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Abstract

We propose the particle dual averaging (PDA) method, which generalizes the
dual averaging method in convex optimization to the optimization over probability
distributions with quantitative runtime guarantee. The algorithm consists of an inner
loop and outer loop: the inner loop utilizes the Langevin algorithm to approximately
solve for a stationary distribution, which is then optimized in the outer loop. The
method can thus be interpreted as an extension of the Langevin algorithm to
naturally handle nonlinear functional on the probability space. An important
application of the proposed method is the optimization of neural network in the
mean field regime, which is theoretically attractive due to the presence of nonlinear
feature learning, but quantitative convergence rate can be challenging to obtain. By
adapting finite-dimensional convex optimization theory into the space of measures,
we analyze PDA in regularized empirical / expected risk minimization, and establish
quantitative global convergence in learning two-layer mean field neural networks
under more general settings. Our theoretical results are supported by numerical
simulations on neural networks with reasonable size.

1 Introduction

Gradient-based optimization can achieve vanishing training error on neural networks, despite the
apparent non-convex landscape. Among various works that explains the global convergence, one
common ingredient is to utilize overparameterization to translate the training dynamics into function
spaces, and then exploit the convexity of the loss function with respect to the function. Such endeavors
usually consider models in one of the two categories: the mean field regime or the kernel regime.

On one hand, analysis in the kernel (lazy) regime connects gradient descent on wide neural network
to kernel regression with respect to the neural tangent kernel (Jacot et al., 2018), which leads to global
convergence at linear rate (Du et al., 2019; Allen-Zhu et al., 2019; Zou et al., 2020). However, key
to the analysis is the linearization of the training dynamics, which requires appropriate scaling of
the model such that distance traveled by the parameters vanishes (Chizat and Bach, 2018a). Such
regime thus fails to explain the feature learning of neural networks (Yang and Hu, 2020), which is
believed to be an important advantage of deep learning; indeed, it has been shown that deep learning
can outperform kernel models due to this adaptivity (Suzuki, 2018; Ghorbani et al., 2019a).

In contrast, the mean field regime describes the gradient descent dynamics as Wasserstein gradient
flow in the probability space (Nitanda and Suzuki, 2017; Mei et al., 2018; Chizat and Bach, 2018b),
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which captures the potentially nonlinear evolution of parameters travelling beyond the kernel regime.
While the mean field limit is appealing due to the presence of “feature learning”, its characterization is
more challenging and quantitative analysis is largely lacking. Recent works established convergence
rate in continuous time under modified dynamics (Rotskoff et al., 2019), strong assumptions on the
target function (Javanmard et al., 2019), or regularized objective (Hu et al., 2019), but such result can
be fragile in the discrete-time or finite-particle setting — in fact, the discretization error often scales
exponentially with the time horizon or dimensionality, which limits the applicability of the theory.
Hence, an important research problem that we aim to address is

Can we develop optimization algorithms for neural networks in the mean field regime with more
accurate quantitative guarantees the kernel regime enjoys?

We address this question by introducing the particle dual averaging (PDA) method, which globally
optimizes an entropic regularized nonlinear functional. For two-layer mean field network which is an
important application, we establish polynomial runtime guarantee for the discrete-time algorithm; to
our knowledge this is the first quantitative global convergence result under similar settings.

1.1 Contributions

We propose the PDA algorithm, which draws inspiration from the dual averaging method originally
developed for finite-dimensional convex optimization (Nesterov, 2005, 2009; Xiao, 2009). We
iteratively optimize a probability distribution in the form of a Boltzmann distribution, samples from
which can be obtained from the Langevin algorithm (see Figure 1). The resulting algorithm has
comparable per-iteration cost as gradient descent and can be efficiently implemented.

For optimizing two-layer neural network in the mean-field regime, we establish quantitative global
convergence rate of PDA in minimizing an KL-regularized objective: the algorithm requires O(  3)

steps and O(  2) particles to reach an -accurate solution, where O hides logarithmic factors.
Importantly, our analysis does not couple the learning dynamics with certain continuous time limit,
but directly handles the discrete update. This leads to a simpler analysis that covers more general
settings. We also derive the generalization bound on the solution obtained by the algorithm. From
the viewpoint of the optimization, PDA is an extension of Langevin algorithm to handle entropic-
regularized nonlinear functionals on the probability space. Hence we believe our proposed method
can also be applied to other distribution optimization problems beyond the training of neural networks.

1.2 Related Literature

Mean field limit of two-layer NNs. The key observation for the mean field analysis is that when the
number of neurons becomes large, the evolution of parameters is well-described by a nonlinear partial
differential equation (PDE), which can be viewed as solving an infinite-dimensional convex problem
(Bengio et al., 2006; Bach, 2017). Global convergence can be derived by studying the limiting
PDE (Mei et al., 2018; Chizat and Bach, 2018b; Rotskoff and Vanden-Eijnden, 2018; Sirignano and
Spiliopoulos, 2020), yet quantitative convergence rate generally requires additional assumptions.

Javanmard et al. (2019) analyzed a particular RBF network and established linear convergence (up to
certain error') for strongly concave target functions. Rotskoff et al. (2019) provided a sublinear rate
in continuous time for a modified gradient flow. In the regularized setting, Chizat (2019) obtained
local linear convergence under certain non-degeneracy assumption on the objective. Wei et al. (2019)
also proved polynomial rate for a perturbed dynamics under weak “, regularization.

"Note that such error yields sublinear rate with respect to arbitrarily small accuracy .



Our setting is most related to Hu et al. (2019), who studied the minimization of a nonlinear functional
with KL regularization on the probability space, and showed linear convergence (in continuous time)
of a particle dynamics namedean eld Langevin dynamiashen the regularization is suf ciently
strong. Chen et al. (2020) also considered optimizing a KL-regularized objective in the in nite-width
and continuous-time limit, and derived NTK-like convergence guarantee under certain parameter
scaling. Compared to these prior works, we directly handle the discrete time update in the mean- eld
regime, and our analysis covers a wider range of regularization parameters and loss functions.

Langevin algorithm. Langevin dynamics can be viewed as optimization in the space of probability
measures (Jordan and Kinderlehrer, 1996; Jordan et al., 1998); this perspective has been explored
in Wibisono (2018); Durmus et al. (2019). It is known that the continuous-time Langevin diffusion
converges exponentially fast to target distributions satisfying certain growth conditions (Roberts
and Tweedie, 1996; Mattingly et al., 2002). The discretizadgevin algorithmhas a sublinear
convergence rate that depends on the numerical scheme (Li et al., 2019) and has been studied under
various metrics (Dalalyan, 2014; Durmus and Moulines, 2017; Cheng and Bartlett, 2017).

The Langevin algorithm can also optimize certain non-convex objectives (Raginsky et al., 2017; Xu
et al., 2018; Erdogdu et al., 2018), in which one nite-dimensional “particle” can attain approximate
global convergence due to concentration of Boltzmann distribution around the true minimizer. How-
ever, such result often depends on the spectral gap that grows exponentially in dimensionality, which
renders the analysis ineffective for neural net optimization in the high-dimengiareheter space

Very recently, convergence of Hamiltonian Monte Carlo in learning certain mean eld models has
been analyzed in Bou-Rabee and Schuh (2020); Bou-Rabee and Eberle (2021). Compared to these
concurrent results, our formulation covers a more general class of potentials, and in the context of
two-layer neural network, we provide optimization guarantees for a wider range of loss functions.

1.3 Notations

Let R. denote the set of non-negative real numberslkan, the Euclidean norm. Given a density
functiong: RP ! R., we denotg the expectation with respectito)d by Eq4[ ]. For a function
f:RP!I R,wedeneEyf]= f()g( )d whenf isintegrable.KL is the Kullback-Leibler

divergenceKL( gkq®) %'

such that the second-order mome&xfk k3] < 1 and entropyl < Egflog(g)] < +1 are well
de ned. N (0; 1) is the Gaussian dlstrlbutlon aRP with mean0 and covariance matril,.

q( )log qo(( )) d . Let P, denote the set of positive densitigen RP

2 Problem Setting

We consider the problem of risk minimization with neural networks in the mean eld regime. For
simplicity, we focus on supervised learning. We here formalize the problem setting and models. Let
X RYandY R be the input and output spaces, respectively. For given inpuixdats , we
predict a corresponding outpyit= h(x) 2 Y through a hypothesis functidn: X 'Y

2.1 Neural Network and Mean Field Limit

We adopt a neural network in the mean eld regime as a hypothesis function.=9_eRP be a
parameter space amd : X 'Y ( 2 ) be abounded function which will be a component of a
neural network. We sometimes denbie;x ) = h (x). Letq( )d be a probability distribution
on the parameter spaceand = f ,g", be the set of parameters sampled frong( )d . A
hypothesis is de ned as an ensembléhof as follows:

1 X
h ()% = h, (1)
M
r=1

A typical example in the literature of the above formulation is a two-layer neural network.
Example 1(Two-layer Network) Leta, 2 Randb 2 RY (r 2 f 1; 2; ::1; M g) be parameters for
output and input layers, respectively. We set (a;;b) and = f g, . Denoteh , (x) = def

2(ar 1(bF x)) (x 2 X)), where ; and ; are smooth activation furly;tlons Then the hypothb3|s
is a two-layer neural network composed of neurbns h (x) = & [2; 2(a (b x)):



Remark. The purpose of ; in the last layer is to ensure the boundedness of output (e.g., see
Assumption 2 in Mei et al. (2018)); this nonlinearity can also be removed if parameters of output layer
are xed. In addition, although we mainly focus on the optimization of two-layer neural network, our
proposed method can also be applied to ensetmblef deep neural networks . .

Suppose the parametersfollow a probability distributiong( )d , thenh can be viewed as a
nite-particle discretization of the following expectation,

hq(x) = Eqlh (x)]: @)

which we refer to as thmean eld limitof the neural network . As previously discussed, when

h is overparameterized, optimizig becomes “close” to directly optimizing the probability
distribution on the parameter space for which convergence to the optimal solution may be
established under appropriate conditions (Nitanda and Suzuki, 2017; Mei et al., 2018; Chizat and
Bach, 2018b). Hence, the study of optimizatiorhgfwith respect to the probability distribution

g( )d may shed light on important properties of overparameterized neural networks.

2.2 Regularized Empirical Risk Minimization

We brie y outline our setting for regularized expected / empirical risk minimization. The prediction
error of a hypothesis is measured by the loss functi@y) (z;y 2 Y), such as the squared
loss™(z;y) = 0:5(z y)? for regression, or the logistic los$z;y) = log(1 + exp( yz)) for
binary classi cation. LetD be a data distribution ovet Y . For expected risk minimization,
the distributionD is set to the true data distribution; whereas for empirical risk minimization, we
takeD to be the empirical distribution de ned by training détéi; yi)gl, (xi 2 X;yi 2 Y)
independently sampled from the data distribution. We aim to minimize the expected / empirical
risk together with a regularization term, which controls the model complexity and also stabilizes the
optimization. The regularized objective can be written as follows: for , > 0,

0

n
min L(@) ¥ Eey yo [(hgX) Y1+ R 4 .(0) ®3)

whereR . , is aregularization term composed of the weighted sum of the second-order moment
and negative entropy with regularization parametegrs »:
def

R, (0= 1Eqlk K31+ 2Eq[log(Q)]: 4)
Note that this regularization is the KL divergencegdfom a Gaussian distribution. In our setting,
such regularization ensures that the Gibbs distributﬁﬂrﬁpeci ed in Section 3 are well de ned.
While our primary focus is the optimization of the object{®}, we can also derive a generalization

error bound for the empirical risk minimizer of order©{n *=2) for both the regression and binary
classi cation settings, following Chen et al. (2020). We defer the details to Appendix D.

