Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals

Lang Liu1 \hspace{1cm} Krishna Pillutla2 \hspace{1cm} Sean Welleck2,3 \\
Sewoong Oh2 \hspace{1cm} Yejin Choi2,3 \hspace{1cm} Zaid Harchaoui1

1 Department of Statistics, University of Washington \\
2 Paul G. Allen School of Computer Science & Engineering, University of Washington \\
3 Allen Institute for Artificial Intelligence

Abstract

The spectacular success of deep generative models calls for quantitative tools to measure their statistical performance. Divergence frontiers have recently been proposed as an evaluation framework for generative models, due to their ability to measure the quality-diversity trade-off inherent to deep generative modeling. We establish non-asymptotic bounds on the sample complexity of divergence frontiers. We also introduce frontier integrals which provide summary statistics of divergence frontiers. We show how smoothed estimators such as Good-Turing or Krichevsky-Trofimov can overcome the missing mass problem and lead to faster rates of convergence. We illustrate the theoretical results with numerical examples from natural language processing and computer vision.

1 Introduction

Deep generative models have recently taken a giant leap forward in their ability to model complex, high-dimensional distributions. Recent advances are able to produce incredibly detailed and realistic images [34, 51, 32], strikingly consistent and coherent text [50, 66, 6], and music of near-human quality [16]. The advances in these models, particularly in the image domain, have been spurred by the development of quantitative evaluation tools which enable a large-scale comparison of models, as well as diagnosing of where and why a generative model fails [55, 38, 27, 54, 31].

Divergence frontiers were recently proposed by Djolonga et al. [18] to quantify the trade-off between quality and diversity in generative modeling with modern deep neural networks [54, 37, 59, 44, 49]. In particular, a good generative model must not only produce high-quality samples that are likely under the target distribution but also cover the target distribution with diverse samples.

While this framework is mathematically elegant and empirically successful [37, 49], the statistical properties of divergence frontiers are not well understood. Estimating divergence frontiers from data for large generative models involves two approximations: (a) joint quantization of the model distribution and the target distribution into discrete distributions with quantization level \(k \), and (b) statistical estimation of the divergence frontiers based on the empirical estimators of the quantized distributions.

Djolonga et al. [18] argue that the quantization often introduces a positive bias, making the distributions appear closer than they really are; while a small sample size can result in a pessimistic estimate of the divergence frontiers. The latter effect is due to the missing mass of the samples, causing the two distributions to appear farther than they really are because the samples do not cover some parts of the distributions. The first consideration favors a large \(k \), while the second favors a small \(k \).
We show how smoothed distribution estimators, such as the add-constant estimator and the Good-
Turing estimator, improve the estimation accuracy in Sec. 4. Finally, we demonstrate in Sec. 5,
how many samples are needed to achieve a desired estimation accuracy, or in other words, what is
the sample complexity of the estimation procedure; (b) Given a sample size budget, how to choose
the quantization level to balance the errors induced by the two approximations; (c) Can we have
estimators better than the naïve empirical estimator.

Outline. We review the definitions of divergence frontiers and propose a novel statistical summary in
Sec. 2. We establish non-asymptotic bounds for the estimation of divergence frontiers in Sec. 3, and
discuss the choice of the quantization level by balancing the errors induced by the two approximations.
We show how smoothed distribution estimators, such as the add-constant estimator and the Good-
Turing estimator, improve the estimation accuracy in Sec. 4. Finally, we demonstrate in Sec. 5,
through simulations on synthetic data as well as generative adversarial networks on images and
transformer-based language models on text, that our bounds exhibit the correct dependence of the
estimation error on the sample size n and the support size k.

Related work. The most widely used metrics for generative models include Inception Score [55],
Fréchet Inception Distance [27], and Kernel Inception Distance [4]. The former two are extended to
conditional generative models in [2]. They summarize the performance by a single value and thus
cannot distinguish different failure cases, i.e., low quality and low diversity. Motivated by this
limitation, Sajjadi et al. [54] propose a metric to evaluate the quality of generative models using
two separate components: precision and recall. This formulation is extended in [59] to arbitrary
probability measures using a density ratio estimator, while alternative definitions based on non-
parametric representations of the manifolds of the data were proposed in [37]. These notions are
generalized by the divergence frontier framework of Djolonga et al. [18]. Pillutla et al. [49] propose
MAUVE, an area-under-the-curve summary based on divergence frontiers for neural text generation.
They find that MAUVE correlates well with human judgements on how close the machine generated
text and the human text are.

