
Appendix

A0 An overview of signal propagation in wide neural networks

In section, we review some results and tools from the theory of signal of propagation in wide neural
networks. This will prove valuable in the rest of the appendix.

A0.1 Neural Network Gaussian Process (NNGP)

Standard ResNet without SD. Consider a standard ResNet architecture with L layers. The
forward propagation of some input x ∈ Rd is given by

y0(x) = Ψ0(x,W0)

yl(x) = yl−1(x) + Ψl(yl−1(x),Wl), 1 ≤ l ≤ L,
yout(x) = Ψout(yL(x),Wout),

(A1)

where Wl are the weights in the lth layer, Ψ is a mapping that defines the nature of the layer, and yl
are the pre-activations. we consider constant width ResNet and we further denote by N the width,
i.e. for all l ∈ [L− 1], yl ∈ RN . The output function of the network is given by s(yout) where s is
some convenient mapping for the learning task, e.g. the Softmax mapping for classification tasks. We
denote by o the dimension of the network output, i.e. s(yout) ∈ Ro which is also the dimension of
yout. For our theoretical analysis, we consider residual blocks composed of a Fully Connected linear
layer

Ψl(x,W) = Wφ(x).

where φ(x) is the activation function. The weights are initialized with He init He et al. [2015], e.g.
for ReLU, W l

ij ∼ N (0, 2/N).

The neurons {yi0(x)}i∈[1:N] are iid normally distributed random variables since the weights connect-
ing them to the inputs are iid normally distributed. Using the Central Limit Theorem, as N0 →∞,
yi1(x) becomes a Gaussian variable for any input x and index i ∈ [1 : N]. Additionally, the variables
{yi1(x)}i∈[1:N] are iid. Thus, the processes yi1(.) can be seen as independent (across i) centred
Gaussian processes with covariance kernel Q1. This is an idealized version of the true process
corresponding to letting width N0 → ∞. Doing this recursively over l leads to similar results for
yil(.) where l ∈ [1 : L], and we write accordingly yil

ind∼ GP(0, Ql). The approximation of yil(.) with
a Gaussian process was first proposed by [Neal, 1995] for single layer FeedForward neural networks
and was extended recently to multiple feedforward layers by [Lee et al., 2019] and [Matthews et al.,
2018]. More recently, excellent work by [Yang, 2020] introduced a unifying framework named Ten-
sor Programs, confirming the large-width Gaussian Process behaviour for nearly all neural network
architectures.

For any input x ∈ Rd, we have E[yil(x)] = 0, so that the covariance kernel is given by Ql(x, x′) =
E[y1

l (x)y1
l (x′)]. It is possible to evaluate the covariance kernels layer by layer, recursively. More

precisely, assume that yil−1 is a Gaussian process for all i. Let x, x′ ∈ Rd. We have that

Ql(x, x
′) = E[y1

l (x)y1
l (x′)]

= E[y1
l−1(x)y1

l−1(x′)] +

Nl−1∑
j=1

E[(W 1j
l)2φ(yjl−1(x))φ(yjl−1(x′))]

+ E

Nl−1∑
j=1

W 1j
l (y1

l−1(x)φ(y1
l−1(x′)) + y1

l−1(x′)φ(y1
l−1(x)))

 .
Some terms vanish because E[W 1j

l] = 0. Let Zj =
√

N
2 W

1j
l . The second term can be written as

E

 2

N

∑
j

(Zj)
2φ(yjl−1(x))φ(yjl−1(x′))

→ 2 E[φ(y1
l−1(x))φ(y1

l−1(x′))] ,

12

where we have used the Central Limit Theorem. Therefore, the kernel Ql satisfies for all x, x′ ∈ Rd

Ql(x, x
′) = Ql−1(x, x′) + Fl−1(x, x′) ,

where Fl−1(x, x′) = 2 E[φ(y1
l−1(x))φ(y1

l−1(x′))].

For the ReLU activation function φ : x 7→ max(0, x), the recurrence can be written more explicitly
as in [Hayou et al., 2019]. Let Cl be the correlation kernel, defined as

Cl(x, x
′) = Ql(x,x

′)√
Ql(x,x)Ql(x′,x′)

(A2)

and let f : [−1, 1]→ R be given by

f : γ 7→ 1
π (
√

1− γ2 + γ arcsin γ) +
1

2
γ . (A3)

The recurrence relation reads

Ql = Ql−1 + f(Cl−1)
Cl−1

Ql−1 ,

Q0(x, x′) = 2 x·x′
d .

(A4)

Standard ResNet with SD. The introduction of the binary mask δ in front of the residual blocks
slightly changes the recursive expression of the kernel Ql. It ii easy to see that with SD, the Ql
follows

Ql = Ql−1 + pl
f(Cl−1)
Cl−1

Ql−1 ,

Q0(x, x′) = 2 x·x′
d .

(A5)

where f is given by Eq. (A3).

We obtain similar formulas for Stable ResNet with and without SD.

Stable ResNet without SD.

