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Abstract

Adversarial examples are often cited by neuroscientists and machine learning re-
searchers as an example of how computational models diverge from biological
sensory systems. Recent work has proposed adding biologically-inspired compo-
nents to visual neural networks as a way to improve their adversarial robustness.
One surprisingly effective component for reducing adversarial vulnerability is re-
sponse stochasticity, like that exhibited by biological neurons. Here, using recently
developed geometrical techniques from computational neuroscience, we investigate
how adversarial perturbations influence the internal representations of standard, ad-
versarially trained, and biologically-inspired stochastic networks. We find distinct
geometric signatures for each type of network, revealing different mechanisms for
achieving robust representations. Next, we generalize these results to the auditory
domain, showing that neural stochasticity also makes auditory models more robust
to adversarial perturbations. Geometric analysis of the stochastic networks reveals
overlap between representations of clean and adversarially perturbed stimuli, and
quantitatively demonstrates that competing geometric effects of stochasticity medi-
ate a tradeoff between adversarial and clean performance. Our results shed light on
the strategies of robust perception utilized by adversarially trained and stochastic
networks, and help explain how stochasticity may be beneficial to machine and
biological computation.1

1 Introduction

In recent years, artificial neural networks (ANNs) have come to dominate both visual object recog-
nition and auditory recognition tasks [1, 2, 3], establishing them as leading candidate models for
several domains of human perception [4, 5, 6, 7]. However, they still exhibit many non-human-like
traits [8, 9]. One such failure is in the existence of adversarial perturbations – small changes to
stimuli explicitly crafted to fool a model that remain imperceptible to humans [10, 11, 12] – which
demonstrate the fragility of some ANNs as models of biological perception.

1See https://github.com/chung-neuroai-lab/adversarial-manifolds for accompanying code.
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Recently, Dapello, Marques et al. discovered that one such method, known as adversarial training
[13], not only reduces the network’s adversarial vulnerability but also yields network representations
that are more similar to those in the primate primary visual cortex [14]. Motivated by this result, the
authors developed VOneNets, a class of networks that simulate the primate primary visual cortex at
the front of a convolutional neural network, and show improved robustness to adversarial attacks with
no adversarial training. However, a number of questions remain unanswered – in particular, while
both adversarially trained networks and VOneNets have improved adversarial robustness and also
greater similarity to the primate primary visual cortex, it is unclear how VOneNets achieve robustness,
and in particular if the mechanism of robustness is similar to that induced by adversarial training.

A key component of robustness in VOneNets is the inclusion of stochastic representations during both
training and inference, a feature inspired by biological sensory neurons which exhibit trial-to-trial
variability across presentations of the same stimulus [15]. The implications of this stochasticity for
information processing are open questions in neuroscience [16, 17, 18, 19]. Pinpointing how this
representational stochasticity contributes to robustness in VOneNets could drive further developments
in the mechanisms of robust perception.

Here we use recently developed manifold analysis techniques from computational neuroscience
[20] to look beyond accuracy and investigate the internal neural population geometry [21] of stan-
dard, adversarially trained, and biologically-inspired stochastic networks in response to clean and
adversarially perturbed examples in both visual and auditory domains. We present several key
findings:

• Using manifold analysis, we demonstrate that standard, adversarially trained, and stochastic
networks each have distinct geometric signatures in response to clean and adversarially
perturbed stimuli, shedding light on varied robustness mechanisms.

• We demonstrate the generality of our findings by translating the results to a novel
biologically-inspired auditory ANN, StochCochResNet50, that includes stochastic responses.
Stochasticity makes auditory networks more robust to adversarial perturbations, and the
underlying neural population geometry is largely consistent with that in vision networks.

• Analysis of stochastic networks reveals a protective overlap between the representations of
adversarial examples and clean stimuli. We quantitatively survey the stochasticity conditions
leading to the overlap, and map a competing geometric effect mediating a trade-off between
clean and adversarial performance.