2.3 The Langevin Algorithm

Before presenting our proposed method, we brie y review the Langevin algorithm. For a given
smooth potential functioh : ! R, the Langevin algorithm performs the following update: given
the initial @ @ ( )d , step size > 0, and Gaussian noisé®) N (0;1p),

e N C RSP I e OF )

Under appropriate conditions dn it is known that () converges to a stationary distribution
proportional toeexp( f () in terms of KL divergence at a linear rate (e.g., Vempala and Wibisono
(2019)) up taO( )-error, where we hide additional factors in the l@gaotation.

Alternatively, note that when the normalization constamixp( f ( ))d exists, the Boltzmann
distribution in proportion texp( f ()) is the solution of the following optimization problem,

Lnin. TEq[f]+ Eqllog(@lg: (6)

Hence we may interpret the Langevin algorithm as approximately solving an entropic regularized
linear functional (i.e., free energy functional) on the probability space. This connection between



sampling and optimization (see Dalalyan (2017); Wibisono (2018); Durmus et al. (2019)) enables us
to employ the Langevin algorithm to obtain (samples from) the closed-form Boltzmann distribution
which is the minimizer of6); for example, many Bayesian inference problems fall into this category.

However, the objectivé3) that we aim to optimize is beyond the scope of Langevin algorithm — due
to thenonlinearityof loss™ (z; y) with respect ta, the stationary distribution cannot be described as

a closed-form solution f6). To overcome this limitation, we develop the particle dual averaging
(PDA) algorithm which ef ciently solves (3) with quantitative runtime guarantees.

3 Proposed Method

We now propose thparticle dual averagingnethod to approximately solve the problem (3) by
optimizing a two-layer neural network in the mean eld regime; we also introduce the mean eld limit
of the proposed method to explain the algorithmic intuition and develop the convergence analysis.

3.1 Particle Dual Averaging

Our proposed particle dual averaging method (Algorithm 1) is an optimization algorithm on the space
of probability measures. The algorithm consists of an inner loop and outer loop; we run Langevin
algorithm in inner loop to approximate a Gibbs distribution, which is optimized in the outer loop
so that it converges to the optimal distributign This outer loop update is designed to extend
the classical dual averaging scheme (Nesterov, 2005, 2009; Xiao, 2009) to in nite dimensional
optimization problems (described in Section 3.2). Below we provide a more detailed explanation.

In the outer loop, the last iterat&(!) of the previous inner loop is given. We compute
@ (h-(, (Xt); yt), which is a component of the Gibbs potertjaand initialize a set of parti-
cles @ at~® In Appendix B we introduce a different “restarting” scheme for the initialization.
In the inner loop, we run the Langevin algorithm (noisy gradient descent) starting ffBmwhere

the gradient at thi-th inner step is given by g ( fk)), which is a sum of weighted average of
@ (h-5) (Xs); ys)@h( *;xs) and the gradient of,-regularization (see Algorithm 1).

Algorithm 1 Particle Dual Averaging (PDA)

Input: data distributiorD, initial densityg!™ , number of outer-iteratioriB, learning rate$ {0
number of inner-iterationsT, g,

Randomly draw i.i.d. initial parameters” @ ( )d (r 2f1:2::::Mg)

fort=1toT do
Randomly draw datéx;;y;) from D
W=f Mg, ~O
fork=1toT; do
Run inexact noisy gradient Bescent forf1;2;:::;Mg

k t N . k). k
r g0 R e S@ (M- (Xs)iys)@h( {ix) + 2t {9

{k*D) g Ry + th ) (i.i.d. Gaussian noise N (0;1,))
end for
~(t+1) (Te+) = § (T gm
end for
Randomly pick ug 2 f 2;3;:::; T + 1gfollowing the probabilityP[t] = T(Tziﬁrg) and returrh -,

Figure 1 provides a pictorial illustration of Algorithm 1. Note that this procedure is a slight modi ca-
tion of the normal gradient descent algorithm: the rst termr ofg(!) is similar to the gradient of

the loss@ (h « (X);y) @ (h w(X);y)@h( ;x) where ) =f g™ Indeed, if we

2In Algorithm 1, the terms@®" (h~(s) (Xs); ys) appear in inner loop; but note that these terms only need to
be computed in outer loop because they are independent to the inner loop iterates.



set the number of inner-iteratiofis = 1 and replace the directian g)( Ek)) with the gradient of

theL »-regularized loss, then PDA exactly reduces to the standard noisy gradient descent algorithm
considered in Mei et al. (2018). Algorithm 1 can be extended to the minibatch variant in the obvious
manner; for ef cient implementation in the empirical risk minimization setting see Appendix E. 1.

3.2 Mean Field View of PDA

In this subsection we discuss the mean eld limit of PDA and explain its algorithmic intuition. Note
that the inner loop of Algorithm 1 is the Langevin algorithm with particles, which optimizes the
potential function given by the weighted sum:

2

ot -
e S

S @ (h~i)(Xs);ys)h(;xs)+ 1k k§ :

Due to the rapid convergence of Langevin algorithm outlined in Subsection 2.3, the par&‘?éi'és

exp g . Hence, the inner loop of PDA returns kh-particle approximation of some stationary
distribution, which is then modi ed in the outer loop. Importantly, the update on the stationary
distribution is designed so that the algorithm converges to the optimal solution of the problem (3).

We now introduce thenean eld limitof PDA, i.e., taking the number of particlés ' 1  and
directly optimizing the problem (3) ovay. We refer to this mean eld limit simply as the dual
averaging (DA) algorithm. The dual averaging method was originally developed for the convex
optimization in nite-dimensional spaces (Nesterov, 2005, 2009; Xiao, 2009), and here we adapt it to
optimization on the probability space. The detail of the DA algorithm is described in Algorithm 2.

Algorithm 2 Dual Averaging (DA)

Input: data distributiorD and initial densityg™

fort=1toT do
Randomly draw a daté;;y;) from D

g @ (hgo (X)) y)h(x) + 1k k3 o
Obtain an approximatiog**Y of the density functiom"*? / exp ZéjT%Stgﬁ;

end for

Randomly pick upg 2 f 2;3;:::; T + 1gfollowing the probabilityP[t] = T(T27‘+3) and returrhg

Algorithm 2 iteratively updates the density functiq‘ﬁ”’ 2 P, which is a solution to the objective:

( hyt i )
min Eq  sg® + (t+2)(t+1)Eqflog(@] ; @)
asr 2 s=1
where the functiorg® = @’ (hqo (X);y)h(;x¢) + 1k K3 is the functional derivative of

“(hg(Xi,);yt) +  1Eq[k k3] with respect tag atg(V). In other words, the objective (7) is the sum of
weighted average of linear approximations of loss function and the entropic regularization in the
space of probability distributions. In this sense, the DA method can be seen as an extension of the
Langevin algorithm to handle entropic regularized nonlinear functionals on the probability space by
iterativelylinearizingthe objective.

To sum up, we may interpret the DA method as approximating the optimal distritwtimniteratively

optimizing q(t), which takes the form of a Boltzmann distribution. In the inner loop of the PDA

algorithm, we obtaitM (approximate) samples froqﬂt) via the Langevin algorithm. In other words,
PDA can be viewed as a nite-particle approximation of DA — indeed, the stationary distributions

obtained in PDA converges tqf“l) by takingM ! 1 . In the following section, we present
the convergence rate of the DA method, and also take into account the iteration complexity of the
Langevin algorithm; we defer the nite-particle approximation error analysis to Appendix C.



4 Convergence Analysis

We now provide quantitative global convergence guarantee for our proposed method in discrete time.
We rst derive the outer loop complexity, assuming approximate optimality of the inner loop iterates,
which we then verify in the inner loop analysis. The total complexity is then simply obtained by
combining the outer- and inner-loop runtime.

4.1 Outer Loop Complexity
We rst analyze the convergence rate of the dual averaging (DA) method (Algorithm 2). Our analysis
will be made under the following assumptions.
Assumption 1.
(ALY [ 1;1]. “(z;y) is a smooth convex function w.ztandj@"(z;y)j] 2fory;z2Y.
(A2)jh(;x)j 1andh(;x) is smooth with respect toforx 2 X .

(A3) KL(g(t*D) kg™ ) 1=t2.

Remark. (A2) is satis ed by smooth activation functions such as sigmoid and tanh. Many loss
functions including the squared loss and logistic loss safisty under the boundedness assumptions
Y [ L1]andjh (x)j 1. Note that constants ifAl) and(A2) are de ned for simplicity and

can be relaxed to any valugA3) speci es the precision of approximate solutions of sub-problems
(7) to guarantee the global convergence of Algorithm 2, which we verify in our inner loop analysis.

We rst introduce the following quantity foq 2 P 5,

o0 ¥ Eflog@] © D e L wiog 22
2 2 1

Observe that the expression consists of the negative entropy minus its lower bquEI doder
Assumption(Al), (A2); in other wordse(q(t)) 0. We have the following convergence rate of DA

Theorem 1(Convergence of DA) Under AssumptionfAl), (A2), and(A3), for arbitrary q 2 P,
iterates of the DA method (Algorithm 2) satis es

2 X1 0
mtzzt E[L(a™)] L (a)
1 &q) .
O =5 1+ 1B kK + =+ Z(L+exp8= 2))plog’(T +2) ;

where the expectatioB[L (o")] is taken with respect to the history of examples.

Theorem 1 demonstrates the convergence rz?ge of Algorithm 2 to the optimal value of the regularized

objective(3) in expectation. Note thatZs (5 tE[L(dV)] is the expectation cE[L (V)]

according to the probabilit [t] = T(T27t+3) (t2f2;:::;T+19) as speci ed in Algorithm 2. If we

takep; 1; » as constants and ugeto hide the logarithmic terms, we can deduce that adter 1)
iterations, an -accurate solution of the optimal distributidn(g)  infqep, L(g) + is achieved in
expectation. Importantly, this convergence rate appli@yahoice of regularization parameters, in
contrast to the strong regularization required in Hu et al. (2019); Jabir et al. (2019).

On the other hand, due to the exponential dependencg brour convergence rate is not informative
under weak regularization, ! 0. Such dependence follows from the classical LSI perturbation
lemma (Holley and Stroock, 1987), which is likely unavoidable for Langevin-based methods in the
most general setting (Menz and Schlichting, 2014), unless additional assumptions are imposed (e.g.,
a student-teacher setup); we intend to further investigate these conditions in future work.