Ql = Ql−1 +
1

L
f(Cl−1)
Cl−1

Ql−1 ,

Q0(x, x′) = 2 x·x′
d .

(A6)

Stable ResNet with SD.

Ql = Ql−1 +
pl
L
f(Cl−1)
Cl−1

Ql−1 ,

Q0(x, x′) = 2 x·x′
d .

(A7)

A0.2 Diagonal elements of the kernel Ql

Lemma A1 (Diagonal elements of the covariance). Consider a ResNet of the form Eq. (1) (standard
ResNet) or Eq. (3)(Stable ResNet), and let x ∈ Rd. We have that for all l ∈ [1 : L],

• Standard ResNet without SD: Ql(x, x) = 2lQ0(x, x) .

• Standard ResNet with SD: Ql(x, x) =
∏l
k=1(1 + pk)Q0(x, x) .

• Stable ResNet without SD: Ql(x, x) = (1 + 1
L)lQ0(x, x) .

• Stable ResNet with SD: Ql(x, x) =
∏l
k=1(1 + pk

L)Q0(x, x) .

Proof. Let us prove the result for Standard ResNet with SD. The proof is similar for the other cases.
Let x ∈ Rd. We know that

Ql(x, x) = Ql−1(x, x) + plf(1)Ql−1(x, x) ,

where f is given by Eq. (A3). It is straightforward that f(1) = 1. This yields

Ql(x, x) = (1 + pl)Ql−1(x, x) .

we conclude by telescopic product.

13

A0.3 Assumption 1 and gradient backpropagation

For gradient back-propagation, an essential assumption in the literature on signal propagation analysis
in deep neural networks is that of the gradient independence which is similar in nature to the practice
of feedback alignment [Lillicrap et al., 2016]. This assumption (Assumption 1) allows for derivation
of recursive formulas for gradient back-propagation, and it has been extensively used in literature and
empirically verified; see references below.

Gradient Covariance back-propagation. Assumption 1 was used to derive analytical formulas
for gradient covariance back-propagation in a stream of papers; to cite a few, [Hayou et al., 2019, ?,
Poole et al., 2016, Xiao et al., 2018, Yang and Schoenholz, 2017]. It was validated empirically through
extensive simulations that it is an excellent tool for FeedForward neural networks in Schoenholz et al.
[2017], for ResNets in Yang and Schoenholz [2017] and for CNN in Xiao et al. [2018].

Neural Tangent Kernel (NTK). Assumption 1 was implicitly used by Jacot et al. [2018] to derive
the recursive formula of the infinite width Neural Tangent Kernel (See Jacot et al. [2018], Appendix
A.1). Authors have found that this assumption yields excellent empirical match with the exact NTK.
It was also used later in [Arora et al., 2019, Hayou et al., 2020] to derive the infinite depth NTK for
different architectures.

When used for the computation of gradient covariance and Neural Tangent Kernel, [Yang, 2020]
proved that Assumption 1 yields the exact computation of the gradient covariance and the NTK in the
limit of infinite width. We state the result for the gradient covariance formally.
Lemma A2 (Corollary of Theorem D.1. in [Yang, 2020]). Consider a ResNet of the form (1) or (3)
with weights W . In the limit of infinite width, we can assume that WT used in back-propagation is
independent from W used for forward propagation, for the calculation of Gradient Covariance.
Lemma A3 (Gradient Second moment). Consider a ResNet of type Eq. (3) without SD. Let (x, t) ∈
D be a sample from the dataset, and define the second of the gradient with q̃l(x, t) = EW

[
∂L(x,W)

∂yl

]
.

Then, in the limit of infinite width, we have that

q̃l(x, t) =

(
1 +

1

L

)
q̃l+1(x, t) .

As a result, for all l ∈ [1 : L], we have that

q̃l(x, t) =

(
1 +

1

L

)L−l
q̃L(x, t) .

Proof. It is straighforward that
∂L(x,W)

∂yil
=
∂L(x,W)

∂yil+1

+
1√
L

∑
j

∂L(x,W)

∂yjl+1

W ji
l+1φ

′(yil(x)) .

Using lemma A2 and the Central Limit Theorem, we obtain

q̃l(x, t) = q̃l+1(x, t) +
2

L
q̃l+1(x, t)E[φ′(y1

l (x))2] .

We conclude by observing that E[φ′(yli(x))2] = P(N (0, 1) > 0) = 1
2 .

A1 Proofs

A1.1 Proof of Lemma 1

Lemma 1 (Concentration of Lδ). For any β ∈ (0, 1), we have that with probability at least 1− β,

|Lδ − Lp| ≤ vp u−1

(
log(2/β)

vp

)
(A8)

where Lp = E[Lδ] =
∑L
l=1 pl, vp = Var[Lδ] =

∑L
l=1 pl(1− pl), and u(t) = (1 + t) log(1 + t)− t.

Moreover, for a given average depth Lp = L̄, the upperbound in Eq. (2) is maximal for the uniform

choice of survival probabilities p =
(
L̄
L , ...,

L̄
L

)
.