2 Related work

Previous work in machine learning has reported that additive noise can improve the adversarial
robustness of a model: Liu et al. [22] used random noise applied to pixels and intermediate layers
to improve adversarial robustness, and Cohen et al. [23] demonstrated a method to transform a
model with Gaussian noise in the pixel space to one with certified robustness to attacks of a given
strength. Unlike VOneNets, both [22] and [23] rely on using multiple inference passes with different
noise samples to improve robustness. Further, while both of these works suggest new defenses, none
analyze the properties of stochastic representations that lead to robustness.

The need to understand internal mechanisms of biological and artificial neural networks gave rise
to the field of neural population geometry [24, 21], an line of work exploring geometric properties
of high-dimensional neural representations. To capture the complexity of neural representations in
ANNs, various geometric analyses have been proposed, including representation similarity analysis
[25], geodesics [26], curvature [27], and intrinsic dimensionality [28]. Another popular approach is
through supervised linear probes [29], i.e., linear classifiers trained on top of these representations.
However, recent work has discussed how such analyses with linear classifiers are limited [30], and
that more structural studies are needed for investigating the internal layers of networks [31]. A recent
theoretical development based on replica theory in statistical physics [32, 20, 33] provides a solution
to this, by formally connecting the geometry and linearly decodable information embedded in neural
populations. By using this approach, our study situates the analysis of robustness mechanisms into
the developing field of neural population geometry [24, 21].
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3 Methods and experimental setup

3.1 Replica-based manifold analysis

In this paper, we use replica mean-field theoretic manifold analysis (MFTMA, hereafter) [20, 34, 33],
which formally connects the linear decodability of object manifolds, defined as a set of stimulus-
evoked representations in neural state space [35], to their geometrical properties. Here we provide
a brief description of the key quantities (See SM 1 and [20] for a complete treatment of MFTMA).
Using this framework, we analyze the size, shape, and distribution of object manifolds as they are
transformed throughout the network, gaining insight into the neural population geometry underlying
performance of the classification task. Specifically, given P object manifolds (measured as feature
point clouds) in N dimensions, MFTMA returns capacity (a measure of linear separability) and the
manifold dimensions, radii, and center correlations associated with capacity estimation.

Manifold capacity (α = P/N ) refers to the maximum number of object manifolds (Pmax) that can
be linearly separated given N features, and characterizes the linearly-decodable object information
per feature dimension. MFTMA estimates α through measures of the manifold dimension (DM ),
manifold radius (RM ), and manifold center correlation, which refer to dimensionality, size, and
distribution of object manifolds relevant for the linear classification. In our analysis, we combine the
manifold dimension and radii together into a single manifold width measure, defined as RM ·

√
DM ,

which captures the width of the convex hull of a manifold. Manifold width formally links the
linear separability of object manifolds with their underlying geometric structure. Specifically, small
values of manifold width yield more linearly separable manifold geometry. The correlation between
locations of the object manifolds also plays a role in determining manifold capacity, as more correlated
manifolds are less separable. For our analysis, center correlation is calculated as the average of the
absolute value of the cosine similarity between pairs of object manifold centroids.

Class Manifold Exemplar Manifold

High capacity for 
Exemplar Manifolds

Low capacity for 
Exemplar Manfolds

High capacity for
Class Manifolds

Low capacity for
Class Manifolds

Figure 1: Insights from class mani-
folds and exemplar manifolds. Class
manifolds have variability due to differ-
ences in exemplars in the class in addi-
tion to the stochasticity or adversarial
perturbations, while exemplar manifolds
only have variability due to stochasticity
or adversarial perturbations.

In this work, we characterize two types of manifolds:

1) Class manifolds: each manifold is defined by the activa-
tions evoked by multiple examples drawn from a specific
class of visual or auditory stimuli (i.e., object or word
identity). The variability within the manifold can come
from different exemplars within the class, but may also
be influenced by adversarial perturbations, and/or a layer
with stochastic activations.