%In Appendix B we introduce a more general version of Theorem 1 that allows for inexadix), which
simpli es the analysis of nite-particle discretization presented in Appendix C.



4.2 Inner Loop Complexity

In order to derive the total complexity (i.e., taking both the outer loop and inner loop into account)
towards a required accuracy, we also need to estimate the iteration complexity of Langevin algorithm.
We utilize the following convergence result under the log-Sobolev inequality (De nition A):

Theorem 2 (Vempala and Wibisono (2019)Consider a probability densitg( ) / exp( f( ))
satisfying the log-Sobolev inequality with constanand assumé is smooth and f is L-Lipschitz,
e kr f()r f(9. Lk %,. If we run the Langevin algorithm (5) with learning rate
0< s> and letg®( )d be a probability distribution that(®) follows, then we have,

KL(g®ka) exp( k )KL(gP kg +8 *pL?2:

Theorem 2 implies that a-accurgge solution in KL divergence can be obtained by the Langevin

. . . (1) . .
algorithm with ;> min 1, and- log 2KL(a kA jterations.

Since trg,e optimal solution of a sub-problem in DA (Algorithm 2) takes the formy,‘tFSP /
t (s)

exp Wm , we can verify the LS| and determine the constantcfb?l) ()d basedon
the LSI perturbation lemma from Holley and Stroock (1987) (see Lemma B and Example 2 in
Appendix A. 2). Consequently, we can apply Theorem Q(Fél) for the inner loop complexity when

(t+1) . . . . . . . . .
r logq is Lipschitz continuous, which motivates us to introduce the following assumption.
Assumption 2.

(A4) @h( ;x) is 1-Lipschitz continuousk@h( ;x) @h( %x)k, k %,,8x2X,; 92

Remark. (A4)is parallel to (Mei et al., 2018, Assumption A3), and is satis ed by two-layer neural
network in Example 1 when the output or input layer is xed and the input sgasecompact. We
remark that this assumption can be relaxed tdddr continuity of@h( ; x) via the recent result

of Erdogdu and Hosseinzadeh (2020), which allows us to extend Theorem 1 to depe@im
regularizer fop > 1. For now we work with(A4) for simplicity of the presentation and proof.

Set 41 to be the desired accuracy of an approximate solugfé®?) speci ed in (A3): (41 =
1=(t + 1) 2, we have the following guarantee for the inner loop.
Corollary 1 (Inner Loop Complexity) Under (Al), (A2), and(A4), if we run the Langevin algo-

rithm with step size; = O W on (7), then an approximate solution satisfying

. . - (1) gt +1) . )
KL( gD kg™ ) ;1 can be obtained withi® -2 ex"l(st‘ 2) |gg 2L ‘H|1<q‘ ) _jterations.

MoreoverKL( g kg™ ) (t 2 1;2;:::; T + 1g) are uniformly bounded with respecttas long
asq® is a Gaussian distribution angh\3) is satis ed.

We comment that for the inner loop we utilized tverdamped.angevin algorithm, since it is the

most standard and commonly used sampling method for the objécjiv@ur analysis can easily
incorporate other inner loop updates such as the underdamped Langevin algorithm (Cheng et al.,
2018; Eberle et al., 2019) or the Metropolis-adjusted Langevin algorithm (Roberts and Tweedie,
1996; Dwivedi et al., 2018), which may improve the iteration complexity.

4.3 Total Complexity

Combining Theorem 1 and Corollary 1, we can now derive the total complexity of our proposed
algorithm. For simplicity, we takp; 1; » as constants and hide logarithmic term&imnd ~. The
following corollary establishes@( 3) total iteration complexity to obtain anaccurate solution in
expectation because = T t?)= O( ?)fort T.

Corollary 2 (Total Complexity) Let > 0be an arbitrary desired accuracy amf) be a Gaussian
distribution. Under assumptior(#\1), (A2), (A3), and(A4), if we run Algorithm 2 foiT = t 1)

iterations on the outer loop, and the Langevin algorithm with step size W%

forT, = T ') iterations on the inner loop, then araccurate solutioni () infqop, L(Q) +
of the objectivé3) is achieved in expectation.



Quantitative convergence guarantee. To translate the above convergence rate result to the nite-
particle PDA (Algorithm 1), we also characterize the nite-particle discretization error in Appendix C.
For the particle complexity analysis, we consider two versions of particle updatitevarm-
start scheme described in Algorithm 1, in whicH? is initialized at the last iterate (V) of the
previous inner loop, andi() the resamplingscheme, in which @ is initialized from the initial
distributiong® ( )d (see Appendix B for details). Remarkably, for the resampling scheme, we
provide convergence rate guarantee in time- and space-discretized settingpthatdasnial in both

the iterations and particle sizepeci cally, the particle complexity o®( ?2), together with the
total iteration complexity oO( 2), suf ces to obtain an-accurate solution to the objectiy@) (see
Appendix B and C for precise statement).

5 Experiments

5.1 Experiment Setup

We employ our proposed algorithm in both synthetic student-teacher settings (see Figure 2(a)(b))
and real-world dataset (see Figure 2(c)). For the student-teacher setup, the labels are generated as
yi = f (xj) + "i, wheref is the teacher model (target function), anis zero-mean i.i.d. label

noise. For the student mode] we follow Mei et al. (2018, Section 2.1) and parameterize a two-layer
neural network with xed second layer as:

hd
f(x) = —Ml (W, x + by); (8)
r=1

which we train to minimize the objecti@) using PDA. Note that = 1 corresponds to the mean
eld regime (which we are interested in), whereas setting 1 =2 leads to the kernel (NTK) regirfie

Synthetic student-teacher setting. For Figure 2(a)(b) we design synthetic experiments for both re-
gression and classi cation tasks, where the student model is a two-layer tanh netwoM witB00.
F?r q@ggession, we take the target functforto be a multiple-index model witm neuronsf (x) =

p= 21 (hw;;xi), and the inputis drawn from a unit GaussMif0; I ). For binary classi -

cation, we consider a simple two-dimensional dataset s&learn.datasets.make _circles
(Pedregosa et al., 2011), in which the goal is to separate two groups of data on concentric circles (red
and blue in Figure 2(b)). We include additional experimental results in Appendix F.

PDA hyperparameters. We optimize thesquared lossor regression and tHegistic lossfor binary
classi cation. The model is trained by PRA with batch size 50. We scale the number of inner loop
stepsT; with t, and the step sizq with 1= t, wheret is the outer loop iteration; this heuristic is
consistent with the required inner-loop accuracy in Theorem 1 and Proposition 2.

(a) objective value (b) parameter trajectory (c) MNIST odd vs. even
(regression). (classi cation). (classi cation).

Figure 2:(a) lteration complexity of PDA: th®(T *!) rate on the outer loop agrees with Theorem 1. (b)
Parameter trajectory of PDA: darker color (purple) indicates earlier in training, and vice versa. (c) odd vs. even
classi cation on MNIST; we report the training loss (red) as well as the train and test accuracy (blue and green).

“We use the terrkernel regimeonly to indicate the parameter scalingthis does not necessarily imply that
the NTK linearization is an accurate description of the trained model.



5.2 Empirical Findings

Convergence rate. In Figure 2(a) we verify th®©(T 1) iteration complexity of the outer loop

in Theorem 1. We apply PDA to optimize the expected risk (analogous to one-pass SGD) in the
regression setting, in which the input dimensiongity 1 and the target function is a single-index
model fn = 1) with tanh activation. We employ thesampledupdate (i.e., without warm-start; see
Appendix B) with hyperparameters = 10 ?; , =10 3. To compute the entropy in the objective

(3), we adopt th&-nearest neighbors estimator (Kozachenko and Leonenko, 1987k witt0.

Presence of feature learning. In Figure 2(b) we visualize the evolution of neural network parame-
ters optimized by PDA in a 2-dimensional classi cation problem. Due to structure of the input data
(concentric rings), we expect that for a two-layer neural network to be a good separator, its parameters
should also distribute on a circle. Indeed the converged solution of PDA (bright yellow) agrees with
this intuition and demonstrates that PDA learns useful features beyond the kernel regime.

Binary classi cation on MNIST. In Figure 2(c) we report the training and test performance of PDA

in separating odd vs. even digits from the MNIST dataset. We subsamp@500 training examples

with binary labels, and learn a two-layer tanh network with wikith= 2500. We use the resampled
update of PDA to optimize the cross entropy loss, with hyperparametersl0 2; , = 10 4.
Observe that the algorithm achieves good generalization performance (green) and roughly raintains
theO(T 1) iteration complexity (red) in optimizing the training objective (3).

Conclusion

We proposed the particle dual averaging (PDA) algorithm for optimizing two-layer neural networks
in the mean eld regime. Leveraging tools from nite-dimensional convex optimization developed

in the original dual averaging method, we establishadntitativeconvergence rate of PDA for
regularized empirical and expected risk minimization. We also provided particle complexity analysis
and generalization bounds for both regression and classi cation problems. Our theoretical ndings
are aligned with experimental results on neural network optimization. Looking forward, we plan to
investigate speci ¢ problem instances in which convergence rate can be obtained under vanishing
regularization. It is also important to consider accelerated variants of PDA to further improve the
convergence rate in the empirical risk minimization setting. Another interesting direction would be to
explore other applications of PDA beyond two-layer neural networks, such as deep modaje (Ara

et al., 2019; Nguyen and Pham, 2020; Lu et al., 2020; Pham and Nguyen, 2021), as well as other
optimization problems for entropic regularized nonlinear functional.
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MISSING PROOFS

A Preliminaries

A.1 Entropic Regularized Linear Functional

In this section, we explain the property of the optimal solution of the entropic regularized linear

functional. We here de ne the gradient of the negative entfBgog(g)] with respect tay over the

probability space as 4Eq[log(a)] = log( g). Noteghat this gradient is well de ned up to constants

as a linear operator on the probability spag®?! (¢° o)( )log(q( ))d . The following lemma

shows the strong convexity of the negative entropy.

Lemma A. Letq; dbe probability densities such that the entropy and Kullback-Leibler divergence
a°C)

KL(gkg) = oY )log_ & d are well de ned. Then, we have
4

Eqllog(@]+ (a° )( )r qEqllog(@)ld +KL( gkq) = Egellog(cd)];
Z

Elog@]+ (¢ A Eqllog@ld + Sk G, )  Eqllog(@]

The rst equality of this lemma can be shown by the direct computation of the entropy, and the second
inequality can be obtained by Pinsker's inequaljtsq® okl @) KL(g%q).

Recall thatP, is the set of positive densities &P such that the second momegg[k k3] < 1
and entropyl < Egflog(g)] < +1 are well de ned. We here consider the minimization
problem of entropic regularized linear functionalBp. Let 1; 5 > 0 be positive real numbers and

H:RP! Rbea bourr'ulded continuous function. o

min F(a) ¥ EH( )]+ 1Eqlk K]+ 2Eqflog(al )] ©)

Then, we can show / exp Lzlkkg is an optimal solution of the problem (9) as follow.