14

Proof. The concentration inequality is a simple application of Bennett’s inequality: Let X1, ..., Xn

be a sequence of independent random variables with finite variance and zero mean. Assume that there
exists a ∈ R+ such thatXi ≤ a almost surely for all i. Define Sn =

∑n
i=1Xi and σ2

n =
∑n
i=1 E[X2

i].
Then, for any t > 0, we have that

P(|Sn| > t) ≤ 2 exp

(
−σ

2
n

a2
u

(
at

σ2
n

))
.

Now let us prove the second result. Fix some L̄ ∈ (0, L). We start by proving that the function
ζ(z) = z u−1

(
α
z

)
is increasing for any fixed α > 0. Observe that u′(t) = log(1 + t), so that

(u−1)′(z) =
1

u′(u−1(z))
=

1 + u−1(z)

z + u−1(z)
.

This yields

ζ ′(z) =
zu−1

(
α
z

)2 − α
α+ xu−1

(
α
z

)
For z > 0, the numerator is positive if and only if α

z > u
(√

α
z

)
, which is always true using the

inequality log(1 + t) < t for all t > 0.

Now let α = log(2/β). Without restrictions on Lp, it is straightforward that vp is maximized by
p′ = (1/2, ..., 1/2). With the restriction Lp = L̄, the minimizer is the orthogonal projection of p′

onto the convex set {p : Lp = L̄}. This projection inherits the symmetry of p′, which concludes the
proof.

A1.2 Proof of Proposition 1

Theorem 1 (Exploding gradient rate). Let L(x, z) = `(yout(x; δ), z) for (x, z) ∈ Rd × Ro, where

`(z, z′) is some differentiable loss function. Let q̃l(x, z) = EW,δ
‖∇ylL‖

2

‖∇yLL‖2
, where the numerator and

denominator are respectively the norms of the gradients with respect to the inputs of the lth and Lth
layers . Then, in the infinite width limit, under Assumption 1, for all l ∈ [L] and (x, z) ∈ Rd × Ro,
we have

• With Stochastic Depth, q̃l(x, z) =
∏L
k=l+1(1 + pk)

• Without Stochastic Depth (i.e. δ = 1), q̃l(x, z) = 2L−l

Proof. It is straightforward that with Stochastic Depth
∂L(x,W)

∂yil
=
∂L(x,W)

∂yil+1

+ δl+1

∑
j

∂L(x,W)

∂yjl+1

W ji
l+1φ

′(yil(x)) .

Denote for clarity for any neuron i and layer l, di,l = ∂L(x,W)
∂yil

. The equation can be written

di,l = di,l+1 + δl+1

∑
j

dj,l+1W
ji
l+1φ

′(yil(x)) (A9)

We notice that for any k ≥ l + 1 and any i, di,k on depends on Wl+1 through the forward pass, and
that the terms W ji

l+1 in equation (A9) come from the backward pass. Therefore, Lemma A2 entails

EW backward
l+1

‖∇ylL‖2

‖∇yLL‖2
=

∑
i d

2
i,l+1 + δ2

l+1
2
N

∑
i φ
′(yil(x))2

∑
j d

2
j,l+1∑

j d
2
j,L

=
‖∇yl+1

L‖2

‖∇yLL‖2
(1 + δl+1

2

N

∑
i

φ′(yil(x))2),

where 2
N is the variance of W ji

l+1 (N is the width of the network). Again using Lemma A2 and taking
the expectation with respect to the remaining weights and mask concludes the proof.

15

A1.3 Proof of Lemma 2

Lemma 2 (Maximal regularization). Consider the empirical loss L given by Eq. (6) for some fixed
weights W (e.g. W could be the weights at any training step of SGD).Then, for a fixed training
budget L̄, the regularization is maximal for

p∗l = min
(
1,max(0,

1

2
− Cgl(W)−1)

)
,

where C is a normalizing constant, that has the same sign as L − 2L̄. The global maximum is
obtained for pl = 1/2.

Proof. Let al = gl(W). Noticing that pl(1− pl) = 1/4− (pl − 1/2)2, it comes that∑
l

pl(1− pl)al =

∑
al

4
−
∑
l

(pl − 1/2)2al

=

∑
al

4
−
∥∥∥∥p�√a− √a2

∥∥∥∥2

2

,

with the abuse of notations
√
a = (

√
a1, ...,

√
aL) and where � stands for the element-wise product.

We deduce from this expression that p = 1
2

is the global maximizer of the regularization term.
With a fixed training budget, notice that the expression is maximal for p∗ �

√
a the orthogonal

projection of
√
a

2 on the intersection of the affine hyper-planeH containing the L points of the form
(0, ..., Lm

√
al, ..., 0) and the hyper-cube C of the points with coordinates in [0, 1]. Writing the KKT

conditions yields for every l:

pl = 1/2− βa−1
l − λ0,l1pl=0 + λ1,l1pl=1,

where λ0,l, λ1,l ≥ 0. Taking p = p∗, β = C, λ0,l = 1/2 + βa−1
l and λ1,l = 1/2− βa−1

l . Since the
program is quadratic, the KKT conditions are necessary and sufficient conditions, which concludes
the proof.