Another line of related work is the estimation of functionals of discrete distributions; see [62] for an
overview. In particular, estimation of KL divergences has been studied by [8, 67, 7, 24] in both fixed
and large alphabet regimes. These results focus on the expected KL risks and require additional
assumptions on the two distributions such as boundedness of density ratio which is not needed in our
results. Recently, Sreekumar et al. [60] investigated a modern way to estimate f-divergences using
neural networks. On the practical side, there is a new line of successful work that uses deep neural
networks to find data-dependent quantizations for the purpose of estimating information theoretic
quantities from samples [53, 23].

Notation. Let $\mathcal{P}(\mathcal{X})$ be the space of probability distributions on some measurable space \mathcal{X}. For
any $P, Q \in \mathcal{P}(\mathcal{X})$, let $\text{KL}(P \| Q)$ be the Kullback-Leibler (KL) divergence between P and Q. For
$\lambda \in (0, 1)$, we define the interpolated KL divergence as
$\text{KL}_{\lambda}(P \| Q) := \text{KL}(P \| \lambda P + (1 - \lambda)Q)$. For a partition $\mathcal{S} := \{S_1, \ldots, S_k\}$ of \mathcal{X}, we define $P_{\mathcal{S}}$ the quantized version of P so that $P_{\mathcal{S}} \in \mathcal{P}(\mathcal{S})$ with $P_{\mathcal{S}}(S_i) = P(S_i)$ for any $i \in [k] := \{1, \ldots, k\}$.
2 Divergence frontiers

Divergence frontiers compare two distributions P and Q using a frontier of statistical divergences. Each point on the frontier compares the individual distributions against a mixture of the two. By sweeping through mixtures, the curve interpolates between measurements of two types of costs. Fig. 1 illustrates divergence frontiers, which we formally introduce below.

Evaluating generative models via divergence frontiers. Consider a generative model $Q \in \mathcal{P}(\mathcal{X})$ which attempts to model the target distribution $P \in \mathcal{P}(\mathcal{X})$. It has been argued in [54, 37] that one must consider two types of costs to evaluate Q with respect to P: (a) a type I cost (loss in precision), which is the mass of Q that has low or zero probability mass under P, and (b) a type II cost (loss in recall), which is the mass of P that Q does not adequately capture.

Suppose P and Q are uniform distributions on their supports, and R is uniform on the union of their supports. Then, the type I cost is the mass of $\text{Supp}(Q) \setminus \text{Supp}(P)$, or equivalently, the mass of $\text{Supp}(R) \setminus \text{Supp}(P)$. We measure this using the surrogate $\text{KL}(Q \| R)$, which is large if there exists a such that $Q(a)$ is large but $R(a)$ is small. Likewise, the type II cost is measured by $\text{KL}(P \| R)$. When P and Q are not constrained to be uniform, it is not clear what the measure R should be. Djolonga et al. [18] propose to vary R over all possible probability measures and consider the Pareto frontier of the multi-objective optimization $\min_R (\text{KL}(P \| R), \text{KL}(Q \| R))$. This leads to a curve called the divergence frontier, and is reminiscent of the precision-recall curve in binary classification. See [15, 13, 14, 19] and references therein on trade-off curves in machine learning.

Formally, it can be shown that the divergence frontier $\mathcal{F}(P, Q)$ of probability measures P and Q is carved out by mixtures $R_\lambda = \lambda P + (1 - \lambda)Q$ for $\lambda \in (0, 1)$ (cf. Fig. 1). It admits the closed-form

$$\mathcal{F}(P, Q) = \left\{ (\text{KL}(P \| R_\lambda), \text{KL}(Q \| R_\lambda)) : \lambda \in (0, 1) \right\}.$$

Practical computation of divergence frontiers. In practical applications, P is a complex, high-dimensional distribution which could either be discrete, as in natural language processing, or continuous, as in computer vision. Likewise, Q is often a deep generative model such as GPT-3 for text and GANs for images. It is infeasible to compute the divergence frontier $\mathcal{F}(P, Q)$ directly because we only have samples from P and the integrals or sums over Q are intractable.