Clearly,q 2 P, and the assumption anin Lemma A withg® 2 P, holds. Hence, foBq®2 P,
F(Q) = EqH( )]+ 1Eqlk K31+ 2Eq[log(a( ))]
= BeHOI+  1Eqlk kg]+ 2Eqo[log(qY ))]

+ (@ D) H()+ kK d + »(Eqllog(a( )]  Ecellog(dX )I)
z

F(@+ (@ A() H()+ 1kki d + 2(Egllog(a( ))] Egellog(aX )))
Z Z

F@+ (@ D) H()+ kK d 2 (d® o) )r qEqllog(g)ld + %kqo quI(d )
Z

F@+ (@ D) H()+ 1k ki+ 2log(a( ) d fkq0 ak? @ )

Fd) ko ok, (10)

For the inequality we used Lemma A and for the last equality we gdedxp Lzlkkg

Therefore, we conclude thgtis a minimizer ofF on P, and the strong convexity ¢f holds atq
with respect td_1(d )-norm. This crucial property is used in the proof of Theorem 1.

A.2 Log-Sobolev and Talagrand's Inequalities

The log-Sobolev inequality is useful in establishing the convergence rate of Langevin algorithm.

De nition A (Log-Sobolev inequality)Letd = p( )d be a probability distribution with a positive
smooth densitp > 0 onRP. We say that satis es the log-Sobolev inequality with constant 0
if for any smooth functiofi : RP ! R,

E [f2logf? E [f2]logE [f2] 2E [kr fK2:
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This inequality is analogous to strong convexity in optimizationdlet q( )d be a probability
distribution onRP such thag is smooth and positive. Then, ifsatis es the log-Sobolev inequality
with , it follows that 1

KL( ji ) Z—E [kr loggk3]:
The above relation is directly obtained by setting P g in the de nition of log-Sobolev inequality.
Note that the right hand side is nothing else but the squared norm of functional gradkér{t d€ )
with respect to a transport map for

It is well-known that strong log-concave densities satisfy the LSI with a dimension-free constant (up
to the spectral norm of the covariance).

Example 2(Bakry andEmery (1985)) Letq/ exp( f) be a probability density, whefe: RP I R
is a smooth function. If there exists> 0 such thatr f  clp, theng( )d satis es Log-Sobolev
inequality with constant.

In addition, the LSI is preserved under bounded perturbation, as originally shown in Holley and
Stroock (1987). We also provide a proof for completeness.

Lemma B (Holley and Stroock (1987))Letg( )d be a probability distribution orfRP satisfying
the log-Sobolev inequality with a constant For a bounded functioB : RP ! R, we de ne a
probability distributiongg ( )d as follows:

expB())al) ..

d = :
®O0 = £ B
Then,gg d satis es the log-Sobolev inequality with a constamtexp(4kB k1 ).

Proof. Taking an expectatioky, of the Bregman divergence de ned by a convex functidog x,
for 8a > 0,

0 Eg f?()log(f?()) (alog@)+(log(a)+1)(f?() a))
= Eq f2()log(f?()) (f?()log(a)+ f2() a) :
Since the minimum is attained at= Eq, [f 2( )],
0 Eg f2()log(f2())  Eq[f?()]logEq [f2( )]
=inf Eq f2()log(f?( ) (F?()log(a)+ f?() &)
exp(Bki ) inf Eq f2()log(f?( ) (f?()log(a)+ f?() a)
= exp(2kBky ) Eq f?( )log(f?())  Eqlf ( )]log Eqlf *( )]
2 exp(xBk; )Eq kr £ 12
_ 2exp(XBk; ) Eqlexp(B ()]
*®  exp(B())

Eqs kr fK3 ;

kr f k2

2exp(4kBKky )

where we used the non-negativity of the integrand for the second inequality. O

We next introduce Talagrand's inequality.

De nition B (Talagrand's inequality) We say that a probability distributiog( )d satis es Tala-
grand's inequality with a constant> 0 if for any probability distributiong )d

SWi(da)  KL(dka);
whereW, (g% g) denotes th@-Wasserstein distance betwegn)d andg¥ )d .

The next theorem gives a relationship between KL divergencaffdsserstein distance.

Theorem C (Otto and Villani (2000)) If a probability distributiong( )d satis es the log-Sobolev
inequality with constant> 0, thenq( )d satis es Talagrand's inequality with the same constant.
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B Proof of Main Results

B.1 Extension of Algorithm

In this section, we prove the main theorem that provides the convergence rate of the dual averaging
method. We rst introduce a slight extension of PDA (Algorithm 1) which incorporates two different
initializations at each outer loop step. We refer to the two versions awdhn@-startand the
resampledupdate, respectively. Note that Algorithm 1 in the main text only includes the warm-start
update. In Appendix C we provide particle complexity analysis for both updates. We remark that the

bene t of resampling strategy is the simplicity of estimation of approximation ¢h§6)r hqw (Xe)],

becausd” is composed of i.i.d particles and a simple concentration inequality can be applied to
estimate this error.

Algorithm 3 Particle Dual Averaginggeneral versioh

Input: data distributiorD, initial densitygY , number of outer-iteratiorig, learning rate$ o=,
number of inner-iterationsT g/_,

Randomly draw i.i.d. initial parameter 2 gP()d (r2f1,2:::;Mq)

“O ot gl

fort=1toT do
Randomly draw a daté,; y;) from D
Either @ =f ®gh,  ~O (warm-star)
Or randomly initialize @ fromg® ( )d (resampling
fork =1to T, do
Run an inexact noisy gradief:pt descentf@ f 1;2;:::; Mg

- k N . k). k
r g0 R s S@ (- (xe)ivs)@n( {x) + 2t (9

{k+1) K g My + Pyt (i.i.d. Gaussian noise™® N (0;1,))
end for
~(t+1) (Te+) = § 5T1+1) glr\/I:l
end for

Randomly pickug 2 f 2;3;:::; T +1gfollowing the probabilityP[t] = T(T27t+3) and returrh -,

We also extend the mean eld limit (Algorithm 2) to take into account the inexactness in computing
hyo (t). This relaxation is useful in convergence analysis of Algorithm 3 with resampling because it
aﬁows us to regard this method as an instance of the generalized DA method (Algorithm 4) by setting

an inexact estimate)!) = h- (xt), instead of the exact value bf, (t), which is actually used
to de ned the potential for which Langevin algorithm run in Algorithm 3. This means convergence
analysis of Algorithm 4 (Theorem D) immediately provides a convergence guarantee for Algorithm 3

if the discretization erro'rh&t) hqo (Xt)j can be estimated (as in the resampling scheme).

On the other hands, the convergence analysis of warm-start scheme requires the convergence of mean
eld limit due to certain technical dif culties, that is, we show the convergence of Algorithm 3 with
warm-start by coupling the update with its mean eld limit (Algorithm 2) and taking into account the
discretization error which stems from nite-particle approximation.

We now present generalized version of the outer loop convergence rate of DA. We highlight the
tolerance factor in the generalized assumpti¢A3') in blue.

Assumption C. Let > 0be a given accuracy.

(A1) Y [ 1;1] “(z;y) is asmooth convex function w.zzandj@ (z;y)j 2fory;z2Y and
@( ;y) is 1-Lipschitz continuous foy 2 Y .

(A2) jh (x)j 21andh(;x) is smooth w.rt. forx 2 X .
(A3) KL(q*D kg™ ) 1= andjh{) hyo(x)j fort 1.
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Algorithm 4 Dual Averaging §eneral versioh

Input: data distributiorD and initial densityg®

fort=1toT do
Randomly draw a daté,; y;) from D

Compute an approximatidm’ of hy ()

g @ () y)hGx) + 1k K3

Obtain an approximatiog*? of the density functiom"™ / exp
end for
Randomly pickug 2 f 2;3;:::; T + 19 following the probabilityP[t] = T(Tziﬁrg)) and returrhg,

P
to1 259
2(t+2)( t+1)

Remark. The new condition ofA3") allows for inexactness of computitig, (x¢). When showing
solely the convergence of the Algorithm 2 which is the exact mean- eld limit, the original assumptions
(Al), (A2), and(A3) are suf cient, in other words, we can take= 0 and Lipschitz continuity of

@’ (;y) in (A1) can be relaxed.

Theorem D (Convergence of general DAJUnder Assumption@A1"), (A2"), and(A3") with 0,
for arbitrary q 2 P, iterates of the general DA method (Algorithm 4) satis es

2 Xt .
ey LELE L @)
t=2
1 e
240 o 1+ 1B kK + 23Dy 20 exp@= ) log(T+2)

where the expectatioB[L (o")] is taken with respect to the history of examples.

Notation. In the proofs, we use the following notations which are consistent with the description of
Algorithm 3 and 4:

gV = @ (hiyoh(ix)+ 1k k3;
2
)= _ < (s)
O Sy Y
2 X ¢
- — ~h(s) . . 71 ..
2t +2)(t+1) - s@ (hy”;ys)h(;xs) + (t+2) k j3;
q(t+l) / exp g(t) |
P !
‘5:1 2sg(s)

IR (T e
When considering the resampling sche|h|1§é>, is set to the approximatidm- ., (X¢), whereas when

considering the warm-start scherhét,) is set tohqm (xt) with the mean eld limitM !'1  and
without tolerance (= 0).

B.2 Auxiliary Lemmas

We introduce several auxiliary results used in the proof of Theorem 1 (Theorem D) and Corollary 1.
The following lemma provides a tail bound for Chi-squared variables (Laurent and Massart, 2000).

Lemma C (Tail bound for Chi-squared variable) et N (0; 2Ip) be a Gaussian random
variable onRP. Then, we getfoBc p ?,

c
10 2

Pkki 2c exp

Based on Lemma C, we get the following bound.
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Lemma D. Let N (0; 21p) be Gaussian random variable on= RP. Then, we get for

8R 2,
P z
E k k31[k k3> 2R] =

k k R
2 2 .
k k5exp >z d 2(R+10 “)exp 02 °

k k2>2R

o N|pR
NN

R K K2
whereZ = exp %

Proof. We se =exp( k _k3=2 2)=Z. Then,
] () p( 2% ) z,

k K2p( )d p( )1k K& > 2R] K K2 > r]drd

k kZ>2R
2 zZz,

p( )1 k k3> maxf2R;rg drd
z z,
p( )1 k kK3>r drd

2R p()l kk&>2R d +
2R

z 1
=2RP[k k5 > 2R] + Pk k3 >r]dr
R 1 r
2R exp 102 + . exp 20 2 dr

2(R+10 ?)exp 152
O

Proposition A (Continuity). Letq ( )/ exp H() k k3 ( > 0)be a density oRRP such
thatkH kq C. Then,£0r8 > Oand adensitydq2 P,

@+ +1=)expd) oy, (L )pexp(2).