A1.4 Proof of Theorem 1

Theorem 1 (p∗ is uniform at initialization). Assume φ = ReLU andW are initialized withN (0, 2
N).

Then, in the infinite width limit, under Assumption 1, for all l ∈ [1 : L], we have

EW [gl(W)] = EW [g1(W)].

As a result, given a budget L̄, the average regularization term 1
2L

∑L
l=1 pl(1 − pl)EW [gl(W)] is

maximal for the uniform mode p∗ = (L̄/L, . . . , L̄/L).

Proof. Using the expression of gl, we have that

EW [gl(W)] =
2

n

n∑
i=1

EW [‖ζl(xi,W)‖22].

Thus, to conclude, it is sufficient to show that for some arbitrary i ∈ [1 : n], we have
EW [‖ζl(xi,W)‖22] = EW [‖ζ1(xi,W)‖22] for all l ∈ [1, L].
Fix i ∈ [1 : n] and l ∈ [1 : L]. For the sake of simplicity, let zl = zl(x;1) and yl = yl(x;1). We
have that

‖ζl(x,W)‖22 =

o∑
j=1

〈∇ylG
j
l (yl), zl〉

2

Now let j ∈ [1 : o]. We have that

〈∇ylG
j
l (yl), zl〉

2 =
∑
k,k′

∂Gjl
∂ykl

zkl
∂Gjl
∂yk

′
l

zk
′

l

16

Using Assumption 1, in the limit N →∞, we obtain

EW [〈∇ylG
j
l (yl), zl〉

2] =
∑
k,k′

EW

[
∂Gjl
∂ykl

∂Gjl
∂yk

′
l

]
EW [zkl z

k′

l]

Since EW [zkl z
k′

l] = 0 for k 6= k′, we have that

EW [〈∇ylG
j
l (yl), zl〉

2] =

∞∑
k=1

EW

(∂Gjl
∂ykl

)2
EW [(zkl)2]

Let us deal first with the term EW [(zkl)2].

Let k ∈ N. Recall that for finite N , we have that zkl =
∑N
m=1W

k,m
l φ(yml−1) and W k,m

l ∼ N (0, 2
N).

Thus, using the Central Limit Theorem in the limit N →∞, we obtain

EW [(zkl)2] = 2 EZ∼N (0,1)[φ(
√
ql−1Z)2] = Ql−1(x, x),

where Ql−1(x, x) is given by Lemma A1. We obtain

EW [(zkl)2] =

(
1 +

1

L

)l−1

Q0(x, x).

The term q̄jl = EW

[(
∂Gjl
∂ykl

)2
]

can be computed in a similar fashion to that of the proof of Lemma A3.

Indeed, using the same techniques, we obtain

q̄j,kl =

(
1 +

1

L

)
q̄j,kl+1

which yields

q̄j,kl =

(
1 +

1

L

)L−l−1

q̄j,kL

Using the Central Limit Theorem again in the last layer, we obtain

∞∑
k=1

EW

(∂Gjl
∂ykl

)2
 =

(
1 +

1

L

)L−l
.

This yields

EW [〈∇ylG
j
l (yl), zl〉

2] =

(
1 +

1

L

)L−1

Q0(x, x).

and we conclude that

EW [‖ζl(xi,W)‖22] = o×
(

1 +
1

L

)L−1

Q0(x, x)

The latter is independent of l, which concludes the proof.

A1.5 Proof of Theorem 2

Consider an arbitrary neuron yiαL in the (αL)th layer for some fixed α ∈ (0, 1). yiαL(x, δ) can be
approximated using a first order Taylor expansion around δ = 1. We obtain similarly,

yiαL(x, δ) ≈ ȳiαL(x) +
1√
L

αL∑
l=1

ηl 〈zl,∇ylGil(yl(x;1))〉 (A10)

17

where Gil is defined by yiαL(x;1) = Gil(yl(x;1)), ηl = δl − pl, and ȳiαL(x) = yiαL(x,1) +
1√
L

∑αL
l=1(pl − 1) 〈zl,∇ylGil(yl(x;1))〉 ≈ yiαL(x,p).

Let γα,L(x) = 1√
L

∑αL
l=1 ηl 〈zl,∇ylGil(yl(x;1))〉. The term γα,L captures the randomness of the

binary mask δ, which up to a factor α, resembles to the scaled mean in Central Limit Theorem(CLT)
and can be written as

γα,L(x) =
√
α× 1√

αL

αL∑
l=2

Xl,L(x)

where Xl,L(x) = ηl 〈zl,∇ylGil(yl(x;1))〉. We use a Lindeberg’s CLT to prove the following result.
Theorem 4. Let x ∈ Rd, Xl,L(x) = ηl µl,L(x) where µl,L(x) = 〈zl,∇ylGil(yl(x;1)〉, and
σ2
l,L(x) = Varδ[Xl,L(x)] = pl(1− pl)µl,L(x)2 for l ∈ [L]. Assume that

1. There exists a ∈ (0, 1/2) such that for all L, and l ∈ [L], pl ∈ (a, 1− a).

2. limL→∞
maxk∈[L] µ

2
k,L(x)∑L

l=1 µ
2
l,L(x)

= 0.