Therefore, the recipe used by practitioners [54, 18, 49] has been to (a) jointly quantize P and Q over a partition $\mathcal{S} = \{S_i\}_{i=1}^k$ of \mathcal{X} to obtain discrete distributions $P_\mathcal{S} = (P(S_i))_{i=1}^k$ and $Q_\mathcal{S} = (Q(S_i))_{i=1}^k$, (b) estimate the quantized distributions from samples to get $\hat{P}_\mathcal{S}$ and $\hat{Q}_\mathcal{S}$, and (c) compute $\mathcal{F}(\hat{P}_\mathcal{S}, \hat{Q}_\mathcal{S})$. In practice, the best quantization schemes are data-dependent transformations such as k-means clustering or lattice-type quantization of dense representations of images or text [53].

Statistical summary of divergence frontiers. In the minimax theory of hypothesis testing, where the goal is also to study two types of errors (yet different from the ones considered here), it is common to theoretically analyze their linear combination; see, e.g., [30, Sec. 1.2] and [9, Thm. 7]. In the same spirit, we consider a linear combination of the two costs, quantified by the KL divergences,

$$\mathcal{L}_\lambda(P, Q) := \lambda \text{KL}(P \| R_\lambda) + (1 - \lambda)\text{KL}(Q \| R_\lambda).$$

Note that R_λ is exactly the minimizer of the linearized objective $\lambda \text{KL}(P \| R) + (1 - \lambda)\text{KL}(Q \| R)$ according to [18, Props. 1 and 2]. \mathcal{L}_λ is also known as the λ-skew Jensen-Shannon Divergence [46].

The linearized cost \mathcal{L}_λ depends on the choice of λ. To remove this dependency, we define a novel integral summary, called the frontier integral $\text{FI}(P, Q)$ of two distributions P and Q as

$$\text{FI}(P, Q) := 2 \int_0^1 \mathcal{L}_\lambda(P, Q) \, d\lambda.$$

We can interpret the frontier integral as the average linearized cost over $\lambda \in (0, 1)$. While the length of the divergence frontier can be unbounded as shown in Appx. H, the frontier integral is always bounded in $[0, 1]$. Moreover, it is a symmetric divergence with $\text{FI}(P, Q) = 0$ iff $P = Q$ (Appx. B). In practice, it can be estimated using the same recipe as the divergence frontier.

Error decomposition. In Sec. 3, we decompose the error in estimating the frontier integral into two components: the statistical error of estimating the quantized distribution and the quantization
Furthermore, if the support size with A combination of these two bounds sheds light on the optimal choice of the quantization level. In Theorem 1.

The distribution is supported on k sample of size n.

Good-Turing estimator has been widely used in language modeling [33, 12, 11] and studied in before, in other words, is missing in the current sample; see Fig. 2 (left) for an illustration. The estimate the probability that a new observation drawn from a fixed distribution has never appeared first studied by Good and Turing [21], where the eponymous Good-Turing estimator was proposed to Before we discuss the bounds in Thm. 1, let us introduce the missing mass problem. This problem was particular, with probability at least $\frac{\alpha}{\sqrt{n}}$ where α reflects the smoothness of FI. The dependency on α requires λ to have a finite support and a short tail. However, in many real-world applications, the distributions can have a finite support and a short tail [11, 64]. By considering the statistical error, we use a different treatment for the masses that appear in the sample and the ones that never appear (i.e., the missing mass). We obtain a high probability bound as well as a bound for its error. Our goal is to derive the rate of convergence for the overall estimation error. To control the statistical error, we focus on FI here due to space constraints. For $P, Q \in \mathcal{P}(X)$, let $\{X_i\}_{i=1}^n$ and $\{Y_i\}_{i=1}^n$ be i.i.d. samples from P and Q, respectively, and denote by \hat{P}_n and \hat{Q}_n the respective empirical measures of P and Q. The two samples are assumed to have the same size n for simplicity. We denote by C an absolute constant which can vary from line to line. The precise statements and proofs can be found in the Appendix.