2

k k3(q q)( )d
Z Z D
q( ) log(a( ))d q()log(g()d  (@+(@2+ +1=)expdd))KL(dkq)+ c 2KL(gkq)
(1+ )pexp(20)
: :

Proof. Le& be an optimali:oupling betweed andq d . Using Young's inequality, we have

kk%q()d = kk%d(; 0)

Z

= ko WrkAg+2( 9 °d (69

Z

K 9%C+ka8+ Tk 9%+ k9% d(: 9
Z Z
=(1+1=) k %d(; 9+@+ ) k%q(9%°
Z
=(1+1=)Wq;q)+ @+ ) k%q(9d® (11)

The last term can bf bounded as follgws:
exp H() kK3
d

2 - 2R
A= K e (HO) ki
exp2)  k RREP KK
P 2 exp( Kk K2)d
_ bexp(Z) (12)

2
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where the last equality comes from the variance of Gaussian distribution.
From (11) and (12),
Z Z
kki@ aq)()d (1+1=)WF(a;q)+  k kiq ()d
exp(2c
a+1=)wiaa)+ PSP,
From the symmetry of (11), and applying (11) again with (12),
Z A

kki(a a()d (1+1=)WF(g;q)+  k Kkiq( )d
4
2+ +1=)WZ(a;q)+ (1+ ) kkiq()d

2+ +1=)W3(qiq)+ 17 )2pexp(2c):

From Lemma B and Example 2, we sgesatis es the log-Sobolev inequality with a constant
2= exp(4c). As aresultg satis es Talagrand's inequality with the same constant from Theorem C.
Hence, by combining the above two inequalities, we have
Z
(1+ )pexp()
2

(1+ )pexp(Z)
KL(gkq ) + 5

kKki(q q)()d (2+ +1=)WZ(q;q)+
(2+ +1=)exp(4c)

Therefore, we know that
V4 Z

q( )log(q( ))d q ()log(q ( )d
Z
KL(gkg)+ (a9 o)() H()+ kkid

KL(Gkq )+ ka ki) + 2+ +1= )expdoKL(gkg)+ —+ JPexP(Z)

2
KL(akq ) + Cp 2KL(gkq )+ (2+ +1=)exp(4c)KL( gkq ) + @+ )gexp(Zc):
where we used Pinsker's theorem for the last inequality. This nishes the proof. O

Proposition B (Maximum Entropy) Letq () / exp H() kk3 ( > 0)onRP bea
density such thatHk;  c. Then,

Eq [l00(q )] 2c+g exp(20) +log  —

Proof. It follows that

z
Eq log(@)l= Eq [H( )+ k ki]+log exp( H() k ki)d
Z
c+ Eqlk K3]+log exp(c k kd)d
z
=2c+ Eq [k K3]+log exp( k k3)d
pexp()  p .
2c+ 5 + 2Iog ;
where we used (12) and Gaussian integral for the last inequality. O
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Proposition C (Boundedness of KL-divergenceletq ( )/ exp H () kki ( >0
be a density ofRP such thatkH k; c,andg( )/ exp Hj() 1k k& (1> 0)bea
density orRP such thatkHj k; . Then, for any density,

KL(okq) 4c +2q+§ 1+ — pexp(Zc])+glog -1
]

q__
+ 1+4 1+ — exp(4g) KL(okg)+ ¢ 2KL(gkg)):
]

Proof. Applying Proposition A with =1,

Z
KL(dkg)= o )log X ¢
q
Z 0) Z
= q()log % d + (q() o »log(q ( )d
i q z

+ g )log(q( )d q( )log(q( ))d

z
q( )log % d+ (a() q(NH()+ kk3)d
q___
+(1+4exp(4q)KL(okg)+ ¢ 2KL(dkg) + pexp(2q)

A0) 4 4o 4 4_eXP(0)

q()
q___ -
+(1+4exp(4¢))KL( gkg) + ¢ 2KL(gkqg) + pexp(2g):

q( )log KL(gkq)+ P—&*P(2)
]

We next bound the rst term in the last equation as follows.

Z R
a() . _ exp( HI() 1k KB) exp( H () ki3
| = | R
A0s gy @7 A0 Gom O kK ¢ T Ten A kK
= g0 HO) MO+ kK d
Z Z

+log  exp( H () k k3)d log exp( Hi() 1k k3)d
c+g+ % 1+ — pexp(2)
z ] z
+log  exp(c k k3)d log exp( g 1k k3)d

2c +2q+% 1+ — pexp(2q)+glog 1
1

where for the rst inequality we used a similar inequality as in (12) and for the second inequality we
used the Gaussian integral. Hence, we get

KL(gkg) 4c +Zc]+g 1+ — pexp(2c1)+glog ]
]

q___
+ 1+4 1+ — exp(4g) KL(gkqg)+ g 2KL(gkg):
]

Lemma E. Suppose Assumpti¢Al) and(A2) hold. IfKL( gV kq™") & fort 2 then
VA

t gO)®() oV(nd 5 ot ed?) ed”) = 0@+ L+ p 2exp(8= 2)):
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Proof. Recall the de nition ofg®™; g andq(t) (see notations in subsection B. 1). We set =
t

2.511:1155: sy - Note thatfort 1,
2+ 1k k5 gV() 2+ 1k K5 (13)
( 2+ 1k k5 gV() @+ 1k KD); (14)
1 1
372 t+1 72 (15)
Therefore, we have fdr 2 from Proposition Awith =1=t< 1,
Z
t () qYV()d
Z
2tk qVkp, @+ ot kK@) oV())d
q

2t 2KL(gkq™")

(1+ )pexp(4= 2)

+oo(t+2) 2+ +1=)exp(= KL(Vkd")+ 2

243 ,(dexp(e= )+ pexp(d= 2))
=01+ p 2exp(8= 2)):
Moreover, we have for 2,

ot e(dV)  e(q")

(1+ )pexp(4= »)

q -
t (L+@+ +1=)exp= 2)KL(qVkqD)+ 2 2KL(qOKgD) +
2

2
|
p _ H
_ 1 2 2 pexp(4= »)
=01+ 2+p 2exp(8= 2):
This nishes the proof. O

B.3 Outer Loop Complexity

Based on the auxiliary results and the convex optimization theory developed in Nesterov (2009);
Xiao (2009), we now prove Theorem D which is an extension of Theorem 1.

Proof of Theorem DFort 1 we de ne,
" #
X X1
Vi@= Eq  sd® e s
s=1 s=1
From the de nition, the densitm(”l) 2 P, calculated in Algorithm 4 maximizeg (g). We denote
V, = V("™ ). Then, fort 2, we get

X ’ (t1) | X h ti (t+1)
Vi = Eq<t+1> sg® 2€(q ) S Eq(t+1) tg®) 2(t+1)e(q )

%l s=1 )

2 ts:l S, (t+1) ()2 h (t)l (t+1)
Vii ——5—Kkq q 'ki,a) Eq 19 2zt +1)e(q )
z 2 a

+t gV ") ()g®( )d

P hooi

2 ts:l S| (t+1) (1) ,2 (t)l (t+1)
Vi 1 qu q°ki,a) Eqv t9 2t +1)e(q )
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Z z
+tg0O)@() d?(nd +t (@ ") )g()d

Py h o i
1 S
Vi , =2 28'1 kg™ q(t)kﬁl(d) Eqo tgt") 2(t+1)e(d"™)
+t (o q"P)()gM()d + 0@+ 2+ p 2exp(8= 2)); (16)

where for the rstinequality we used the optimalityq:(f) and the strong convexity (10) q@, and
for the nal inequality we used Lemma E.

P

t
We setR; = 3p+15 ~2log(1+ t) and also +1 = Fﬁihfs = z(t‘+2) , as done in the proof of
2 4=
Lemma E.

1

i - - (t) Piase® R P bse® ()
From AssumptiongAl"), (A2") andq ’ = exp —R—o T oexp SR d (t
2), we have fot 2,

s=1 s=1

4

dV() exp((2 kK= exp(( 2 ik K)d
Z
exp4 )exp( ¢ 1k k)= exp( ¢ 1k k3)d
Z
exp(4= 2)exp( ¢ 1k K3)= exp( ¢ 1k kd)d: (17)
Using (17) and applying Lemma D witl? = >1—; ~—— andR = R, we have fot 2,
Z
@ P )HgV( )d
Z
2k " Pkay+r 1 kKA qP)()id
Z
@+2 1ROkd” "V k@) + 1 k K3(d" + g™y ( )d
k k3> 2R,
k k2)
2+2 ROk Pkt 1exp(d= K IgrEPL ik ke)
exp( 1 1K k3)
+ jexp(4= k k3R
1exp(4= 2) k k2> 2R, 2exp( 141 1k K3)d

+ R
2+2 1ROkq" " Ki,@)+2 1exp(4=2) R¢+ > exp 15t :
1t

5 R
+2 1exp(d= ;) R+ exp %
1t

R
@+2 1ROkqY Pk, )+4 1expd= ) R +15-> exp 1; :
1 2

3 (t) (t+1) _ 3 2log(l+t)
2+2 §p+ 15 2|09(1+ t) kq q kLl(d ) +8€Xp(4— 2) §p+15 m,
where for the fth inequality we used (15) and for the sixth inequality we used= ; R;.

Applying Young's inequalityab g—z + sz witha = 2+2 %p+ 15 ,log(1+t) ,b=

kq(t) q(m) KL @ ).and = F(t+1), we get
z @@ Dy g0 2+2 3p+15 ,log(l+t) 2 . J(t+ ) kg® gD kfl(d )
a | g 2(t+1) 4
=y 3 _2log(1+ 1),
+8exp(4= ) 2p+ 15 1+ )& g (18)
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Combining (16) and (18), we have for 2,

2

2+2 gp‘l' 15 2|Og(l+ t) +8exp(4: 2) gp_'_ 15 M

1+ t)

h i
Vi Vi1 Eqo g9 st+1)e(d™ )+ 0L+ o+ p 2exp8s 2)
1
2 h i -
=V, 1 Eqo 199 ot+1)e(d™)+ O+ o+ p 2exp(8= 7))

+0 Lup Ll )+ p oexpé= 2)
2 .

|
V1 Ego 90 At +1) e )+ O p exp(8= 2)+ P 2log?(L+ 1)

|
Vi Ego 00 aened )+ 0 (e )F 2logiiry

|
=Vi1 Eqo tg(®) A+ 1) e(d™ )+ (19)

wherewe set; = O (1+exp(8= ,))p? »log’(1+ 1) .
From Proposition B, (14), and (15),

4 4
E.wfllogd”)] —+ = exp — +log
q 2 2 2

(t))

meaninge(q 0. Hence,

Vi = Eelg®] 3.ed?) 2 3.ed”) 2 2 ,ed®):

*1ln h i
Vi 2 2 .6(d?)+ Eqo tg® ot +1)e(q)+

t=2

1l n h i 0 il

=2 t Eqo gV + Le(qV) + ¢ 2AT+2)e(d ™)
t=2 t=2
1 n h i 0 i
2 t Eqo o + 2e(q®) + . (20)
t=2 t=2

where we usedot &(qV) e(d") = ¢ (LemmaE)2 = O( ), ande(d"?) o.
On the other hand, f@q 2 P,
( "Wl # X2 ) Ty 2
Vi, =max  Eq tg®) eq)  t Eq tg®) 26(q)  t (21)
q2P > (=1 =1 - it

Using(Al"), (A2"), and(A3"), we have for any density functiap

(@ (hqo (i) @ ({5 y))Eqlh(ix)] (22)
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Hence, from (20), (21), (22), and the convexity of the loss,

2 Xt
m - t ‘(hq(w(xt);Yt)"' lEq(t>[k k3 ]+ 2Eq(t)[|09(q(t))]
0
“(hg (X0);y1)  1Eq [k K31 2Eq [log(q )]
2 Xt
m t @ (hgo (Xt);¥t) Eqo[h(;xe)]  Eq [h(;Xt)]
- 0
+ 1 Equlk k] Eq [k K3] + » Eq(t)[|09(q(t))] Eq [log(q )]
2 e Bl o ad) )
T(T+3) o qv 9 q 9 2 eq q
= |
5 Kl Kl : '
2+m 2 Vgt ot t Eq [gV]+ 26(q))
t=2 t=2 |
2 h . i 1
2+m 2+Eq g + 2(T+3)e(q)+t:2 i
2
2 + T s 4+ 1E4 kki + 2e(Q)+ 0 (1+exp(8= 2))p? 210g*(T +2)

Taking the expectation with respect to the history of examples, we have

2 X1

Ty, b ELE L @)

=2 40 1+ 1B KK+ <2 e(q)+(L+exp(@ = 2))p logi(T +2)

B.4 Inner Loop Complexity

We next prove Corollary 1 which gives an estimate of inner loop iteration complexity. This result is
derived by utilizing the convergence rate of the Langevin algorithm under LSI developed in Vempala
and Wibisono (2019). We here consider the ideal Algorithm 2 (i.e., warm-start and exact mean eld
limit ( = 0)).