2) Exemplar manifolds: each manifold is defined by the
activations evoked by multiple instances of a single exem-
plar (i.e., image or utterance) with the manifold variability
reflecting either norm-bounded adversarial perturbations2

and/or the influence of stochasticity.

Although the class manifold analysis is most tightly cou-
pled to the accuracy of the network on a classification task,
analyzing the exemplar manifolds gives insight into how
the class manifolds are constructed. Specifically, multiple
types of exemplar manifold geometries can lead to the
same class manifold capacity and width (Figure 1).

3.2 Quantifying object manifold overlap

The MFTMA framework provides a geometric description of exemplar manifolds evoked by ad-
versarial and clean stimuli in the case of multiple distributed object manifolds. However, we also
characterize the overlap between adversarial and clean exemplar manifolds generated from the same
stimuli (on the grounds that overlap should produce robustness to the adversarial perturbations in
question). To do so, we use a notion of object manifold overlap defined as the generalization error
of a linear Support Vector Machine (SVM) fit to separate two sets of representations, and report
the chance-normalized error rate on the held-out data. A normalized error rate of 1 means that two

2We replicate many experiments for non-adversarial but random perturbations within the ε-sized ball to
directly compare model geometry measured on the same stimuli. Results are similar and provided in SM 6.
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representations are completely overlapped, and 0 means that they are completely separable and thus
not overlapped. We use the scikit-learn SVM implementation with a train/test split of 80/20.

3.3 Adversarial attacks

For performing adversarial attacks, we use either the single-step fast gradient sign method (FGSM)
with a random starting location or multi-step projected gradient descent (PGD). Unless otherwise
specified, we use L∞ norm constrained attacks. All attacks are untargeted and performed on a
model-by-model basis. When the goal is to evaluate adversarial accuracy in newly created networks
with stochastic internal representations, we use ensemble-PGD, where each step is in the mean
direction of k samples of the noisy gradient to ensure a useful signal [36]. For more details, see SM 2.

4 Manifold analysis of robustness in ImageNet-trained networks
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Figure 2: Geometry and capacity of clean and adversar-
ially perturbed class manifolds in ImageNet models (A)
Clean or adversarially perturbed stimuli grouped into class
manifolds are provided as input to a model, internal repre-
sentations are extracted, and MFTMA analysis is applied.
(B) MFTMA capacity from the final model layer reflects
accuracy from clean and adversarial images. (C) Manifold
capacity and (D) manifold width for the last model layer is
plotted against attack strength, revealing enhanced represen-
tational invariance in ATResNet50 (green) and to a lesser
degree VOneResNet50 (dark blue) and GVOneResNet50
(light blue), while undefended ResNet50 (orange) is least
invariant. Error bars are standard deviation (STD) across 5
random projection (RP) and MFTMA seeds.

We first investigate the properties of
ImageNet-trained models, aiming to
compare the geometric signatures of
standard, adversarially trained, and
stochastic networks.

4.1 Models and Dataset

We use images sampled from the Ima-
geNet [37] test set. For class manifold
analysis, the clean stimulus set con-
sists of 50 classes, with each class
containing 50 unique exemplar im-
ages for a total of 2500 unique im-
ages. For exemplar manifold analy-
sis, 100 unique images are sampled
from the ImageNet test set and each
is perturbed with FGSM from a ran-
dom starting location 50 times for
5000 unique images. We analyzed
three publicly available ImageNet
models, including ResNet50 with stan-
dard training, ResNet50 adversarially
trained with an L∞ = 4/255 penalty
(ATResNet50), and VOneResNet50, a
ResNet50-based model with the first
conv-relu-maxpool layers replaced
by a linear-nonlinear-Poisson model
front-end (called the VOneBlock)
with Gabor filters and noise fitted to primate neuronal data. In addition, we analyze a novel variant
of VOneResNet50 (GVOneResNet50) with additive Gaussian noise scaled to match the mean over
all units in the output of the VOneBlock in response to a set of reference stimuli. GVOneResNet50
performs similarly to the original VOneResNet50 in clean and adversarial conditions (see SM 3.3 for
more details). While the first two models are deterministic, VOneResNet50 and GVOneResNet50
have stochastic representations at the output of the VOneBlock. For additional details see SM 3.

