Supplementary Material for Learning with Algorithmic Supervision via Continuous Relaxations

Felix Petersen Christian Borgelt Hilde Kuehne Oliver Deussen

In the supplementary material, we give implementation details, and present the algorithms.

A Implementation Details

A.1 Sorting Supervision

Network Architecture For comparability to Grover et al. [6] and Cuturi et al. [7], we use the same network architecture. That is, two convolutional layers with a kernel size of 5×5, 32 and 64 channels respectively, each followed by a ReLU and MaxPool layer; after flattening, this is followed by a fully connected layer with a size of 64, a ReLU layer, and a fully connected output layer mapping to a scalar.

A.2 Shortest-Path Supervision

Network Architecture For comparability to Vlastelica et al. [8] and Blondel et al. [23], we use the same network architecture. That is, the first five layers of ResNet18 followed by an adaptive max pooling to the size of 12×12 and an averaging over all features.

Training As in previous works, we train for 50 epochs with batch size 70 and decay the learning rate by 0.1 after 60% as well as after 80% of training.

A.3 Silhouette Supervision

Network Architecture For comparability to Liu et al. [4], we use the same network architecture. That is, three convolutional layers with a kernel size of 5×5, 64, 128, and 256 channels respectively, each followed by a ReLU; after flattening, this is followed by 6 ReLU-activated fully connected layers with the following output dimensions: 1024, 1024, 512, 1024, 1024, 642×3. The 642×3 elements are interpreted as three dimensional vectors that displace the vertices of a sphere with 642 vertices.

Training We train the Three Edges approach with Adam ($\eta = 5 \cdot 10^{-5}$) for $2.5 \cdot 10^6$ iterations and train the directed Euclidean distance approach with Adam ($\eta = 5 \cdot 10^{-5}$) for 10^6 iterations. The reason for this is that each of them took around 6 days of training on a single V100 GPU. We decay the learning rate by 0.3 after 60% as well as after 80% of training.

A.4 Levenshtein Distance Supervision

Network Architecture The CNN consists of two convolutional layers with a kernel size of 5 and hidden sizes of 32 and 64, each followed by a ReLU, and a max-pooling layer. The convolutional layers are followed by two fully connected layers with a hidden size of 64 and a ReLU activation.
B Standard Deviations for Results

Table 5: Sorting Supervision: Standard deviations for Table 1.

<table>
<thead>
<tr>
<th>Method</th>
<th>(n = 3)</th>
<th>(n = 5)</th>
<th>(n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relaxed Bubble Sort</td>
<td>0.944 ± 0.009</td>
<td>0.842 ± 0.012</td>
<td>0.707 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>(0.961 ± 0.006)</td>
<td>(0.930 ± 0.005)</td>
<td>(0.898 ± 0.003)</td>
</tr>
</tbody>
</table>

Table 6: Shortest-Path Supervision: Standard deviations for Table 2.

<table>
<thead>
<tr>
<th>Method</th>
<th>EM</th>
<th>cost ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black-Box Loss [8]</td>
<td>86.6% ± 0.8%</td>
<td>1.00026 ± 0.00005</td>
</tr>
<tr>
<td>Relaxed Shortest-Path</td>
<td>88.4% ± 0.7%</td>
<td>1.00014 ± 0.00008</td>
</tr>
</tbody>
</table>

Table 7: Levenshtein Distance Supervision: Standard deviations for Table 4.

<table>
<thead>
<tr>
<th>Method</th>
<th>AB</th>
<th>BC</th>
<th>CD</th>
<th>DE</th>
<th>EF</th>
<th>TL</th>
<th>OX</th>
<th>AC</th>
<th>GT</th>
<th>DXL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>616 ± 0.61</td>
<td>551 ± 0.61</td>
<td>739 ± 0.70</td>
<td>701 ± 0.97</td>
<td>550 ± 0.39</td>
<td>893 ± 0.88</td>
<td>403 ± 0.06</td>
<td>448 ± 0.05</td>
<td>648 ± 0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>581 ± 0.59</td>
<td>629 ± 0.59</td>
<td>711 ± 0.71</td>
<td>674 ± 1.12</td>
<td>490 ± 0.05</td>
<td>890 ± 0.09</td>
<td>536 ± 0.08</td>
<td>384 ± 0.07</td>
<td>878 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>Relaxed LD</td>
<td>671 ± 0.67</td>
<td>507 ± 0.68</td>
<td>816 ± 0.83</td>
<td>847 ± 0.91</td>
<td>570 ± 0.27</td>
<td>960 ± 0.79</td>
<td>437 ± 0.26</td>
<td>487 ± 0.76</td>
<td>687 ± 0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>666 ± 0.61</td>
<td>805 ± 0.68</td>
<td>815 ± 0.83</td>
<td>845 ± 0.97</td>
<td>539 ± 0.42</td>
<td>960 ± 0.80</td>
<td>367 ± 0.51</td>
<td>404 ± 1.04</td>
<td>648 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>

