
A Appendix

A.1 Proofs

Proof of Lemma 3.2 (B⇤ is a �-contraction in 1-norm). First observe that for any functions f and
g,

|max
x

f(x)�max
x

g(x)| max
x

|f(x)� g(x)| (14)

To see this, suppose maxx f(x) > maxx g(x) (the other case is symmetric) and let x̃ =
argmaxx f(x). Then

|max
x

f(x)�max
x

g(x)| = f(x̃)�max
x

g(x) f(x̃)� g(x̃) max
x

|f(x)� g(x)| (15)

We also note that (14) implies

|min
x

f(x)�min
x

g(x)| max
x

|f(x)� g(x)| (16)

since minx f(x) = �maxx(�f(x)). Thus for any Q,Q
0 : S ⇥A ! R,

kB⇤
Q� B⇤

Q
0k1 = sup

s,a

|B⇤
Q(s, a)� B⇤

Q
0(s, a)|

= � sup
s,a

����� min
s02bT (s,a)

max
a0

Q(s0, a0)� min
s02bT (s,a)

max
a0

Q
0(s0, a0)

�����

 � sup
s,a

max
s02bT (s,a)

���max
a0

Q(s0, a0)�max
a0

Q
0(s0, a0)

���

 � sup
s0,a0

|Q(s0, a0)�Q
0(s0, a0)|

= �kQ�Q
0k1

Hence B⇤ is indeed a �-contraction.

A.2 Extension to stochastic dynamics

Here we outline a possible extension to stochastic dynamics, although we leave experiments with
stochastic systems for future work.

First, let us modify the definitions to accommodate stochastic dynamics:

• We introduce safety functions µ
⇡(s, a) = E⇡[

P
t

Unsafe(st) | s0 = s, a0 = a], i.e. Q
⇡

where the cost is the Unsafe indicator and � = 1. Note that if an unsafe state is reached, the
episode terminates, so the sum is always 0 or 1. In words, µ⇡(s, a) is the probability of ever
encountering an unsafe state if the agent starts from state s, takes action a, and then follows
⇡ thereafter. Similarly, let ⌫⇡(s) = Ea⇠⇡(s)[µ

⇡(s, a)], analogous to V
⇡ .

• We also define the optimal safety functions µ
⇤(s, a) = min⇡ µ⇡(s, a) and ⌫

⇤(s) =
min⇡ ⌫⇡(s).

• A state-action pair (s, a) is p-irrecoverable if µ⇤(s, a) � p. Otherwise we say that (s, a) is
p-safe.

• A state s is p-irrecoverable if ⌫⇤(s) � p, and p-safe otherwise.

Our rapid failure assumption must also be extended: There exists a horizon H and threshold q such
that if (s, a) is p-irrecoverable, then for any sequence of actions {at}1t=0 with a0 = a, the probability
of encountering an unsafe state within H steps is at least q. (Note that necessarily q p.)

A.2.1 Analysis

Let s be a p-safe state, and let a and a
0 be actions where a is p-safe but a0 is p-irrecoverable4. We

want to have eQ⇤(s, a) > eQ⇤(s, a0) so that the greedy policy w.r.t. eQ⇤, which is an optimal policy for
4Note that, as a consequence of the definitions, any action which is p0-safe with p

0
< p is also p-safe, and

similarly any action which is p0-irrecoverable with p
0
> p is also p-irrecoverable.

12

fM , will only take p-safe actions. Our strategy is to bound eQ⇤(s, a0) from above and eQ⇤(s, a) from
below, then choose C to make the desired inequality hold.

We consider a0 first, breaking it down into two cases:

• An unsafe state is reached within H steps. Since (s, a0) is p-irrecoverable, our assumption
implies that an unsafe state is reached within H steps with probability at least q. As
calculated in the original submission, the maximum return of a trajectory which is unsafe
within H steps is at most rmax(1��

H)�C�
H

1��
. Let us call this constant RC . If RC < 0, then

P(unsafe within H steps) · (max return | unsafe within H steps) qRC (17)

Otherwise, we can use the fact that any probability is bounded by 1 to obtain

P(unsafe within H steps) · (max return | unsafe within H steps) RC (18)

To satisfy both simultaneously, we can use the bound max{qRC , RC}.
• The next H states encountered are all safe. This happens with probability less than 1� q,

and the maximal return is rmax
1��

as usual.