4.2 MFTMA reveals unique robustness strategies for VOneNet and adversarial training

Our analysis begins by observing the effects of norm-bounded, gradient-based adversarial attacks
on the class manifold geometry of representations in ResNet50, ATResNet50, VOneResNet50,
and GVOneResNet50. For all experiments, images perturbed with PGD L∞ constraints of ε ∈
[0, 1/1020, 1/255] are shown to a model and intermediate representations are extracted, randomly
projected to 5000 features [38, 39], and analyzed with MFTMA (Figure 2A). Much like previously
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Figure 3: Geometry and capacity of adver-
sarially perturbed exemplar manifolds in
neural networks (A) Each manifold con-
sists of a set of adversarially perturbed ex-
amples within an ε-sized ball around a sin-
gle exemplar image. (B) Mean capacity and
manifold width as a function of layer depth;
ATResNet50 maintains the size of ε-sized
ball manifolds, while undefended ResNet50,
VOneResNet50, and GVOneResNet50 ex-
pand the size. (C) Adversarial representa-
tion capacity normalized by clean represen-
tation capacity is shown for pixels, first conv
layer (the VOneBlock for VOneNets), and
the last average pooling layer. VOneRes-
Net50, GVOneResNet50, and ATResNet50
show less of a capacity decrease for low-
ε perturbed image manifolds compared to
the standard ResNet50. Error bars represent
STD across 5 RP and MFTMA seeds in all
plots; unnormalized capacity detailed in SM
3.6.

reported with MFTMA [33], models develop separable representations in later layers, with capacity
peaking in the final layer before classification (see SM 3.5).

First we focus on this penultimate layer, where class manifold representations have become linearly
separable and where capacity thus peaks. For the full layer-wise results, see SM 3.5. We empirically
confirm that capacity of the penultimate layer is predictive of the top-1 accuracy across models and
attack strengths (Figure 2B), indicating that MFTMA is sensitive to the attacks we are investigating.
MFTMA exposes how capacity (Figure 2C) and class manifold width (Figure 2D) vary in the four
models as a function of perturbation strength. Adversarial attacks cause the width of class manifolds
to grow most rapidly in ResNet50, to a lesser degree in VOneNets, and least of all in ATResNet50.

Next, to investigate how the models represent adversarial perturbations around individual im-
ages, we introduce another MFTMA-based approach. Instead of class manifolds, we con-
sider exemplar manifolds consisting of points sampled using FGSM with L∞ constraints of
ε ∈ [0, 1/1020, 1/255, 4/255, 8/255] from a random starting location in the epsilon-sized ball
around 100 exemplar images, with the goal of tracing how these ε-sized ball exemplar manifolds
develop as they travel through subsequent layers of our networks of interest (Figure 3A).

Restricting our analysis to the layer-wise trajectory of ε = 8/255 sized ball exemplar manifolds
(Figure 3B), the most salient feature is how distinct the trajectories are for the ATResNet50 and
VOneNets. Our results indicate the defense mechanism induced through adversarial training generally
stabilizes the width of the ε-sized ball around an exemplar as it propagates through the network,
effectively mapping small perturbations around the clean image to small regions in later layers of the
network. By contrast, the width of the ε-sized ball increases in VOneNets and the standard ResNet50.
In fact, at the VOneBlock output, the exemplar manifolds become highly entangled, suggesting
different mechanisms of robustness for adversarially trained and stochastic models.