Sample complexity for the frontier integral. We are interested in deriving a non-asymptotic bound for the absolute error of the empirical estimator, i.e., $|\text{FI}(\hat{P}_n, \hat{Q}_n) - \text{FI}(P, Q)|$. When both P and Q are supported on a finite alphabet with k items, a natural strategy is to exploit the smoothness properties of FI, giving a naive upper bound $O(L/\sqrt{k/n})$ on the absolute error, where $L = \log 1/p_*$ with $p_* = \min_{a \in \text{Supp}(P)} P(a)$ reflecting the smoothness of FI. The dependency on p_* requires P to have a finite support and a short tail. However, in many real-world applications, the distributions can either be supported on a countable set or have long tails [11, 64]. By considering the missing mass in the sample, we are able to obtain a high probability bound that is independent of p_*. In this section, we summarize our main theoretical results. The results hold for both the linearized cost L_λ and the frontier integral λ. Statements and proofs can be found in the Appendix. For any $\delta \in (0, 1)$, it holds that, with probability at least $1 - \delta$,

$$|\text{FI}(\hat{P}_n, \hat{Q}_n) - \text{FI}(P, Q)| \leq C \left[\sqrt{\frac{\log 1/\delta}{n}} + \alpha_n(P) + \alpha_n(Q) \right] \log n + \beta_n(P) + \beta_n(Q),$$

(3)

where $\alpha_n(P) = \sum_{a \in X} \sqrt{n^{-1}P(a)}$ and $\beta_n(P) = E\left[\sum_{a : \hat{P}_n(a) = 0} P(a) \max \{1, \log (1/P(a))\} \right]$. Furthermore, if the support size $k < \infty$, then $\alpha_n(P) \leq \sqrt{k/n}$ and $\beta_n(P) \leq k \log n/n$. In particular, with probability at least $1 - \delta$,

$$|\text{FI}(\hat{P}_n, \hat{Q}_n) - \text{FI}(P, Q)| \leq C \left[\sqrt{\frac{\log 1/\delta}{n}} + \sqrt{\frac{k}{n}} + \frac{k}{n} \right] \log n.$$

(4)

Before we discuss the bounds in Thm. 1, let us introduce the missing mass problem. This problem was first studied by Good and Turing [21], where the eponymous Good-Turing estimator was proposed to estimate the probability that a new observation drawn from a fixed distribution has never appeared before, in other words, is missing in the current sample; see Fig. 2 (left) for an illustration. The Good-Turing estimator has been widely used in language modeling [33, 12, 11] and studied in theory [41, 48, 47]. An inspiring result coming from this line of work is that the missing mass in a sample of size n concentrates around its expectation [40], which itself decays as $O(k/n)$ when the distribution is supported on k items [3].

Figure 2: The empirical estimator with missing mass and the Krichevsky-Trofimov estimator.
There are several merits to Thm. 1. First, (3) holds for any distributions with a countable support. Second, it does not depend on p_μ and is adapted to the tail behavior of P and Q. For instance, if P is defined as $P(a) \propto a^{-2}$ for $a \in [k]$, then $\alpha_n(P) \propto (\log k)/\sqrt{n}$, which is much better than $\sqrt{k/n}$ in (4) in terms of the dependency on k. This phenomenon is also demonstrated empirically in Sec. 5. Third, it captures a parametric rate of convergence, i.e., $O(n^{-1/2})$, up to a logarithmic factor. In fact, this rate is not improvable in a related problem of estimating $KL(P||Q)$, even with the assumption that P/Q is bounded [7]. The bound in (4) is a distribution-free bound, assuming k is finite. Note that it also gives an upper bound on the sample complexity by setting the right hand side of (4) to be ϵ and solving for n, this is roughly $O((\sqrt{\log 1/\delta} + \sqrt{K})^2/\epsilon^2)$.

The proof of Thm. 1 relies on two new results: (a) a concentration bound around $E[FI(\hat{P}_n, \hat{Q}_n)]$, which can be obtained by McDiarmid’s inequality, and (b) an upper bound for the statistical error, i.e., $E[FI(\hat{P}_n, \hat{Q}_n) - FI(P, Q)]$, which is upper bounded by

$$O(\|\alpha_n(P) + \alpha_n(Q)\| \log n + \beta_n(P) + \beta_n(Q)) \leq O((\sqrt{k/n} + k/n) \log n).$$

The concentration bound gives the term $\sqrt{n^{-1}} \log 1/\delta$. The statistical error bound is achieved by splitting the masses of P and Q into two parts: one that appears in the sample and one that never appears. The first part can be controlled by a Lipschitz-like property of the frontier integral, leading to the term $\alpha_n(P) + \alpha_n(Q)$, and the second part, $\beta_n(P) + \beta_n(Q)$, falls into the missing mass framework. In addition, the rate k/n for β_n shown here matches the rate for the missing mass.