3. vα,∞(x) := limL→∞

∑L
l=1 σ

2
l,L(x)

L exists and is finite.

Then,
γα,L(x)

D−→
L→∞

N (0, α vα,∞(x)).

Before proving Theorem 2, we state Lindeberg’s CLT for traingular arrays.
Theorem 3 (Lindeberg’s Central Limit Theorem for Triangular arrays). Let (Xn,1, . . . , Xn,n)n≥1

be a triangular array of independent random variables, each with finite mean µn,i and finite variance
σ2
n,i. Define s2

n =
∑n
i=1 σ

2
n,i. Assume that for all ε > 0, we have that

lim
n→∞

1

s2
n

n∑
i=1

E[(Xn,i − µn,i)21{|Xn,i−µn,i|>εsn}] = 0,

Then, we have
1

sn

n∑
i=1

(Xn,i − µn,i)
D−→

n→∞
N (0, 1)

Given an input x ∈ Rd, the next lemma provides sufficient conditions for the Lindeberg’s condition
to hold for the triangular array of random variables Xl,L(x) = ηlµl,L(x). In this context, a scaled
version of γL(x) converges to a standard normal variable in the limit of infinite depth.
Lemma A4. Let x ∈ Rd, and define Xl,L(x) = ηl µl,L(x) where µl,L is a deterministic mapping
from Rd to R, and let σ2

l,L(x) = Varδ[Xl,L(x)] for l ∈ [L]. Assume that

1. There exists a ∈ (0, 1/2) such that for all L, and l ∈ [L], pl ∈ (a, 1− a).

2. limL→∞
maxk∈[L] µ

2
k,L(x)∑L

l=1 µ
2
l,L(x)

= 0.

Then for all ε > 0, we have that

lim
L→∞

1

s2
L(x)

L∑
l=1

E[Xl,L(x)21{|Xl,L(x)|>εsL(x)}] = 0,

where s2
L(x) =

∑L
l=1 σ

2
l,L(x).

The proof of Lemma A4 is provide in Section A1.6.
Corollary A1. Under the same assumptions of Lemma A4, we have that

1

sL(x)

L∑
l=1

Xl,L
D−→

L→∞
N (0, 1)

The proof of Theorem 2 follows from Corollary A1.

18

A1.6 Proof of Lemma A4

Lemma A4. Let x ∈ Rd, and define Xl,L(x) = ηl µl,L(x) where µl,L is a deterministic mapping
from Rd to R, and let σ2

l,L(x) = Varδ[Xl,L(x)] for l ∈ [L]. Assume that

1. There exists a ∈ (0, 1/2) such that for all L, and l ∈ [L], pl ∈ (a, 1− a).

2. limL→∞
maxk∈[L] µ

2
k,L(x)∑L

l=1 µ
2
l,L(x)

= 0.

Then for all ε > 0, we have that

lim
L→∞

1

s2
L(x)

L∑
l=1

E[Xl,L(x)21{|Xl,L(x)|>εsL(x)}] = 0,

where s2
L(x) =

∑L
l=1 σ

2
l,L(x).

Proof. Fix i ∈ [o]. For l ∈ [L], we have that σ2
l,L = pl(1− pl)µ2

l,L. Therefore,

s2
L =

L∑
l=1

pl(1− pl)µ2
l,L

Under conditions 1 and 2, it is straightforward that s2
L = Θ(L).

To simplify our notation in the rest of the proof, we fix x ∈ Rd and denote by Xl := Xl,L(x) and
µl := µl,L(x). Now let us prove the result. Fix ε > 0. We have that

E[(Xl)
21{|Xi|>εsL}] = µ2

l E
[
η2
l 1{|ηl|>

εsL
|µl|
}

]
Using the fact that |ηl| ≤ max(pl, 1− pl), we have

E
[
η2
l 1{|ηl|>

εsL
|µl|
}

]
≤ pl(1− pl)1{max(pl,1−pl)>

εsL
|µl|
}

≤ pl(1− pl)ζL
where ζL = 1{1−a> εsL

maxk∈[L] |µk
}.

Knowing that

sL
maxk∈[L] |µk|

≥ a

√ ∑L
l=1 µ

2
l

maxk∈[L] µ
2
k

,

where the lower bound diverges to∞ as L increases by assumption. We conclude that

1

s2
L

L∑
l=1

E[(Xl)
21{|Xl|>εsL}] ≤ ζL →

L→∞
0.

.