How then do stochastic responses improve robustness? Figure 3C demonstrates that when the capacity
of the adversarially induced exemplar manifolds is normalized by the capacity for representations of
the same unperturbed images (clean exemplar manifolds)3, VOneNets are far more stable than the
standard ResNet50 network. At lower attack strengths where VOneNets’ accuracies are minimally
degraded, their normalized capacity remains stable, indicating that they represent the perturbed
images with approximately the same capacity as clean images. In other words, the adversarial
perturbations do not push the representation beyond that for clean images. In SM 3.7, we extend
this analysis to a variety of additional networks including two networks trained adversarially with
different norms, VOneResNet50 with no stochasticity during training or inference, and ResNet50
with a stochastic activation layer mirroring that in VOneResNet50 (see Dapello, Marques et al. [14]

3Clean exemplar manifolds for non-stochastic models have the maximum capacity of 2 [20].
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for network details.) Our trends hold up in each of these cases, with adversarially trained networks
stabilizing the ε-sized ball, and stochastic networks expanding it at the point of the stochastic layer,
but using similar capacity relative to clean images for small perturbations. In all experiments, we find
similar geometric signatures for the Gaussian and Poisson VOneNets. For simplicity in the rest of
the paper we focus on stochastic representations with Gaussian noise, but include an analysis of a
Poisson noise network trained on CIFAR-10 in SM 5.4.

5 Stochastic representations improve robustness in auditory networks

The results from the previous section highlight distinct geometric profiles for adversarially trained
models and for models with stochastic responses. To demonstrate that the observed neural population
geometry generalizes across modalities, we compare biologically-inspired and adversarially trained
auditory models trained to perform a speech recognition task. Our focus here is not on generating
an auditory model that is fully defended against adversarial attacks, but rather to test whether the
influence of stochastic representations and the geometric trends observed in the previous section
generalizes across domains. We thus focus on L∞ attacks acknowledging that Lp audio attacks that
successfully change a network’s prediction are often audible to human listeners [40, 41].

5.1 Models and dataset

Auditory models are trained to perform the word recognition task in the Word-Speaker-Noise dataset
introduced in [9]. Networks learn to distinguish the word present in the middle of a two-second
speech clip from 793 word classes. Word class manifolds are constructed from 50 unique words with
50 unique speakers saying the word, drawn from the Wall Street Journal Corpus [42] (2500 unique
speech clips). Exemplar manifolds are measured from a random selection of 100 example clips from
the class manifold dataset, with 50 samples measured for each clip.

Auditory models contain a biologically-inspired ‘cochleagram’ representation [43, 44], followed by a
ResNet50 architecture. The cochleagram consists of differentiable operations, allowing generation
of adversarial examples in the waveform. Unlike VOneNets, and to maintain consistency with
previously published auditory models [6, 9], the architecture maintains the conv-relu-maxpoool
before the first residual block, on the grounds that the cochleagram models the ear rather than primary
auditory cortex. For stochastic models, Gaussian noise with standard deviation σ is added after
the cochleagram representation (Figure 4A), and we refer to this model as StochCochResNet50.
A comparison network without noise (σ = 0) is similarly trained and evaluated (CochResNet50).
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Figure 4: Robustness of auditory networks trained with stochastic cochlear representations (A)
Depiction of auditory network with stochastic cochleagram. (B) Performance of auditory networks
trained with varying stochasticity levels evaluated on L∞ adversarial attacks, averaged over 100
randomly chosen test examples of clean speech. Error bars are STD across 5 sets of test stimuli.
(C) An intermediate level of Gaussian noise yields the best adversarial robustness. (D) Stochastic
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A robust model is achieved with adversarial training using L∞ perturbations with ε = 10−3 and
maximum of 5 steps for the attack (ATCochResNet50). Training and adversarial robustness details
are presented in SM 4.1 and SM 4.4 respectively.