Proof of Corollary 1. We verify the assumptions required in Theorem 2. We recallq%‘é]t) takes
the form of Boltzmann distribution: far 1,
|

(t+1) i . Sg(s) .
q l exp —PT—
2 s=1 S |
1 X NOF 2
=exp —P s@ (hy’;y)h( 5 xt) ﬁk k3
2 =1 S ( )
P .
Notethat: —alr g4 (t Dand —phry oy s@ (Wivdh(ix) & 2

Therefore, from Example 2 and Lemma B, we know tq(éfl) satis es the log-Sobolev in-
equality with a constan%; in addition, the gradient ol’og(q(”l)) is %(1 + 1)
Lipschitz continuous. Therefore, from Theorem 2 we deduce that Langevin algorithm with
learning rate «  geprr remEs oy Yieldsd ! satisfyingKL( otV kg t+1 Within

3 28062 2) jgg 2KU q(!)kqw) ) iterations.

1t
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(t+1)

We next boundKL( gk ). Apply Proposition C withg = ¢V, q = ¢"*? , andq = o).
Note that in this setting, constards ¢;; ;and | satisfy
2 1 1
c = 3= —;
2 32 2
2 1 1
q —; =— —
] 2 32 ] 2
Then, we get

KL( kg™ 1—2+6pexp 4 ,p
2 2 2
2 q
+ = 2KL(qWkg"):
2

log3+ 1+16exp 8 KL( oD kg™)
2

long askL(qVkq")  { andq® is a Gaussian distribution. O

Case of resampling. We note that for resampling scheme, the similar inner loop complexity of
- D) kg(t+Dd . . . . L . . .
O -2&0E=2) jog 2LLIXT__ ) can be immediately obtained by replacing the initial distribution

of Langevin algorithm wittg® ( )d . Moreover, the uniform boundednesskdf( g® kq'*? ) with
respect td is also guaranteed by applying Proposition C vijth ¢ = q® andq = q(”l) as long
asq® ( )d is a Gaussian distribution.

ADDITIONAL RESULTS AND DISCUSSIONS

C Discretization Error of Finite Particles

C.1 Case of Resampling

As discussed in subsection B. 1, to establish the nite-particle convergence guarantees of Algorithm
3 with resampling up t®( )-error, we need to show thhff) = h-, (X¢) satis es the condition

jh&t) hgw (Xt)] in (A3"). Hence, we are interested in characterizing the discretization error
that stems from using nitely many particles.

For the resampling scheme, we can easily derive that the required number of particles is
O( 2log(T=)) with high probabilityl  , because i.i.d. particles are obtained by the Langevin
algorithm and Hoeffding's inequality is applicable.

Lemma F (Hoeffding's inequality) LetZ;Z,;:::;Zmy be i.i.d. random variables taking values in
[ a;alfora> 0. Then, forany > 0, we get
1 X 2M
P M Z, E[Z] > 2exp a2

r=1
C.2 Case of Warm-start

We next consider the warm-start scheme. Note that the convergence of PDA with warm-start is
guaranteed by coupling it with its mean-eld limM ! 1  and applying Theorem 1 without
tolerance (i.e., = 0). To analyze the particle complexity, we make an additional assumption
regarding the regularity of the loss function and the model.

Assumption D.
(A5) h( ;x) is 1-Lipschitz continuousfor 8x 2 X .

SWLOG the Lipschitz constant is set to 1, since the same analysis works for any xed constant.
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Remark. The above regularity assumption is common in the literature and cover many important
problem settings in the optimization of two-layer neural network in the mean eld regime. Indeed,
(A5) is satis ed for two-layer network in Example 1 when the output or input layer is xed and when
the activation function is Lipschitz continuous.

The following proposition shows the convergence of Algorithm 1 to Algorithm Rlak1

Proposition D (Finite Particle Approximation)For training example$x;g/-, and any examplg,
de ne
™ = maxTg hgo (Xs) Ny (Xs) _ hquy(®¥) h-, () :

Under(Al"), (A2), (A4), and(A5), if we run PDA (Algorithm 1) ori™ and the corresponding mean
eld limit DA (Algorithm 2) ong, then with high probabilityimy 1z~ 1.m = 0: Moreover, if we set

t zE. 1 %,anth %,thenwith probability at least
S

4 2 2T +1)2
7|Og - 7
21 1 M

M 1+

Remark. Proposition D together with Corollary 2 imply that under appropriate regularization, a
prediction on any point with angap from an -accurate solution of the regularized object{4®

can be achieved with high probability by running PDA with warm-start (Algorithm Pdly( 1)

steps usingoly( 1) particles, where we omit dependence on hyperparameters and logarithmic
factors. Note that speci c choices of hyper-parameters in Proposition D are consistent with those in
Corollary 2. We also remark that under weak regularization (vanishijgour current derivation
suggests that the required particle size could be exponential in the time horizon, due to the particle
correlation in the warm-start scheme. Finally, we remark that for the empirical risk minimization, the
termlog(2(T + 1) 2= ) could be changed tog(2n(T + 1) =) in the obvious way.

Proof of Proposition D.We analyze an error of nite particle approximation for a xed history of
dataf x; g/, . To Algorithm 2 with the corresponding particle dynamics (Algorithm 1), we construct
ansemi particle dual averagingpdate, which is an intermediate of these two algorithms. In particular,
the semi particle dual averaging method is de ned by replabing in Algorithm 1 withhg) for

gV in Algorithm 2. Let~a) = f “XUgM  pe parameters obtained in outer loop of the semi particle
dual averaging. We rst estimate the gap between Algorithm 2 and the semi particle dual averaging.

Note that there is no interaction amon‘go(‘); in other words these are i.i.d. particles sampled
from oV, and we can thus apply Hoeffding's inequality (Lemma Fhtq,,, (%) andh-q., (Xs)

with the probability at least

S
1 X 2 2(T +1)2
hoao (%) hgo(x) = T hao(xs) Ngo(xs) - log ATEDT . ()
r=1
S
1 X 2 2(T +1)2
h~o(,) (X’) hq(t) (X’) = M hf)(!) (X’) hq(z) (X) m |Og g (24)

r=1

We next bound the gap between the semi particle dual averaging and Algorithm 1 sharing a history
of Gaussian noises and initial particles. That1®, = T . Let ® = f ®g_; and W =
f ?k)grzl denote inner iterations of these methods.

(i) Here we show the rst statement of the proposition. We get 0 and—; = 0. We de ne ; and
—, recursively as follows.

g 4, 21+ Dt "

tv1 = 1 i
2(t+2)s ' X 1
+1)2 + s
fote o+ ilog aT+1* 14 20+ DJte . (25)
2(t +2) M 2(t+2)

s=0
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(8s2f1;:::;tg,8r 2f1;:::;Mg) holds. Then, foranx ands 2 f 1;:::;tg

jh-5(x)

Consider the inner loop atthe outer step. Then, for an event where (23) holds,

k §k+l) E(k+1) k2

2 Xt
W s @ (M- (Xs)i¥s)@N( Mixg)+2 4
2t +2)(t+1)
2
ak) 4 t s @ (hye (Xs);ys)@h( T:x)+2 ;
r q(s) S 1yS) ( r 1XS) 1r
2At+2)(t+1) 2
2 1t ¢ K ak
2(t+2) ki ok
2 ¢ X . x) . ak)
+ m sk@ (h-(s)(Xs); ¥s)@h( ;5 xs) @ (hq(s) (Xs); Ys)@h( % Xs)ka
s=1
2 1t ¢ ©  ak
+
(tv) KTk
+ 2 X @\ h . @\ h . @h (k).
ms:ls (@ (h~5(Xs);Ys) (hges) (Xs);Ys)) @h( ™ Xs) )
b2t X @ (g (v @0 Wixe) @R( i)
At+2)(1+1) q Xs):Ys rone ronslo
21+ )t ¢ 2 ¢
1+ K () aK) » i
v T e ey O ) e )
s !
2(1+ )t k)  ak) 2 ¢ 2 2T +1)?
S ) R (5 T (e VN Vi
3 |
21+ )t [ _ 2 2(T+1)2
1+ K () aK) £
N B A (=) SR VI
Expanding this inequality,
k-—§t+l) -gt+l) k2
S |
120+ gt T te  _, 2, 2T+n2 XT 21+
2(t+2) Coa(t+2) Y M o 2(t+2)
= t+l-
Hence,k“ﬁt) “ﬁmkg 4 for8t2f1;:::;T+1g
T+1
Noting that—; = 0 and
!
Lo g2 gt te X 2ae gt S
" 2(t+2) 2(t+2) 2(t +2) ‘

h—as) (X)]
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r=1

r=1
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~(s)
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~q's)
)

S
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S

Lo te o2 o2ren? X2 gt "
2(t +2) M =0 2(t+2)

wesee ., ! OasM | +1 . Then,the proofis nished becausefér2f1;:::;T +1gand

h- (Xs)  hgo (Xs) jh—(t)(xsé) N (Xs)j + Doty (Xs) g (Xs)

_ 2 2T+1)2
T+ ¥t MIOQ e

h-wy (%) hgo (%) jh~(z)(*)s hooy (®)] + ooy (%) hgo (%)

2(T +1)2

+ 2 lo
T+1 M

(ii ) We next show the second statement of the proposition. We change the de nition (25) afs
follows: S