Statistical consistency of the divergence frontiers. While Thm. 1 establishes the consistency of the frontier integral, it is also of great interest to know whether the divergence frontier itself can be consistently estimated. In fact, similar bounds hold for the worst-case error of $FI(P_n, Q_n)$.

Corollary 2. Under the same assumptions as in Thm. 1, the bounds in (3) and (4) hold for

$$\sup_{\lambda \in [\lambda_0, 1-\lambda_0]} \left\| (KL(\hat{P}_n||R_\lambda), KL(\hat{Q}_n||R_\lambda)) - (KL(P||R_\lambda), KL(Q||R_\lambda)) \right\|_1,$$

where $R_\lambda := \lambda \hat{P}_n + (1-\lambda)\hat{Q}_n$, with C replaced by C/λ_0 for any $\lambda_0 \in (0, 1)$. In particular, if λ_0 is chosen as $\lambda_n = o(1)$ and $\lambda_n = \omega(\sqrt{k/n} \log n)$, then the expected worst-case error above converges to zero at rate $O(\lambda_n^{-1}\sqrt{k/n} \log n)$.

The truncation in Cor. 2 is necessary without imposing additional assumptions, since $KL(P||R_\lambda)$ is close to $KL(P||Q)$ for small λ and it is known that the minimax quadratic risk of estimating the KL divergence over all distributions with k bins is always infinity [7].

Upper bound for the quantization error. Recall from Sec. 2 that computing the divergence frontiers in practice usually involves a quantization step. Since every quantization will inherently introduce a positive bias in the estimation procedure, it is desirable to control the error, which we call the quantization error, induced by this step. We show that there exists a quantization scheme with error proportional to the inverse of its level. We implement this scheme and empirically verify this rate in Appx. G; certain regimes appear to show even faster convergence.

Let \mathcal{X} be an arbitrary measurable space and S be a partition of \mathcal{X}. The quantization error of S is the difference $|FI(P_S, Q_S) - FI(P, Q)|$. It can be shown that there exists a distribution-dependent partition S_k with level $|S_k| = k$ whose quantization error is no larger than the inverse of its level, i.e.,

$$|FI(P, Q) - FI(P_{S_k}, Q_{S_k})| \leq Ck^{-1}.$$

(6)
The key idea behind the construction of this partition is visualized in Fig. 3 (middle). Combining this bound with the bounds in (5) leads to the following bound for the total estimation error.

Theorem 3. Assume that S_k is a partition of \mathcal{X} such that $|S_k| = k \geq 2$. Then the total error

$$
\mathbb{E} \left[\text{FI}(\hat{P}_{S_k,n}, \hat{Q}_{S_k,n}) - \text{FI}(P, Q) \right]
$$

is upper bounded by

$$
C \left[(\alpha_n(P) + \alpha_n(Q)) \log n + \beta_n(P) + \beta_n(Q) + |\text{FI}(P, Q) - \text{FI}(P_{S_k}, Q_{S_k})| \right].
$$

(7)

Moreover, if the quantization error satisfies the bound in (6), we have

$$
\mathbb{E} \left[\text{FI}(\hat{P}_{S_k,n}, \hat{Q}_{S_k,n}) - \text{FI}(P, Q) \right] \leq C \left[\sqrt{\frac{k}{n}} + \frac{k}{n} \right] \log n + 1/k.
$$

(8)

Based on the bound in (8), a good choice of k is $\Theta(n^{1/3})$ which balances between the two types of errors. We illustrate in Sec. 5 that this choice works well in practice. This balancing is enabled by the existence of a good quantizer with a distribution-free bound in (6). In practice, this suggests a data-dependent quantizer using nonparametric density estimators. However, directions such as kernel density estimation [42, 26, 28] and nearest-neighbor methods [1] have not met empirical success, as they suffer from the curse of dimensionality common in nonparametric estimation. In particular, [63, 57, 58] propose quantized divergence estimators but only prove asymptotic consistency, and little progress has been made since then. On the other hand, modern data-dependent quantization techniques based on deep neural networks can successfully estimate properties of the density from high dimensional data [53, 23]. Theoretical results for those techniques could complement our analysis. We leverage these powerful methods to scale our approach on real data in Sec. 5.