5.2 Adversarial robustness in auditory models with stochastic cochleagrams

When setting the level of noise in the VOneBlock, neural responses from Macaque V1 to a specific
image set were used to tune the relative amplitude of the stochastic representations. However, this
type of neural data is not readily available for all sensory areas. We instead empirically found an
optimal level of noise for our auditory models by varying the level of additive Gaussian noise in the
stochastic cochleagram. The robustness of these models to L∞ perturbations is evaluated for different
perturbation sizes. To ensure a reliable signal for adversarial attack generation, model gradients are
sampled eight times for each PGD iteration. The resulting accuracy for each model is shown in Figure
4B. As noise is increased, the model’s robustness to adversarial perturbations increases, but only up
to a point, yielding a peak in the robustness curve (Figure 4C). The accuracy for StochCochResNet50
with noise during the training and attack is only slightly worse than ATCochResNet50 (Figure
4D). Much like what was observed in VOneResNet50 [14], including noise during training but not
during adversarial evaluation significantly increases adversarial robustness, suggesting that these
improvements cannot be trivially explained by the stochastic component masking the gradients during
the attack. Instead, the benefits appear to reflect downstream representational changes from training
with stochasticity. The additional performance boost when stochasticity is included during inference
suggests a secondary defense driven by the stochastic activations during evaluation. These results
show that by including stochasticity in a biologically-inspired peripheral model we can improve
performance on adversarial examples and by extension learn a more human-like representation.

5.3 Neural population geometry of auditory networks
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Figure 5: Adversarial exemplar manifold geometry of auditory
models. (A) Capacity of adversarial exemplar manifolds for audi-
tory models. For networks without stochasticity, the stochastic layer
representation is equal to the cochleagram representation. Eval-
uating the capacity for the adversarial exemplar manifolds with
stochasticity present during inference yields significantly lower
capacity after the stochastic layer, while the model trained, but
not tested, with stochasticity looks similar to the model achieved
through adversarial training. Error bars are STD across 5 RP and
MFTMA seeds. (B) Adversarial exemplar capacity normalized by
the clean manifold capacity as a function of adversarial perturbation
size. Unnormalized capacity detailed in SM 4.5. Error bars are STD
across 5 RP and MFTMA seeds.

We investigated whether the
neural population geometry
used by StochCochResNet50
is similar to that observed in
the visual domain. As with the
ImageNet experiments, clean
or perturbed audio is presented
to the model and intermediate
representations are extracted,
randomly projected to 5000
features (if the layer has more
than 5000 features), and ana-
lyzed with MFTMA.

An analysis of the ε-sized
ball exemplar manifolds
reveals that the geometry of
StochCochResNet50 with
noise during training but not
during evaluation is similar
to that of ATCochResNet50,
while the StochCochResNet50
with noise during evaluation
has a much lower capacity
for the adversarial exemplar
manifolds at late stages of the
network, much like VOneRes-
Net50 (Figure 5A). As in
VOneResNet50, when the
ε-sized ball exemplar manifold
capacity is normalized by
the clean manifold capacity,
the normalized capacity for
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Figure 6: Similarities between class manifold geometry in Auditory and ImageNet networks.
Geometry of class manifolds for Auditory (A) and ImageNet (B) networks when computed from
clean or adversarial stimuli.

StochCochResNet50 is stable with increasing epsilon from the stochastic cochleagram layer onwards
(Figure 5B). This suggests that StochCochResNet50 represents the adversarially perturbed sounds
with the same manifold capacity and width as the clean sounds. By comparison, ATCochResNet50
does not show invariance to the adversarially perturbed stimuli until the avgpool layer.

To examine the key geometric factors associated with an increase in capacity in both the auditory
and visual networks, we plot class manifold width vs. the manifold center correlation, as these two
factors together determine the capacity estimate. Figure 6A and 6B show that in both visual and
auditory networks an increase in size of the adversarial perturbation leads to an increase in manifold
width and center correlation (two key variables leading to the capacity). While this general trend is
present for all networks, the networks that are more adversarially robust have less change across both
metrics as the perturbation size increases. This provides further evidence that the manifold metrics
are a useful way to interpret the internal geometries that lead to adversarial robustness, and points to
the same underlying mechanism in visual and auditory modalities for the classification degradation in
the presence of adversarial vulnerability – specifically that the class manifolds become larger and
more correlated when adversarial perturbations are present.

