y 0(xs))hy0(�; xs)

P
y02C exp(h ~� ( s ) ;y 0(xs))

+ � 1k � k2
2

!

:

In the case of empirical risk minimization, we can adopt an ef�cient implementation as done in
Section E. 1. We usef wi;y gi 2f 1;:::;n g;y 2C (initialized as zeros) to store the coef�cients ofhy (�; x i ).
At stept in the outer loop,wi t ;y (y 2 C) are updated as

wi t ;y  

8
><

>:

wi t ;y + t
�

� 1 +
exp( h ~� ( t ) ;y

(x i t ))
P

y 02C exp( h ~� ( t ) ;y 0(x i t ))

�
y = yi t ;

wi t ;y + t
exp( h ~� ( t ) ;y

(x i t ))
P

y 02C exp( h ~� ( t ) ;y 0(x i t )) y 6= yi t :

7Here,ar � 1(b>
r x) is a scalar� 1(b>

r x) times a vectorar .
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Then,r � r g( t ) (� (k ) ) can be computed as

2
� 2(t + 2)( t + 1)

nX

i =1

X

y2C

wi;y @� hy (� (k )
r ; x i ) +

2� 1t
� 2(t + 2)

� (k )
r ;

where we usef � (k )
r gM

k=1 to denote parameters� (k ) at stepk of the inner loop.

Finally, we remark that while we here utilize a simple networkh� (x) to recover a normal two-layer
neural network, it is also possible to use deep narrow networks or narrow convolutional neural
networks as a componenth� (x); in other wordsh� can represent an ensemble of various types of
small network. While such extensions are not covered by our current theoretical analysis, they may
achieve better practical performance.

E. 3 Correspondence with Finite-dimensional Dual Averaging Method

We explain the correspondence between the �nite-dimensional dual averaging method developed
by Nesterov (2005, 2009); Xiao (2009) and our proposed method (Algorithm 2); our goal here is to
provide an intuitive understanding of the derivation of Algorithm 2 in the context of the classical dual
averaging method.

First, we introduce the (regularized) dual averaging method (Nesterov, 2009; Xiao, 2009) in a more
general form for solving the regularized optimization problem on the �nite-dimensional space. Let
w 2 Rm be a parameter,l (w; z) be a convex loss inw, wherez is a random variable which represents
an example, and	( w) is a regularization function. Then, the problem solved by the dual averaging
method is given as

min
w2 Rm

f Ez [l (w; z)] + 	( w)g:

Let f w(s) gt
s=1 andf f (s) gt

s=1 = f @w l (w(s) ; zs)gt
s=1 be histories of iterates and stochastic gradients.

The subproblems to produce the next iterate in the dual averaging method is designed by using the
strongly convex functiond(w) and positive hyperparametersf � sg1

s=1 andf � sg1
s=2 . Speci�cally, the

next iteratew( t +1) is de�ned as the minimizer of the following problem in which the loss function is
linearized and weighted sum of which is taken over the history:

min
w2 Rm

(
tX

s=1

� sf (s)> w +
tX

s=1

� s 	( w) + � t +1 d(w)

)

: (34)

Next, we consider our problem setting of optimizing the probability distribution and reformulate the
subproblem (7) solved in Algorithm 2 as follows:

min
q2P 2

(

Eq

h tX

s=1

sg(s)
i

+
tX

s=1

s� 2Eq[log(q)] + ( t + 1) � 2Eq[log(q)]

)

; (35)

By comparing (34) and (35), we arrive at the following correspondence:� s = � s = s; f (s) �
g(s) ; d(w) = 	( w) � � 2Eq[log(q)]. We note that in our problem setting the expectation byq can be
seen as an inner product with the integrand and� 2Eq[log(q)] is also set tod(w) becausethe negative
entropy acts as a strongly convex function(Lemma A).

F Additional Experiments

F. 1 Comparison of Generalization Error

We provide additional experimental results on the generalization performance of PDA. We consider
empirical risk minimization for a regression problem (squared loss): the inputx i � N (0; I p), andf �
is a single index model:f � (x) = sign( hw� ; x i ). W setn = 1000, p = 50, M = 200, and implement
both noisy gradient descent (Mei et al., 2018) using full-batch gradient and our proposed Algorithm 1
(PDA) using mini-batch update with batch size 50.
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Figure 3: Test error of mean �eld
neural networks (� = 1 ) trained with
noisy GD (red) and PDA (blue), and
network in the kernel regime (� =
1=2) optimized by GD (green).

Figure 3 we compare the generalization performance of different
training methods: noisy GD and PDA in the mean �eld regime,
and also noisy GD in the kernel regime. We �x the`2 and entropy
regularization to be the same across all settings:� 1 = 10 � 2,
� 2 = 5 � 10� 4. We set thetotal number of iterations (outer +
inner loop steps) in PDA to be the same as GD, and tuned the
learning rate for optimal generalization. Observe that

� Model with the NTK scaling (green) generalizes worse than
the mean �eld models (red and blue). This is consistent with
observations in Chizat and Bach (2018a).

