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1 The setting of computation resources1

In ablation studies, the MST with 1024 images is trained in 128 AMD DCUs that are publicly2

available in Sugon Cloud. For verifying the generality of the results, the pre-trained model is used to3

validate downstream experiments for 32 Nvidia Tesla V100 GPUs. Meanwhile, the same random4

seed is set for fair comparison. Also, we report the average result after running multiple experiments.5

For 100 epochs, the standard error of linear probing is 0.2236%. For 300 epochs, the standard error6

of linear probing is 0.1581%.7

2 Data augmentation8

The image augmentation pipeline consists of the following transformations: random resized cropping,9

horizontal flipping, color jittering, grayscale conversion, Gaussian blurring, solarization, and multi-10

crop. The random resized cropping and multi-crop transformations are always applied, while the rest11

of transformations are applied randomly, with some probability. This probability is different for the12

two distorted views in the blurring and solarization transformations. We use the same augmentation13

parameters as BYOL besides multi-crop. The multi-crop follows SwAV [1] and DINO [2]. Each14

input image with 224× 224 is transformed twice to produce the two distorted views.15

3 BatchNorm16

Following [3, 4, 5], we adopt SyncBN as our default BatchNorm. The running mean and running17

variance of BN of MST only are updated from different images in the same batch while SimCLR18

[6] is updated from total images in teacher and student batches. The two kinds of BN influence the19

gradient variance. Hence, the two implementations should lead to different results. Meanwhile, the20

running mean and running variance of BN are only updated from the global views when our method21

adopts masked self-supervised Transformer.22

4 k-NN classification23

According to Wu et al. [7], we evaluate the quality of features with a simple weighted k Nearest24

Neighbor classifier. We freeze the parameters of pre-trained model and extract the features of class25

embedding for the train and validation dataset. As shown in Table 1, we evaluate different values for26

k and find that the setting of 10 is consistently leading to the best accuracy across our runs. More27

importantly, we evaluate Top-1 accuracy in the validation dataset.28
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Table 1: The setting of k. We report Top-1 accuracy on ImageNet validation dataset by using 300-epoch
pre-trained DeiT-S model.

Method Architecture epoch k k-NN Top-1 (%)

Ours DeiT-S 300

10 75.0
20 74.8

100 72.9
200 71.8

Algorithm 1 Pseudo code of MST in a PyTorch-like style.

# f_s: backbone + projection head
# f_t: backbone + projection head
# g: decoder
# m: momentum coefficient
# temp: temperature coefficient
# O_i: output class tokens
# Atten_i: output self-attention map
# Res_i: the input tokens of decoder
# v_1: the coefficient of restoration task
# v_2: the coefficient of basic instance discrimination task

for x in loader: # load a batch x with B samples
x1, x2 = augment(x), augment(x) # random data augmentation

with torch.no_grad():
O_t1, _, Atten_1, O_t2, _, Atten_2 = f_t(x1), f_t(x2)

O_s1, R_1, _, O_s2, R_2, _ = f_s(x1, Atten_1), f_s(x2,Atten_2)
Re_1, Re_2 = g(R_1), g(R_2)
loss1 = 0.5 * (L1_loss(Re_1, x1) + L1_loss(Re_2,x2))
loss2 = 0.5 * (Loss(O_t1, O_s2) + Loss(O_t2, O_s1))
loss = v_1 * loss1 + v_2 * loss2
loss.backward()

update(f_s)
f_t = m * f_t + (1 - m) * f_s
update(m) # update momentum coefficient

def L1_Loss(p,q):
loss = abs(p-q).sum().mean()

return loss

def Loss(O_t,O_s):
O_t = softmax(O_t/temp,dim = 1)
O_s = softmax(O_s/temp,dim = 1)
loss = -(O_t * log(O_s)).sum(dim=1).mean()

return loss

5 Linear probing29

Following the popular setting of self-supervised learning, we evaluate the representation quality by30

linear probing. After self-supervised pre-training, we remove the MLP heads and train a supervised31

linear classifier on frozen features. We use SGD optimizer, with a batch size of 1024, weight decay32

of 0 and learning rate of 0.00024 during 100 epochs on ImageNet training dataset, using only random33

resized cropping and flipping augmentation. Meanwhile, we evaluate single-crop Top-1 accuracy in34

the validation dataset. For the linear probing of DeiT-S, we adopt the class tokens of last layer as the35

input, following the common practice. However, DINO [2] concatenates the late few blocks as the36

input to the linear classifier. For fair comparison, we adopt the linear probing of DINO as the final37

result while reporting common linear probing on ablation studies. The results can be observed by38

Table 2.39
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Table 2: Comparison of different strategies of linear probing. We report Top-1 accuracy on ImageNet
validation dataset by using 100-epoch pre-trained DeiT-S model. † adopts the linear probing of DINO.