6 Manifold overlap and the opposing effects of noise on robust classification

In the previous sections we investigated how stochastic representations change the size and capacity
of adversarial exemplar manifolds, but we did not directly test whether adversarial examples fall
within the manifolds elicited by stochastic activations. We hypothesize that for small perturbations,
activations elicited from adversarial examples overlap with the exemplar manifold formed by the
stochastic representation of a clean image, effectively eliminating vulnerability to small adversarial
perturbations. Here, we directly investigate whether small adversarial perturbations indeed overlap
with multiple stochastic representations evoked from the same stimulus, and investigate how this
overlap trades off with task performance. To do so, we test whether an SVM can separate the
adversarial exemplar manifolds from the clean exemplar manifolds generated for the same stimulus.
As manifold inseparability as measured by SVM is only one possible description of manifold overlap,
we further detail another analysis using pairwise distance distributions in Section SM 8. Finally, we
analyze the opposing effects of noise on clean and adversarial performance by investigating a CIFAR
model trained with different noise levels.

6.1 CIFAR model and datasets

We investigate how the level of noise changes the manifold geometry in a smaller model trained on the
CIFAR-10 dataset [45] with an architecture similar to ResNet18 [2], with the first conv-relu-maxpool
layers replaced by fixed-weight Gabor filters and biological-inspired activation functions adapted
from the Gaussian VOneNet4. In SM 5.4, we repeat the experiments with Poisson-like stochastic
activations as well, where the trends are similar.

4More details about the model architecture and training can be found in SM 5.1
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6.2 Low perturbation strength adversarial examples overlap with stochastic representations

We measure the overlap between ε-sized ball adversarial exemplar manifolds and clean exemplar
manifolds at the stochastic representations of the networks (the output of the VOneBlock for the
CIFAR and ImageNet models, and the stochastic cochleagram for the auditory model). For all
models, the adversarial exemplar manifold is generated by running FGSM L∞, varying the strength
of the adversarial attack. The clean exemplar manifold is generated by measuring multiple stochastic
representations from the same natural stimulus. We train an SVM to separate the adversarial
exemplar manifold from the clean exemplar manifold (Figure 7). For CIFAR SVM experiments,
the stimulus set includes 20 unique image exemplars, each with 1000 samples. For VOneResNet50
and StochCochResnet50 the stimulus set includes 10 unique stimulus exemplars, each with 5000
samples, and the features are downsampled with random projection to 5000 dimensions. In line with
our hypothesis, the clean and adversarial manifolds become less overlapped as the adversarial attack
strength increases and performance is degraded.

6.3 Adversarial robustness requires balancing exemplar and class information
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Figure 7: Adversarial exemplar manifolds measured at
stochastic representation overlap with clean exemplar man-
ifolds at smaller attack strengths. A binary SVM trained to
separate adversarial and clean exemplar manifolds extracted from
the stochastic representation of each network show that clean and
adversarial exemplar manifolds measured from the same stimulus
become less linearly separable as the attack strength decreases.
Experiments are presented for CIFAR VOneNet (Error bar is
STD across 20 images and 6 RP seeds), ImageNet VOneRes-
Net50 (Error bar is STD across 10 images and 5 RP seeds) and
StochCochResNet50 (Error bar is STD across 10 images and 5
RP seeds).

Although increasing the variance
of stochastic representations may
hide larger adversarial perturba-
tions, high noise levels may also
reduce capacity for class mani-
folds and decrease model accu-
racy. We hypothesize that the op-
timal noise level for model ac-
curacy and robustness requires
a balance between these two
factors (Figure 8A). We empir-
ically test this hypothesis, first
by showing that the adversarial
and clean exemplar manifolds be-
come less linearly separable with
increasing noise variance (Figure
8C). We also evaluate the perfor-
mance of the CIFAR model with
varying noise levels across differ-
ent adversarial attack strengths
(Figure 8D). As the variance of
the stochastic responses increase, the clean performance decreases, while performance under ad-
versarial attack depends non-linearly on the noise variance. Using MFTMA we examine the effect
of varying levels of stochasticity on class manifold capacity and related geometric properties. We
generated clean exemplar and class manifolds from a stimulus set of 100 unique images, each with 50
noise samples. Figure 8E shows the dependence of manifold capacity on stochasticity level. As the
noise level increases, both class and exemplar manifolds become more entangled and capacity drops.
In addition, Figure 8F shows that as the noise level increases, the manifold width increases. Thus,
both the capacity, which characterizes manifold linear separability, and the geometry demonstrate
that increasing noise levels makes manifolds larger, more entangled and less linearly separable. This
type of optima is also observed when choosing the level of stochasticity for the auditory networks in
Figure 4C, and additional auditory analysis of the noise level is found in section SM 4.6.