1 2 2(T +1)2
7'09 - 7
2, 1 M

def 3 +
t4l =
4 t

We prove that for any event where (23) and (24) hkRﬁf) ‘E(t)kz t(8t2f1;:::;T+1g,
8r 2f1;:::;Mg) by induction. Supposb"ﬁs) ‘gs)kz s(8s2f1;:::;tg,8r2f1;:::;MQ)
holds. Consider the inner loopstep. Note that; 72 implies1 22(112‘) > 0. Therefore, by
the similar argument as above, we get

k §k+l) E(k+l) k2

2 Xt
(k) t “(h-rs (X9): h x4 . (K
r 2(t+2)(t+1) 1 S @ ( ()(XS)!yS)@ ( r ’XS) 1r
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2 X . . (k). N . k)
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1 2t K ty _ 2 2(T+1)2
14— S Wt ) T,y L Zlog &2
At+2) T T ey T wm S
Expanding this inequality,
k-—lg’[+l) -—E(t+1) k2 . I
T 2 X1 s
1+(1 2 )t ¢ -+ ty -+ ilog 2(T +1) 1+(1 2 )t ¢
2(t+2) 2(t+2) M o 2(t+2)
| S
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14 @ 29ty 7 1 a1 2, 2(T +1)
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where we use® < 1+ W< land ; 3.
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Noting that(1  x)*>*  exp( 1) for 8x 2 (0; 1], we see that

3
L@ e @ g T
2(t+2) 2(t+2)
G 200+ 4 loga)
B Ca(t+2)
3t

exp s log(4)

exp( log(4))
_ 1
= 2

where we used %. Hence, we know that fdr,
s

1 2 2(T +1)2

k~tD ) e, log ———~— (27)

3_
T+ —
4 21 1 M

This means thag " XY, ., and nishes the induction.
Next, we show

S
_ 4 2 2(T+1)2
o3, 1 mlog _ (28)
This inequality obviously holds far= 1 because; = 0. We suppose itis true far T. Then,
S
_§7+ 1 ilo 2(T+1)2
t+1 — 4 t 2, 1 M g ——m
S
4 2 2(T+1)2
7'09 -~ 7
2, 1 M

4 2 2(T+1)2
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r r 2 2, 1 M g

h-y(Xs)  hgo(Xs) ] h-(Xs) h~0(St)(Xs)j+ h-ao (Xs)  hgo (Xs)
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a1 wm'd !

h-wy(®)  hqo(®) ] h- (%) h~0(t)s(*)j + hogqy(Xs) hgw (Xs)

4 2 2(T+1)2

+ < .

1 >, 1 M log ;

where we used (26). This completes the proof. O

D Generalization Bounds for Empirical Risk Minimization

In this section, we give generalization bounds for the problem (3) in the contexhpifical risk
minimization by using techniques developed by Chen et al. (2020). We consider the smoothed hinge
loss and squared loss for binary classi cation and regression problems, respectively.
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D.1 Auxiliary Results

For asef of functions from a spacg toR andase = fzg.; Z ,the empirical Rademacher
complexityR s (F ) is de ned as follows:

X
284(F)=E sup: f(z) ;
for N i=1

where =( ;)\, arei.i.d random variables takingl or 1 with equal probability.

We introduce the uniform bound using the empirical Rademacher complexity (see Mohri et al.
(2012)).

Lemma G (Uniform bound) LetF be a set of functions fro@d to[ C;C](C 2 R) andD be a
distribution overZ . LetS = fz g, Z be asetofsiza drawnfromD. Then, forany 2 (0;1),
with probability at leastl over the choice o, we have

1 X ) ' 1 2
sup Ezp [f(2)] = f(z) 224(F)+3C —log~=:
f2F ni:1 2n

The contraction lemma (see Shalev-Shwartz and Ben-David (2014)) is useful in estimating the
Rademacher complexity.
Lemma H (Contraction lemma)Let ; :R! R (i 2f1;:::;ng) be -Lipschitz functions ané&
be a set of functions from to R. Then it follows that for anyzig., Z ,
" # " #
1 X 1 X
E sup— i i f(z) E sup— i f(z)
for N, for N,

Letpo( )d be adistribution in proportion texp —;k k3 d . We de ne a family of mean eld
neural networks as follows: fd® > 0,

FKL(R)= thX' R]quz, KL(QKpo) Rg
The Rademacher complexity of this function class is obtained by Chen et al. (2020).
Lemma | (Chen et al. (2020))Supposg¢h (x)j 1holdsfor8 2 and8x 2 X . We have for

any constanR % and setS X of sizen,
r

25(Fu (R) 2 o

D.2 Generalization Bound on the Binary Classi cation Problems

We here give a generalization bound for the binary classi cation problems. Hence, we suppose
Y = f 1;1gand consider the problem (3) with the smoothed hinge loss de ned below.
8

<0 if zy 1=2;
(Zy)=. (1 2zy)? if0 zy<1=2
1 4zy else

We also de ne thé-1loss aso1(z;y) = 1[zy < 0].

Theorem E. LetD be a distribution oveX Y . Suppose there exists a true distributipn2 P,
satisfyinghq (x)y 1=2for 8(x;y) 2 supp(D) andKL(q kpp) 1=2. LetS = f(x;;yi)gL,; be
training examples independently sampled fidmSuppos¢h (x)j 1 holds for8( ;x) 2 X .
Then, for the minimizey 2 P, of the problem (3), it follows that with probability at leakt  over
the choice of,

r

_— r
) KL(q k
Exyyo [oi(hg (X);Y)]  2KL(q kpo) +16 w +15

i|0 g
2n 9=
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Proof. We rst estimate a radiu® to satisfyq 2 Fg_ (R). Note that the regularization term
of objectivel (g) is 2KL( gkpo) and that (hq (Xi);yi) = O from the assumption og and the
de nition of the smoothed hinge loss. Sintéq ) L (q ), we get

KL(q kpo) %L(q )= KL( g kpo); (29)

“(hg (xi);yi) L (a)= 2KL(q kpo): (30)

i=1
Especially, settindgR = KL( g kpp), we seeg 2 F . (R).
We next de ne the set of composite functions of loss and mean eld neural networks as follows:

F(R)= f(xy)2X Y71 “(h(x);y)] h2Fw (R)g: (31)

Since’(z;y) is 4-Lipschitz continuous with respect iy we can estimate the Rademacher complexity
25(F (R)) by using Lemma H with ; () = “( ;i) as follows:
" #

A X
<s(F(R)=E sup  — i (h(xi);yi)
h2F « (R) n._,

X
4E sup  — ih(x;)
h2F . (R) N i=1
= ‘l"’éfxigi”=1 (FkL (R))
R
8 = (32)
where we used Lemma | for the last inequality.

From the boundedness assumptionhgnwe haved  “(hq(x);y) 5for 8q 2 P,. Applying
Lemma G withF = F (R), we have with probability at leagt

E(X;Y )D [\Ol(l'q (X):Y)l E(X;Y )D [\(llq (X):Y)l
- q I lyl S 72 gi

i=1

r r—
R 1 2
+ —+ — -

2KL( g kpg) +16 - 15 n log

r
= KU(akp)+16 o)

r
1 2
15 on log —;
where we usedo;(z;y) (z;y), (30) and (32). O

This theorem results in the following corollary:

Corollary C. Supp%se the same assumptions in Theorem E hold. Moreover, we set= P n
( > 0)and , =1= n. Then, the following bound holds with the probability at lehst over
the choice of training examples,

r

KL(g kpf)
n

) KL(q kpd
Exvyo Lou(hg (X)Y)]  —p=""+16 w

1 2

+ <.

15 2nIog ;
wherep] is the Gaussian distribution in proportion exp(  k k3).

D.3 Generalization Bound on the Regression Problem

We here give a generalization bound for the regression problems. We consider the squared loss
“(z;y)=0:5(z y)? andthe bounded lab¥ [ 1;1].
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Theorem F. LetD be a distribution oveX Y . Suppose there exists a true distributipn2 P,
satisfyingy = hq (x) for 8(x;y) 2 supp(D) andKL(q kpo) 1=2. LetS = f(x;;yi)gL, be
training examples independently sampled fldmSuppos¢h (x)j 1holdsfor8(;x)2 X .
Then, for the minimizey 2 P, of the problem (3), it follows that with probability at leakt  over
the choice of5,

;
KL(q kpo)

r
. 1 2
Exyyo [(hg (X);Y)] 2KL( g kpo) +8 n +6 %mg*:

Proof. The proof is very similar to that of Theorem E. Note théig (x;);yi) = 0 from the

assumption oy and that inequalities (29) and (30) hold in this case too. Hence, s®ting
KL(qg kpo), we seeqy 2 F . (R).

Since’(z;y) is 2-Lipschitz continuous with respect 2 [ 1;1]foranyy 2 Y [ 1;1], we

can estimate the Rademacher compleQig;(F (R)) of F(R) (de ned in (31)) in the same way as
Theorem E:
r

Ss(F(R) 4 (33)

=17

From the boundedness assumptiorhgrandY, we haved  “(hq(x);y) 2for8g2 P,. Hence,
applying Lemma G withF = F (R), we have with probability at leagt

. IR A ' 1. 2
Ecxvyo [(hg (X)Y)T - — (hg (xi);¥i) +2<s(F(R)+6 —_log-

i=1
r

2KL(q kpo) +8

1 2
— log Z:
6 on 097

where we used (30) and (33). O

KL(q kpo)
n

This theorem results in the following corollary:

Corollary D. Supp(bse the same assumptions in Theorem F hold. Moreover, we set= P n
( > 0)and , = 1= n. Then, the following bound holds with the probability at lehst over
the choice of training examples,

r r
. KL(g kpd KL( g koo 1
Exvyo [(hg (X);Y)] Jéqﬁipohs KL(q ko) , &

7|0 2
n 2n 9=

wherep] is the Gaussian distribution in proportion exp(  k k3).

E Additional Discussions

E.1 Efcient Implementation of PDA

Note that similar to SGD, Algorithm 1 only requires gradient queries (and additional Gaussian
noise); in particular, a weighted averagf® of functionsg(") is updated and its derivative with
respect to parameters is calculated. In the case of empirical risk minimization, this procedure can
be implemented as follows. We ube; g, (initialized as zeros) to store the weighted sums of

@ (h-«, (Xi,);Vi,). At stept in the outer loopw;, is updated as

Wi1 Wit + t@\(h~(t)(Xi‘);yi‘):

The average ,g¥( () can then be computed as

2 X 2 1t
: (k) « . 1 (k) -

35



where we usé /g, to denote parameters(*) at stepk of the inner loop. This formulation
makes Algorithm 1 straightforward to implement.

In addition, the PDA algorithm can also be implemented with mini-batch update, in which a set of

indexi;. Due to the reduced variance, mini-batch update can stabilize the algorithm and lead to faster
convergence. Our theoretical results in the sequel trivially extends to the mini-batch setting.