� For the mean �eld scaling, PDA (under early stopping) leads
to slightly lower test error than noisy GD. We intend to further
investigate this difference in the generalization performance.
(see Appendix D for generalization bounds of the PDA solution)

F. 2 PDA Beyond`2 Regularization

Note that our current formulation(4) considers̀ 2 regularization, which allows us to establish
polynomial runtime guarantee for the inner loop via the Log-Sobolev inequality. As remarked in
Section 4, our global convergence analysis can easily be extended to Hölder-smooth gradient via the
convergence rate of Langevin algorithm given in Erdogdu and Hosseinzadeh (2020). Although we do
not provide details for this extension in the current work (due to the use of Vempala and Wibisono
(2019)), we empirically demonstrate one of its applications in handling`p regularized objectives for
p > 1 in the following form,

Rp
� 1 ;� 2

(q) def= � 1Eq[k� kp
p] + � 2Eq[log(q)]: (36)

Erdogdu and Hosseinzadeh (2020) cannot directly cover the non-smooth`1 regularization, but we
can still obtain relatively sparse solution by settingp close to 1. Intuitively speaking, when the
underlying task exhibits certain low-dimensional or sparse structure, we expect a sparsity-promoting
regularization to achieve better generalization performance.

Figure 4(a) demonstrates the advantage ofL p-norm regularization forp < 2 in empirical risk
minimization, when the target function exhibits sparse structure. We setn = 1000; p = 50; the
teacher is a multiple-index model (m = 2 ) with binary activation, and parameters of each neuron
are1-sparse. We optimize the student model with PDA (warm-start), where we set� 1 = 10 � 2,
� 2 = 10 � 4, and vary the norm penaltyp from 1.01 to 2. Note that smallerp results in favorable
generalization due to the induced sparsity. On the other hand, we expect the bene�t of sparse
regularization to diminish when the target function is not sparse. This intuition is con�rmed in 4(b),
where we control the target sparsity by randomly selectingr parameters to be non-zero, and we de�ne
s = r=d to be the sparsity level. Observe that the bene�t of sparsity-inducing regularization (smaller
p) is more prominent under smalls (brighter color), which indicates a sparse target function.

(a) Impact ofL p regularization. (b) Generalization under sparse teacher.

Figure 4:PDA with general̀ p regularizer (objective(36)). (a) Generalization error vs. training time in learning
a 1-sparse target function. (b) generalization error vs. sparsity of the target functions.
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F. 3 On the Role of Entropy Regularization

Our objective(3) includes an entropy regularization with magnitude� 2. In this section we illustrate
the impact of this regularization term. In Figure 5(a) we consider a synthetic 1D dataset (n = 15) and
plot the output of a two-layer tanh network with 200 neurons trained by SGD and PDA to minimize
thesquared losstill convergence. We use the same`2 regularization (� 1 = 10 � 3) for both algorithms,
and for PDA we set the entropic term� 2 = 10 � 4. Observe that SGD with weak regularization
(red) almost interpolates the noisy training data, whereas PDA with entropy regularization �nds
low-complexity solution that is smoother (blue).

We therefore expect entropy regularization to be bene�cial when the labels are noisy and the underly-
ing target function (teacher) is “simple”. We verify this intuition in Figure 5(b). We setn = 500,
d = 50 andM = 500, and the teacher model is a linear function on the input features. We employ
SGD or PDA to optimize the squared error. For both algorithms we use the same`2 regularization
� 1 = 10 � 2, but PDA includes a small entropy term� 2 = 5 � 10� 4. We plot the generalization error
of the converged model under varying amount of label noise. Note that as the labels becomes more
corrupted, PDA (blue) results in lower test error due to the entropy regularization8. On the other
hand, model under the kernel scaling (green) generalizes poorly compared to the mean �eld models.
Furthermore, Figure 5(c) demonstrates that entropy regularization can be bene�cial under low noise
(or even noiseless) cases as well. We construct the teacher model to be a multiple-index model with
binary activation. Note that in this setting PDA achieves lower stationary risk across all noise level,
and the advantage ampli�es as labels are further corrupted.

(a) Impact of entropy regularization
(one-dimensional).

(b) Stationary risk vs. label noise
(linear teacher).

(c) Stationary risk vs. label noise
(multiple index teacher).

Figure 5:(a) 1D illustration of the impact of entropy regularization in two-layer tanh network: PDA (blue) �nds
a smoother solution that does not interpolate the training data due to entropy regularization. (b)(c) Test error of
two-layer tanh network trained till convergence. PDA (blue) becomes advantageous compared to SGD (red)
when labels become noisy, and the NTK model (green, note that the y-axis is on different scale) generalizes
considerably worse than the mean �eld models.

F. 4 Adaptivity of Mean Field Neural Networks

Recall that one motivation to study the mean �eld regime (instead of the kernel regime) is the presence
of feature learning. We illustrate this behavior in a simple student-teacher setup, where the target
function is a single-index model with tanh activation. We setn = 500; d = 50, and optimize a
two-layer tanh network (M = 1000), either in the mean �eld regime using PDA, or in the kernel
regime using SGD. For both methods we choose� 1 = 10 � 3, and for PDA we choose� 2 = 10 � 4.

In Figure 6 we plot the the evolution of the cosine similarity between the target vectorw� and the
top-5 singular vectors (PC1-5) of the weight matrix during training. In Figure 6(a) we observe that the
mean �eld model trained with PDA “adapts” to the low-dimensional structure of the target function;
in particular, the leading singular vector (bright yellow) aligns with the target direction. In contrast,
we do not observe such alignment on the network in the kernel regime (Figure 6(b)), because the
parameters do not travel away from the initialization. This comparison demonstrates the bene�t of
the mean �eld parameterization.

8Note that entropy regularization is not the only way to reduce over�tting – such capacity control can also be
achieved by proper early stopping or other types of explicit regularization.
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