Method Architecture epoch Linear Top-1 (%) k-NN Top-1 (%)

Ours DeiT-S 100 75.0 72.1
Ours † 73.9 72.1

6 Impact of longer training40

From Table 3, we observe that longer training improves the performance of our method with DeiT-S41

regardless of the kind of linear probing. This phenomenon is consistent with previous self-supervised42

learning methods.43

Table 3: Impact of longer training. † adopts the linear probing of DINO.

Method Architecture epoch Linear (%) k-NN (%)

Ours DeiT-S 100 73.9 72.1
Ours 300 76.3 75.0

Ours †
DeiT-S 100 75.0 72.1

Ours † 300 76.9 75.0

7 Implementation pseudo code44

The complete algorithm of our method is shown as Alg. 1. Our model is optimized by AdamW45

[8] with learning rate 2 × 10−3 and batch size 1024. The initial weight decay is set to be 0.04.46

After warmup [9] in the first 10 epochs, the learning rate follows a cosine decay schedule [10].47

The model uses multi-crop similar to [1] and data augmentations similar to [4]. The setting of48

momentum, temperature coefficient, and weight decay follows [2]. The coefficient λ1 of basic49

instance discrimination task is set as 1.0 while the restoration task λ2 is set as 0.6.50

Table 4: Differences with BERT.
Mask strategy Mask replacement style Reconstructing DINO loss Linear (%)

Random BERT Masked tokens No 61.0
Random BERT Masked tokens Yes 71.9

Our BERT Original image Yes 73.5
Our Our Original image Yes 73.9

8 Differences with BERT51

In Table 4, we conduct the experiment by using pure MLM with DeiT-S under 100 epochs, the result52

is about 40% with the same experimental configuration. Then we further adjust its learning rate53

and other hyperparameters, the best result is only 61%, which is far lower than that of the DINO by54

10.6% (71.6% in Table 6 of our paper) and also lower than the vanilla supervised result by 7.7% (the55

vanilla supervised result is 68.7%). It shows the pure MLM method may be not suitable for computer56

vision tasks. Moreover, We experiment with the contrastive loss + BERT solution (that’s DINO+pure57

MLM), the linear result is 71.9%. Our method outperforms its result by 2.0% (73.9%). The result58

proves our method is better than the original MLM method. Meanwhile, we further conduct the59

experiment by only replacing the [mask] token with the strategy of pure MLM for our method, the60

linear result is 73.5%, which also behinds our result. These results fully demonstrate the better setting61

of MLM for computer vision and further highlight the technical contributions of our paper.62
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9 The impact of the random mask strategy with different sampling ratios63

In the first line of Table 5 of our paper, we already show the results of the random mask strategy with64

different sampling ratios. We also have tried a small p (0.01) with random masking, the result without65

BN is 71.1%. When the p is smaller, the performance will be better. The result without BN is best66

(72.6%, contrastive loss + restore loss) when p is set to 0.67

10 The impact of loss weight68

Empirically, we set the restoration coefficient λ2 to 0.6, which makes the contrastive loss and the69

restoration loss roughly equally weighted. We have also tried several different settings of λ2 (e.g.,70

0.2, 0.4, 0.6, 0.8), the result is 73.7%, 73.5%, 73.9% and 73.6% respectively. It can be observed that71

the results are also insensitive to λ2, and the best performance is achieved when the two losses are72

equally weighted.73

11 Masking is done after the linear projection74

The goal of linear projection is to map the image patches into tokens/embeddings. Following the75

setting of MLM, the masking (token) strategy should be done after linear projection.76

12 Visualization of the attention maps77

As shown in Figure 1, we provide the attention maps of supervised and our method. These images78

consist of original images, attention maps of supervised method, and attention maps of our method.79

We observe that the visualization of attention maps of our method is clearer than the supervised.80

13 Video of attention maps81

Similarly, we provide the video of attention maps in supplementary material. The video is from82

https://www.youtube.com/watch?v=TZn7oWMHD90&t=12s.83
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Figure 1: Comparison of the attention map of supervised and our method. Description of images from left to
right: (a) the input image, (b) attention map obtained by supervised method, (c) attention map obtained by our
method.
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