C Algorithms

C.1 Sorting Supervision: Bubble Sort

On the left, a Python version reference implementation of bubble sort [37] is displayed. On the right, the relaxed version is displayed.

```python
def bubble_sort(A):
    n = len(A) - 1
    swapped = True
    while swapped:
        swapped = False
        for i in range(n):
            if A[i] > A[i+1]:
                a_1 = A[i+1]
                a_2 = A[i]
                A[i+1] = a_1
                A[i] = a_2
                swapped = True
                n = n - 1
                return A
```

C.2 Shortest-Path Supervision: Bellman-Ford

In the following, we provide pseudo-code for the Bellman-Ford algorithm with 8-neighborhood, node weights, and path reconstruction.
def shortest_path(cost):
 n = cost.shape[0]
 D[0:n+2, 0:n+2] = INFINITY
 D[1, 1] = 0
 for _ in range(n*n):
 arg_D = arg_minimum_neighbor(D) # 8-neighborhood
 D = cost + minimum_neighbor(D)
 D[1, 1] = 0
 path[0:n+2, 0:n+2] = 0
 position = n+1, n+1
 while path[1, 1] == 0:
 path[position] = 1
 position = get_next_location(arg_D, position)
 return path

For the relaxation, arg_minimum_neighbor and minimum_neighbor use softmax. Further, for the relaxation, get_next_location returns a marginal distribution over all possible positions. An alternative, where get_next_location returns a pair of real-valued coordinates is possible, however the quality of the gradients is reduced.

C.3 Silhouette Supervision: 3D Mesh Renderer

In the following, we provide pseudo-code for the two simple silhouette rendering algorithms that we use.

C.3.1 Three Edges

def silhouette_renderer(triangles, camera_extrinsics, resolution=64):
 triangles = transform_and_projection(triangles, camera_extrinsics)
 image[0:resolution, 0:resolution] = 0
 for p_x in range(resolution):
 for p_y in range(resolution):
 for t in triangles:
 # t.e1, t.e2, t.e3 are the three edges of t
 if directed_dist(t.e1, p_x, p_y) <= 0:
 if directed_dist(t.e2, p_x, p_y) <= 0:
 if directed_dist(t.e3, p_x, p_y) <= 0:
 image[p_x, p_y] = 1
 else:
 if directed_dist(t.e2, p_x, p_y) > 0:
 if directed_dist(t.e3, p_x, p_y) > 0:
 image[p_x, p_y] = 1
 return image

C.3.2 Directed Euclidean Distance

def silhouette_renderer(triangles, camera_extrinsics, resolution=64):
 triangles = transform_and_projection(triangles, camera_extrinsics)
 image[0:resolution, 0:resolution] = 0
 for p_x in range(resolution):
 for p_y in range(resolution):
 for t in triangles:
 if directed_euclidean_distance(t, p_x, p_y) <= 0:
 image[p_x, p_y] = 1
 return image
For both algorithms, we parallelize the three loops as they are independent. As for runtime, the Three Edges algorithm is around 3 times faster than the directed euclidean distance algorithm. This is because computing the euclidean distance between a point and a triangle is an expensive operation.

C.4 Levenshtein Distance Supervision (Dynamic Programming)

Pseudo-code of our implementation of the Levenshtein distance [41] and a simplified code for our framework is displayed below.

```python
def levenshtein_distance(s, t):
    n = len(s)
    d[0:n+1, 0:n+1] = 0
    for i in range(n):
        d[i + 1, 0] = i + 1
    for j in range(n):
        d[0, j + 1] = j + 1
    for i in range(n):
        for j in range(n):
            if s[i] == t[j]:
                subs_cost = 0
            else:
                subs_cost = 1
            d[i + 1, j + 1] = min(d[i, j + 1] + 1,
                                  d[i + 1, j] + 1,
                                  d[i, j] + subs_cost)
    return d[n, n]

levenshtein_distance = Algorithm(
    For('i', 'n',
        IndexAssign2D('d', lambda i: [i + 1, i*0], lambda i: i + 1)
    ,
    For('j', 'n',
        IndexAssign2D('d', lambda j: [i*0, j + 1], lambda j: j + 1)
    ,
    For('i', 'n',
        For('j', 'n',
            Sequence(
                If(CatProbEq(lamba s, i: IndexInplace(s, i),
                        lambda t, j: IndexInplace(t, j)) ,
                        if_true= Lambda(lambda subs_cost: 0),
                        if_false= Lambda(lambda subs_cost: 1),
                    ),
                    IndexAssign2D('d',
                        index=lambda i, j: [i + 1, j + 1],
                        value=lambda d, i, j, subs_cost:
                            Min(d[::, i, j + 1] + 1,
                                d[::, i + 1, j] + 1,
                                d[::, i, j] + subs_cost)
                    )
            ))
        ))
    )
)
```