A2 Full derivation of explicit regularization with SD

Consider a dataset D = X × T consisting of n (input, target) pairs {(xi, ti)}1≤i≤n with (xi, ti) ∈
Rd × Ro. Let ` : Rd × Ro → R be a smooth loss function, e.g. quadratic loss, crossentropy loss etc.
Define the model loss for a single sample (x, t) ∈ D by

L(W , x; δ) = `(yout(x; δ), t), L(W , x) = Eδ [`(yout(x; δ), t)] ,

whereW = (Wl)0≤l≤L. With SD, we optimize the average empirical loss given by

L(W) =
1

n

n∑
i=1

Eδ [`(yout(xi; δ), ti)]

19

To isolate the regularization effect of SD on the loss function, we use a second order approxi-
mation of the loss function of the model, this will allow us to marginalize out the mask δ. Let
zl(x; δ) = Ψl(Wl, yl−1(x; δ)) be the activations. For some pair (x, t) ∈ D, the second order Taylor
approximation of `(yL(x), t) around δ = 1 = (1, . . . , 1) is given by

`(yout(x; δ), z) ≈ `(yout(x;1), z) +
1√
L

L∑
l=1

(δl − 1)〈zl(x;1),∇yl [` ◦Gl](yl(x;1))〉

+
1

2L

L∑
l=1

(δl − 1)2zl(x;1)T∇2
yl

[` ◦Gl](yl(x;1))zl(x;1)

(A11)

where Gl is the function defined by yout(x;1) = Gl(yl−1(x;1) + 1√
L
zl(x;1)). Taking the expecta-

tion with respect to δ, we obtain

L(W , x) ≈ L̄(W , x) +
1

2L

L∑
l=1

pl(1− pl)gl(W , x) (A12)

where L̄(W , x) ≈ `(yout(x;p), t) (more precisely, L̄(W , x) is the second order Taylor approxima-
tion of `(yout(x;p), t) around p = 15), and gl(W , x) = zl(x;1)T∇2

yl
[` ◦Gl](yl(x;1))zl(x;1).

The first term L̄(W , x) in Eq. (4) is the loss function of the average network (i.e. replacing δ with its
mean p). Thus, Eq. (4) shows that training with SD entails training the average network with an
explicit regularization term that implicitly depends on the weightsW .

A3 Implicit regularization and gradient noise

The results of Theorem 2 can be generalized to the gradient noise. Adding noise to the gradient is
a well-known technique to improve generalization. It acts as an implicit regularization on the loss
function. Neelakantan et al. [2015] suggested adding a zero mean Gaussian noise parameterized
by its variance. At training time t, this translates to replacing ∂L

∂wt
by ∂L

∂wt
+ N (0, σ2

t), where wt
is the value of some arbitrary weight in the network at training time t, and σ2

t = a(1 + t)−b for
some constants a, b > 0. As t grows, the noise converge to 0 (in `2 norm), letting the model stabilize
in a local minimum. Empirically, adding this noise tends to boost the performance by making the
model robust to over-fitting. Using similar perturbation analysis as in the previous section, we show
that when the depth is large, SDmimics this behaviour by implicitly adding a Gaussian noise to the
gradient at each training step.

Consider an arbitrary weight w in the network, and let h(x; δ) = ∂L(x,W ;δ)
∂w be the gradient of the

model loss w.r.t w. h(x; δ) can be approximated using a first order Taylor expansion of the loss
around δ = 1. We obtain,

h(x; δ) =
∂L(x,W ; δ)

∂w

≈ ∂

∂w

(
L(x,W ;1) +

1√
L

L∑
l=1

(δl − 1)〈zl,∇yl [` ◦Gl](yl(x;1))〉

)

≈ h̄(x) +
1√
L

L∑
l=1

ηl
∂

∂w
〈zl,∇yl [` ◦Gl](yl(x;1))〉

(A13)

where ηl = δl−pl, and h̄(x) = h(x;1)+ 1√
L

∑L
l=1(pl−1) ∂

∂w 〈zl,∇yl [`◦Gl](yl(x;1))〉 ≈ h(x;p).

Let γL(x) = 1√
L

∑L
l=1 ηl

∂
∂w 〈zl,∇yl [`◦Gl](yl(x;1))〉. With SD, the gradient h(x; δ) can therefore

be seen as a perturbation of the gradient of the average network h(x;p) with a noise encoded by

5Note that we could obtain Eq. (4) using the Taylor expansion around δ = p. However, in this case, the
hessian will depend on p, which complicates the analysis of the role of p in the regularization term.

20

γL(x). The scaling factor 1/
√
L ensures that γL remains bounded (in `2 norm) as L grows. Without

this scaling, the variance of γL generally explodes. The term γL captures the randomness of the
binary mask δ, which resembles to the scaled mean in Central Limit Theorem and can be written as

γL(x) =
1√
L

L∑
l=2

Xl,L(x)

where Xl,L(x) = ηl
∂
∂w 〈zl,∇yl [` ◦ Gl](yl(x;1))〉. Ideally, we would like to apply Central Limit

Theorem (CLT) to conclude on the Gaussianity of γL(x) in the large depth limit. However, the
random variables Xl are generally not i.i.d (they have different variances) and they also depend on
L. Thus, standard CLT argument fails. Fortunately, there is a more general form of CLT known as
Lindeberg’s CLT which we use in the proof of the next theorem.
Theorem 4 (Asymptotic normality of gradient noise). Let x ∈ Rd, and define Xl,L(x) = ηl µl,L(x)

where µl,L(x) = ∂
∂w 〈zl,∇yl [`◦Gl](yl(x;1)〉, and let σ2

l,L(x) = Varδ[Xl,L(x)] = pl(1−pl)µl,L(x)2

for l ∈ [L]. Assume that

1. There exists a ∈ (0, 1/2) such that for all L, and l ∈ [L], pl ∈ (a, 1− a).

2. limL→∞
maxk∈[L] µ

2
k,L(x)∑L

l=1 µ
2
l,L(x)

= 0.