7 Discussion

Using recently developed techniques to analyze the neural population geometry of a variety of
networks on clean and adversarially perturbed stimuli, our work provides new insight into mechanisms
underlying adversarial robustness. First, we show key geometrical differences between adversarially
trained networks and VOneNets operating with stochastic neural representations. Second, we
demonstrate the generality of the usefulness of stochastic representations for defending against
adversarial attacks by showing that the effects extend to auditory models. It was not obvious a priori
whether stochasticity would have the same benefit on auditory models in part because (unlike vision
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Figure 8: Stochastic representations induce opposing geometric effects that determine a
model’s performance (A) Illustration of the stochasticity level’s effect on the representations. In
the low-noise regime, clean and adversarial representations do not overlap significantly, but class
manifolds are well separated. In the high-noise regime, clean and adversarial representations are
more overlapped, but the class manifolds also becomes more entangled. (B) These two properties
trade off as the level of Gaussian noise is varied. (C) Binary SVMs are trained to separate adversarial
and clean exemplar manifolds representations from same image in CIFAR models, showing that
clean and adversarial exemplar manifolds become less linearly separable as stochasticity increases.
Error bar is STD from 20 images and 6 random seeds. (D) Dependence between model performance
and noise level at multiple attack strengths. Error bar is STD from 6 random seeds. (E) Capacity for
both class and exemplar manifolds capacity decreases as the stochasticity increases. Error bar is STD
from 6 random seeds. (F) Manifold width increases as the noise level increases. Error bar is STD
from 6 random seeds. (All representations are from the stochastic output of the VOneBlock)

models) they are typically trained with additive noise on the input [6, 9] given that additive noise
is ubiquitous in real-world auditory signals (because concurrent sounds sum together). Third, we
show that stochastic representations of clean and adversarially perturbed stimuli overlap, helping
to explain why the stochastic networks generalize better to perturbations below a certain threshold.
Fourth, we isolate and quantify the competing effects of stochastic representations on network
performance: while stochasticity increases the overlap between clean and adversarial activations,
increasing stochasticity also creates more overlap between different class manifolds, making them
less separable, and ultimately reducing peak clean network performance.

Here, we focused on linear methods to probe the mechanisms of adversarial robustness. Future work
could benefit from more sophisticated methods to measure manifold overlap, and could also extend
analysis to more naturally occurring corruptions [46]. Further, while we largely focus on the case
of noise injected after fixed biologically inspired filters, more work is needed to explore what types
of representations benefit from the addition of noise; for instance Dapello, Marques et al. found
there was not as strong of a protective effect with stochasticity added to a standard convolutional
filter. We leave the exact role of the neurally plausible filters, as used in both VOneResNet50 and
StochCochRenet50, as a promising direction for future work. The presence of noise at all stages of
the brain, suggests that if we can resolve when stochasticity is useful, this defense may be extensible
to additional network layers for greater gains in robustness.

In theoretical neuroscience, much of the discussion on the role of stochasticity in neural coding has
centered around the efficient representation of uncertainties associated with task-relevant variables
[47, 48]. Our work adds to this line of research, by using geometry to demonstrate how stochasticity
improves the neural population’s robustness to adversarial perturbations unseen during training
in deep networks. We hope that our work will motivate mechanistic explanations of biologically
plausible robust computation in ANNs through the lens of geometry, and further identification of
biological constraints that might inspire favorable changes in task-efficient neural representations.
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