From the reasoning above, we obtain

eQ⇤(s, a0) P(unsafe within H steps) · (max return | unsafe within H steps)+ (19)
P(safe for H steps) · (max return | safe for H steps) (20)

 max{qRC , RC}+ (1� q)
rmax

1� �
(21)

Now consider a. Since (s, a) is p-safe,

eQ⇤(s, a) � P(unsafe) · (min reward | unsafe) + P(safe) · (min reward | safe) (22)

� p

✓
�C

1� �

◆
+ (1� p)

rmin

1� �
(23)

=
�pC + (1� p)rmin

1� �
(24)

Note that the second step assumes C � 0. (We will enforce this constraint when choosing C.)

To ensure eQ⇤(s, a) > eQ⇤(s, a0), it suffices to choose C so that the following inequalities hold
simultaneously:

�pC + (1� p)rmin

1� �
> qRC + (1� q)

rmax

1� �
(25)

�pC + (1� p)rmin

1� �
> RC + (1� q)

rmax

1� �
(26)

Multiplying both sides of (25) by 1� � gives the equivalent

�pC + (1� p)rmin > qrmax(1� �
H)� qC�

H + (1� q)rmax (27)

Rearranging, we need

C >
rmax(1� q�

H)� (1� p)rmin

q�H � p
=: ↵1 (28)

Similarly, multiplying both sides of (26) by 1� � gives the equivalent

�pC + (1� p)rmin > rmax(1� �
H)� C�

H + (1� q)rmax (29)

Rearranging, we need

C >
rmax(2� q � �

H)� (1� p)rmin

�H � p
=: ↵2 (30)

All things considered, the inequality eQ⇤(s, a) > eQ⇤(s, a0) holds if we set

C > max{↵1,↵2, 0} (31)

13

A.3 Implementation details and hyperparameters

In this appendix we provide additional details regarding the algorithmic implementation, including
hyperparameter selection.

Here are some additional details regarding the (S)MBPO implementation:

• All neural networks are implemented in PyTorch [Paszke et al., 2019] and optimized using
the Adam optimizer [Kingma and Ba, 2014] and batch size 256.

• The dynamics models use a branched architecture, where a shared trunk computes an
intermediate value z = h✓1([s, a]) which is then passed to branches µ✓2(z) and �✓3(z). All
three networks are implemented as multi-layer perceptrons (MLPs) with ReLU activation
and 200 hidden width. The h✓ network has 3 layers (with ReLU on the final layer too),
while µ✓2 and �✓3 each have one hidden layer (no ReLU on final layer).

• Every 250 environment steps, we update the dynamics models, taking 2000 updates of the
Adam optimizer.

• The networks for the Q functions and policies all have two hidden layers of width 256.
• We use a learning rate of 3e-4 for the Q function, 1e-4 for the policy, and 1e-3 for the model.
• Following Fujimoto et al. [2018], we store two copies of the weights for Q (and Q̄), trained

the same way but with different initializations. When computing the target Q̄ in equation
(10) and when computing Q in equation (13), we take the minimum of the two copies’
predictions. When computing the Q in equation (10), we compute the loss for both copies
of the weights and add the two losses.

• When sampling batches of data from D [bD, we take 10% of the samples from D and the
remainder from bD.

The model-free algorithms have their own hyperparameters, but all share �safe and ✏safe. Following
Thananjeyan et al. [2020], we tune �safe and ✏safe for recovery RL first, then hold those fixed for all
algorithms and tune any remaining algorithm-specific hyperparameters. All these hyperparameters
are given in the tables below:

Name Which algorithm(s)? Choices hopper cheetah ant humanoid
�safe all 0.5, 0.6, 0.7 0.6 0.5 0.6 0.6
✏safe all 0.2, 0.3, 0.4 0.3 0.2 0.2 0.4
⌫ LR 1, 10, 100, 1000 1000 1000 1 1
⌫ SQRL 1, 10, 100, 1000 1 1000 10 1
� RCPO 1, 10, 100, 1000 10 10 1 10

We run our experiments using a combination of NVIDIA GeForce GTX 1080 Ti, TITAN Xp, and
TITAN RTX GPUs from our internal cluster. A single run of (S)MBPO takes as long as 72 hours on
a single GPU.

14

	Introduction
	Background
	Method
	Reward penalty framework
	Extension to model-based rollouts
	Practical algorithm

	Experiments
	Tasks
	Algorithms
	Results

	Related Work
	Conclusion
	Appendix
	Proofs
	Extension to stochastic dynamics
	Analysis

	Implementation details and hyperparameters