E. 2 Extension to Multi-class Classi cation

We give a natural extension of PDA method to multi-class classi cation settingsC dehote the
nite set of all class labels angCj denote its cardinality. For multi-class classi cation problems, we

be parameters for output and input layers, respectively, and set( a;;lb) and = f gM;.
Then, we de neh  (x) = h(;x) = a(a 1(IF x))’ which is a neural network with one hidden
neuron, and denote

1M
h(x):m h . (x):

r=1

Note thath (x) is a natural two-layer neural network with multiple outputs. Suppose that each
parameter, follows q( )d . Then the mean eld limit can be de ned as

hg()= E 4h ()]:RY! R

Let (z;y) (z= fzygyoc 2 RICi:y 2 C) be the loss for multi-class classi cation problems. A typical
choice is the cross-entropy loss with the soft-max activation, that is

e = exp(zy)  _ X .
Z, = lo p "7’ = zy +1o exp(zyo).
( y) g J020 eXp(ZyO) Yy g Joac p( Yy )

In this case, the functional derivative dhq(x); y) with respect tay is

P
Y% exp(hgyo(X)) hyo( ;x)

ho -
y(ix)+ yooc €xP(Ngyo(x))

where we supposed the outputshofandhg are also indexed b§. Hence, the counterpart gft) in
Algorithm 2 in this setting is
P
y°36 exp(hq(l) ;yD(Xt)) hyo( ; Xt)
yo2C exp(hq(l) ;yo(xt))
Using this function, the DA method for multi-class classi cation problems can be obtained in the same

manner as Algorithm 2. Moreover, its discretization can be also immediately derived by replacing the
functiong® used in Algorithm 1 with

g(t) = hy (ixp)+ 1k k%:

X P : |
2 yoag exp(h~(s);yo(xs))hy°( i Xs) 1k k% :

—_— S h s Xg) +
eeeny o () e XD o(Xs))

g(t) =

In the case of empirical risk minimization, we can adopt an ef cient implementation as done in

At stept in the outer loopw;, .y (y 2 C) are updated as

exp(h_)  (Xiy)) o\ .
yozc &XP(h_(1) olXit)) y=Yio
exp(h_h), (Xiy)) -
y02c EXp(h~(t);y O(Xit)) y 6 yl‘ '

Wit;y+t 1+ B

"Here,a, 1(F x) is a scalar 1 (I x) times a vectoa, .
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Then,r g ( ) can be computed as

2 XX o 2 gt
T N SEIY Wiy @hy ({95 xi) +
2t+2)(t+1) o

(k).
2t+2) "

where we usé ('gM, to denote parameters') at stepk of the inner loop.

Finally, we remark that while we here utilize a simple netwbrkx) to recover a normal two-layer
neural network, it is also possible to use deep narrow networks or narrow convolutional neural
networks as a componeht(x); in other wordsh can represent an ensemble of various types of
small network. While such extensions are not covered by our current theoretical analysis, they may
achieve better practical performance.

E. 3 Correspondence with Finite-dimensional Dual Averaging Method

We explain the correspondence between the nite-dimensional dual averaging method developed
by Nesterov (2005, 2009); Xiao (2009) and our proposed method (Algorithm 2); our goal here is to
provide an intuitive understanding of the derivation of Algorithm 2 in the context of the classical dual
averaging method.

First, we introduce the (regularized) dual averaging method (Nesterov, 2009; Xiao, 2009) in a more
general form for solving the regularized optimization problem on the nite-dimensional space. Let
w 2 R™ be a parametel(w; z) be a convex loss iw, wherez is a random variable which represents
an example, and w) is a regularization function. Then, the problem solved by the dual averaging
method is given as
min fE;[I(w;2)]+ ( w)g:
W m

Letfw® gl andff gl = f@I(w®;z5)gl-; be histories of iterates and stochastic gradients.
The subproblems to produce the next iterate in the dual averaging method is designed by using the
strongly convex functio(w) and positive hyperparameterssgl_, andf <gl.,. Speci cally, the
next iteratev*D is de ned as the minimizer of the following problem in which the loss function is
linearized and weighted sum of which is taken over the history:
(s X )
min of 7w+ s(W)+ padw) (34)

w2Rm
s=1 s=1

Next, we consider our problem setting of optimizing the probability distribution and reformulate the
subproblem (7) solved in Algorithm 2 as follows:
hxt i X )
min B, sg¥ + s oEqllog(@]+(t+1) 2Eqllog(d)] (35)
4er 2 s=1 s=1

By comparing (34) and (35), we arrive at the following correspondenges s = s; (8
g®; d(w) = ( w) 2Eq[log(g)]. We note that in our problem setting the expectatiomjlogn be
seen as an inner product with the integrand agll;[log(q)] is also set tal(w) becausg¢he negative
entropy acts as a strongly convex functiitemma A).

F Additional Experiments

F.1 Comparison of Generalization Error

We provide additional experimental results on the generalization performance of PDA. We consider
empirical risk minimization for a regression problem (squared loss): the xjpuN (0; 1), andf

is a single index modef. (x) = sign(hw ;xi). W setn = 1000, p =50, M = 200, and implement

both noisy gradient descent (Mei et al., 2018) using full-batch gradient and our proposed Algorithm 1
(PDA) using mini-batch update with batch size 50.
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Figure 3 we compare the generalization performance of different
training methods: noisy GD and PDA in the mean eld regime,
and also noisy GD in the kernel regime. We x theand entropy
regularization to be the same across all settings= 10 2,

» =5 10 *. We set theotal number of iterations (outer +
inner loop steps) in PDA to be the same as GD, and tuned the

learning rate for optimal generalization. Observe that

Model with the NTK scaling (green) generalizes worse than
the mean eld models (red and blue). This is consistent wi

observations in Chizat and Bach (2018a). It—k?gure 3: Test error of mean eld

neural networks ( = 1) trained with
For the mean eld scaling, PDA (under early stopping) lead§'sy ?(D. (rehd) f(‘”d PlDA (blue), and
to slightly lower test error than noisy GD. We intend to furth —t\)/vgrtir:1r:2te§b e(anS (rfg'enr:)e (=
investigate this difference in the generalization performan 'ez P y 9 '

(see Appendix D for generalization bounds of the PDA solution)

F.2 PDA Beyond', Regularization

Note that our current formulatio() considers', regularization, which allows us to establish
polynomial runtime guarantee for the inner loop via the Log-Sobolev inequality. As remarked in
Section 4, our global convergence analysis can easily be extendédderrsmooth gradient via the
convergence rate of Langevin algorithm given in Erdogdu and Hosseinzadeh (2020). Although we do
not provide details for this extension in the current work (due to the use of Vempala and Wibisono
(2019)), we empirically demonstrate one of its applications in handjjimggularized objectives for

p > 1lin the following form,

RP. ()& 1Eqk KB]+ 2Eqlog(q)]: (36)

Erdogdu and Hosseinzadeh (2020) cannot directly cover the non-smaeiiularization, but we

can still obtain relatively sparse solution by settinglose to 1. Intuitively speaking, when the
underlying task exhibits certain low-dimensional or sparse structure, we expect a sparsity-promoting
regularization to achieve better generalization performance.

Figure 4(a) demonstrates the advantagé gihorm regularization fop < 2 in empirical risk
minimization, when the target function exhibits sparse structure. We se1000; p = 50; the
teacher is a multiple-index modeh(= 2) with binary activation, and parameters of each neuron
arel-sparse. We optimize the student model with PDA (warm-start), where we, setl0 2,

» =10 *#, and vary the norm penalfyfrom 1.01 to 2. Note that smallgrresults in favorable
generalization due to the induced sparsity. On the other hand, we expect the benet of sparse
regularization to diminish when the target function is not sparse. This intuition is con rmed in 4(b),
where we control the target sparsity by randomly seleatipgrameters to be non-zero, and we de ne
s = r=d to be the sparsity level. Observe that the bene t of sparsity-inducing regularization (smaller
p) is more prominent under small(brighter color), which indicates a sparse target function.

(a) Impact ofL, regularization. (b) Generalization under sparse teacher.

Figure 4:PDA with general , regularizer (objectiv€36)). (a) Generalization error vs. training time in learning
a 1-sparse target function. (b) generalization error vs. sparsity of the target fusiction
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F. 3 On the Role of Entropy Regularization

Our objective(3) includes an entropy regularization with magnitude In this section we illustrate

the impact of this regularization term. In Figure 5(a) we consider a synthetic 1D dataséty) and

plot the output of a two-layer tanh network with 200 neurons trained by SGD and PDA to minimize
thesquared lossill convergence. We use the sameregularization (1 = 10 3) for both algorithms,

and for PDA we set the entropic term = 10 4. Observe that SGD with weak regularization
(red) almost interpolates the noisy training data, whereas PDA with entropy regularization nds
low-complexity solution that is smoother (blue).

We therefore expect entropy regularization to be bene cial when the labels are noisy and the underly-
ing target function (teacher) is “simple”. We verify this intuition in Figure 5(b). Wenset500,
d =50 andM =500, and the teacher model is a linear function on the input features. We employ
SGD or PDA to optimize the squared error. For both algorithms we use the sawgularization

1 =10 2, but PDA includes a small entropy term =5 10 *. We plot the generalization error
of the converged model under varying amount of label noise. Note that as the labels becomes more
corrupted, PDA (blue) results in lower test error due to the entropy regulariZa@mthe other
hand, model under the kernel scaling (green) generalizes poorly compared to the mean eld models.
Furthermore, Figure 5(c) demonstrates that entropy regularization can be bene cial under low noise
(or even noiseless) cases as well. We construct the teacher model to be a multiple-index model with
binary activation. Note that in this setting PDA achieves lower stationary risk across all noise level,
and the advantage ampli es as labels are further corrupted.

(a) Impact of entropy regularizationb) Stationary risk vs. label noise (c) Stationary risk vs. label noise
(one-dimensional). (linear teacher). (multiple index teacher).

Figure 5:(a) 1D illustration of the impact of entropy regularization in two-layer tanh network: PDA (blue) nds

a smoother solution that does not interpolate the training data due to entropy regularization. (b)(c) Test error of
two-layer tanh network trained till convergence. PDA (blue) becomes advantageous compared to SGD (red)
when labels become noisy, and the NTK model (green, note that the y-axis is on different scale) generalizes
considerably worse than the mean eld models.

F. 4 Adaptivity of Mean Field Neural Networks

Recall that one motivation to study the mean eld regime (instead of the kernel regime) is the presence
of feature learning We illustrate this behavior in a simple student-teacher setup, where the target
function is a single-index model with tanh activation. We set 500;d = 50, and optimize a
two-layer tanh networkNl = 1000), either in the mean eld regime using PDA, or in the kernel
regime using SGD. For both methods we choose 10 2, and for PDA we choose; = 10 .

In Figure 6 we plot the the evolution of the cosine similarity between the target wectand the

top-5 singular vectors (PC1-5) of the weight matrix during training. In Figure 6(a) we observe that the
mean eld model trained with PDA “adapts” to the low-dimensional structure of the target function;

in particular, the leading singular vector (bright yellow) aligns with the target direction. In contrast,
we do not observe such alignment on the network in the kernel regime (Figure 6(b)), because the
parameters do not travel away from the initialization. This comparison demonstrates the bene t of
the mean eld parameterization.

8Note that entropy regularization is not the only way to reduce over tting — such capacity control can also be
achieved by proper early stopping or other types of explicit regularization.
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