3. v∞(x) := limL→∞

∑L
l=1 σ

2
l,L(x)

L exists and is finite.

Then,
γL(x)

D−→
L→∞

N (0, v∞(x))

As a result, SD implicitly mimics regularization techniques that adds Gaussian noise to the gradient.

The proof of Theorem 4 follows from Lemma A4 in a similar fashion to the proof of Theorem 2.
Under the assumptions of Theorem 4, training a ResNet with SD entails adding a gradient noise
γL(x) that becomes asymptotically close (in distribution) to a Gaussian random variable. The limiting
variance of this noise, given by v∞(x), depends on the input x, which arises the question of the
nature of the noise process γL(.). It turns out that under some assumptions, γL(.) converges to a
Gaussian process in the limit of large depth. We show this in the next proposition

21

A4 Further experimental results

Implementation details: Vanilla Stable ResNet is composed of identical residual blocks each
formed of a Linear and a ReLu layer. Stable ResNet110 follows [He et al., 2016, Huang et al., 2016];
it comprises three groups of residual blocks; each block consists of a sequence of layers Convolution-
BatchNorm-ReLU-Convolution-BatchNorm. We build on an open-source implementation of standard
ResNets6. We scale the blocks using a factor 1/

√
L as described in Section 3. We use the adjective

non-stable to qualify models where the scaling is not performed. The toy regression task consists of
estimating the function

fβ : x 7→ sin(βTx),

where the inputs x and parameter β are in R256, sampled from a standard Gaussian. The output is
unidimensional. CIFAR-10, CIFAR-100 contain 32-by-32 color images, representing respectively 10
and 100 classes of natural scene objects. The models are learned in 164 epochs. The Stable ResNet56
and ResNet110 use an initial learning rate of 0.01, divided by 10 at epochs 80 and 120. Parameter
optimization is conducted with SGD with a momentum of 0.9 and a batch size of 128. The Vanilla
ResNet models have an initial learning rate of 0.05, and a batch size of 256. We use 4 GPUs V100 to
conduct the experiments. In the results of Section 3 and 4, the expectations are empirically evaluated
using 500 Monte-Carlo (MC) samples. The boxplots are also obtained using 500 MC samples.

The exploding gradient of Non-Stable Vanilla ResNet: In Table 6 and Table 5, we empirically
validate Proposition 1. We compare the empirical values of

1

L− l
log q̃l(x, z) =

1

L− l
log EW,δ

‖∇ylL‖2

‖∇yLL‖2
,

and compare it to the theoretical value (in parenthesis in the tables). We consider two different
survival proportions. We see an excellent match between the theoretical value and the empirical one.

Proposition 1 coupled to the concavity of log(1 + x) implies that at a constant budget, the uniform
rate is the mode that suffers the most from gradient explosion. Figures 2a and 2b illustrate this
phenomenon. We can see that the gradient magnitude of the uniform mode can be two orders of
magnitude larger than in the linear case. However, the Stable scaling alleviates this effect; In Figure
2c we can see that none of the modes suffers from the gradient explosion anymore.

Table 3: Empirical verification of Equa-
tion (7) with Vanilla Resnet50 with
width 256 and average survival proba-
bility L̄/L = 0.8 with uniform mode.

epoch
∣∣∣L−L̄L ∣∣∣ ∣∣∣L−L̄−penL

∣∣∣ Ratio

0 0.015 0.003 ×5.7
40 0.389 0.084 ×4.6
80 0.651 0.183 ×3.5

120 0.856 0.231 ×3.7
160 0.884 0.245 ×3.6

Second order approximation of the loss: In Table 3
we empirically verify the approximation accuracy of the
loss (equation (6)). L is the loss that is minimized when
learning with SD. L̄ is the loss of the average model
yout(x;p). The penalization term is 1

2L

∑L
l=1 pl(1 −

pl)gl(W) (more details in Section 4). At initialization,
the loss of the average model accurately represents the SD
loss; the penalization term only brings a marginal correc-
tion. As the training goes, the penalization term becomes
crucial; L̄ only represents 12% of the loss after conver-
gence. We can interpret this in the light of the fact that L̄
converges to zero, whereas the penalization term does not
necessarily do. We note that the second-order approxima-
tion does not capture up to 25% of the loss. We believe
that this is partly related to the non-PSD term Γl that we discarded for the analysis.

Further empirical verification of assumption 2 of Theorem 2: Under some assumptions, The-
orem 2 guarantees the asymptotic normality of the noise γ. Further empirical verifications of
assumption 2 are shown in Fig. 6 and Fig. 7. The downtrend is consistent throughout training and
modes, suggesting that assumption 2 is realistic. In Fig. 8 we plot the distributions of the pvalues
of two normality tests: the Shapiro–Wilk (Shapiro and Wilk [1965]) test and the the D’Agostino’s
K2-tests (D’Agostino [1970]).

6https://github.com/felixgwu/img_classification_pk_pytorch

22

Further empirical verification of the Budget Hypothesis: We also compare the three modes
(Uniform, Linear and SenseMode) in CIFAR10 and CIFAR100 for Stable Resnet56. The results are
reported in Table 6. These results confirm the observations discussed in the main text.

Table 4: Empirical verification of Proposition 1 with Vanilla Resnet50 with width 512 and average
survival probability L̄/L = 0.5. Comparison between the empirical average growth rate of the
gradient magnitude against the theoretical value (between parenthesis) at initialization.

Standard Uniform Linear
`

0 2.003 (2) 1.507 (1.5) 1.433 (1.473)
10 2.002 (2) 1.499 (1.5) 1.349 (1.374)
20 2.001 (2) 1.502 (1.5) 1.248 (1.284)
30 2.002 (2) 1.504 (1.5) 1.207 (1.191)
40 2.002 (2) 1.542 (1.5) 1.079 (1.097)

Table 5: Empirical verification of Proposition 1 with Vanilla Resnet50 with width 512 and average
survival probability L̄/L = 0.7. Comparison between the empirical average growth rate of the
gradient magnitude against the theoretical value (between parenthesis) at initialization.

Standard Uniform Linear
`

0 2.001 (2) 1.705 (1.7) 1.694 (1.691)
10 2.001 (2) 1.708 (1.7) 1.633 (1.629)
20 2.001 (2) 1.707 (1.7) 1.569 (1.573)
30 2.001 (2) 1.716 (1.7) 1.555 (1.516)
40 1.999 (2) 1.739 (1.7) 1.530 (1.459)

(a) Uniform mode (b) Linear mode

Figure 6: Empirical verification of assumption 2 of Theorem 2 on Vanilla ResNet with width 256
with average survival probability L̄/L = 0.7.

23

(a) Uniform mode (b) Linear mode

Figure 7: Empirical verification of assumption 2 of Theorem 2 on Vanilla ResNet with width 256
with average survival probability L̄/L = 0.5.

Figure 8: Empirical verification of Theorem 2 on Vanilla ResNet100 with width 128 with average
survival probability L̄/L = 0.7 and uniform mode. Distribution of the p-values for two normality
tests: Shapiro and D’Agostino’s tests

Table 6: Comparison of the modes of selection of the survival probabilities with fixed budget with Stable
ResNet56.

L̄/L Uniform SenseMode Linear

0.1 24.58 ± 0.3 2.93 ± 0.4 −
0.2 13.85 ± 0.3 11.72 ± 0.3 −
0.3 10.23 ± 0.2 8.59 ± 0.4 −
0.4 8.49 ± 0.2 8.23 ± 0.3 −
0.5 8.38 ±0.2 8.25 ± 0.3 12.01 ± 0.3
0.6 7.34 ±0.3 8.17 ± 0.2 9.26 ± 0.2
0.7 8.03 ± 0.1 8.20 ± 0.1 8.30 ± 0.1
0.8 6.48 ± 0.1 7.55 ± 0.1 6.89 ± 0.2
0.9 7.16 ± 0.1 7.81 ± 0.1 6.62 ± 0.1

1 7.10± 0.1

(a) CIFAR10 with ResNet56

L̄/L Uniform SenseMode Linear

0.1 61.98 ± 0.3 60,27 ± 0.2 −
0.2 47.24 ± 0.2 45.74 ± 0.3 −
0.3 39.38 ± 0.2 37,11 ± 0.2 −
0.4 35,54 ± 0.2 33,71 ± 0.4 −
0.5 32.32 ± 0.1 31 ± 0.3 40,71 ± 0.2
0.6 29.57 ± 0.1 30.19 ± 0.3 34.13 ± 0.1
0.7 28.49 ± 0.4 29.69 ± 0.1 30.14 ± 0.1
0.8 27.23 ± 0.2 29.31 ± 0.2 28.34 ± 0.2
0.9 27.01 ± 0.1 29,45 ± 0.2 27,35 ± 0.2

1 28.93 ± 0.5

(b) Cifar100 with ResNet56

24

	An overview of signal propagation in wide neural networks
	Neural Network Gaussian Process (NNGP)
	Diagonal elements of the kernel Ql
	assumption:gradientindependence and gradient backpropagation

	Proofs
	Proof of Lemma:boundsL
	Proof of prop:explodinggradient
	Proof of lemma:maximalregularization
	Proof of thm:maximalreginit
	Proof of thm:asymptoticnormalityofnoise
	Proof of Lemma:lindebergcondition