4 Towards better estimators and interpolated f-divergences

Smoothed distribution estimators. When the support size k is large, the statistical performance of the empirical estimator considered in the previous section can be improved. To overcome this challenge, practitioners often use more sophisticated distribution estimators such as the Good-Turing estimator [21, 47] and add-constant estimators [35, 5]. We focus on the add-constant estimator defined below and state here its estimation error when it is applied to estimate the frontier integral from data. Again, this result also holds for the linearized cost L_λ. We investigate and compare the performance of various distribution estimators in Sec. 5.

For notational simplicity, we assume that P and Q are supported on a common finite alphabet with size $k < \infty$. Note that this is true for the quantized distributions P_{S_k} and Q_{S_k}. For any constant $b > 0$, the add-constant estimator of P is defined as $\hat{P}_{n,b}(a) = (N_a + b)/(n + kb)$ for each $a \in \text{Supp}(P)$, where $N_a = |\{i : X_i = a\}|$ is the number of times a appears in the sample.

Thanks to the smoothing, there is no mass missing in the add-constant estimator. This effect is illustrated for the Krichevsky-Trofimov (add-1/2) estimator in Fig. 2. As a result, we can directly utilize the smoothness properties of the frontier integral to get the following bound.

Proposition 4. Under the same assumptions as in Thm. 3, we have

$$
\mathbb{E} \left[\text{FI}(\hat{P}_{S_k,n,b}, \hat{Q}_{S_k,n,b}) - \text{FI}(P, Q) \right]
$$

$$
\leq C \left[\left(\frac{n(\alpha_n(P) + \alpha_n(Q))}{n + bk} + \gamma_{n,k}(P) + \gamma_{n,k}(Q) \right) \log (n/b + k) + \frac{1}{k} \right],
$$

(9)

where $\gamma_{n,k}(P) = (n + bk)^{-1}bk \sum_{a \in \mathcal{X}} |P(a) - 1/k|$. It can be further upper bounded by

$$
\frac{\sqrt{n} + bk}{n + bk} \log (n/b + k) + \frac{1}{k} \text{ up to a multiplicative constant.}
$$

Let us compare the bounds in Prop. 4 with the ones in Thm. 3. For the distribution-dependent bound, the term $\alpha_n(P) \log n$ in (7) is improved by a factor $n/(n + bk)$ in (9). The missing mass term $\beta_n(P)$ is replaced by the total variation distance between P and the uniform distribution on $[k]$ with a factor $bk/(n + bk)$. The improvements in both two terms are most significant when k/n is large. As for the distribution-free bound, when k/n is small, the bound in Prop. 4 scales the same as the one in (8); when k/n is large (i.e., bounded away from 0 or diverging), it scales as $O(\log n + \log (k/n) + k^{-1})$ while the one in (8) scales as $O(k \log n/k + k^{-1})$. Given the improvement, it would be an interesting venue for future work to consider adaptive estimators in the spirit of [20].
We start by reviewing the definition of k with the convention that f is approximately Lipschitz and cannot vary too fast; (b) the l_1-divergence, defined analogously as the interpolated KL divergence, satisfies these conditions.

Generalization to f-divergences. Estimation of the χ^2 divergence is useful for variational inference [17] and GAN training [39, 61]. More generally, estimating f-divergences from samples is a fundamental problem in machine learning and statistics [45, 29, 10, 52]. We extend our previous results to estimating general f-divergences (which satisfy some regularity assumptions) using the same two-step procedure of quantization and estimation of multinomial distributions from samples.

We start by reviewing the definition of f-divergences. Let $f : (0, \infty) \rightarrow \mathbb{R}$ be a nonnegative and convex function with $f(1) = 0$. Let $P, Q \in \mathcal{P}(\mathcal{X})$ be dominated by some measure $\mu \in \mathcal{P}(\mathcal{X})$ with densities p and q, respectively. The f-divergence generated by f is defined as

$$D_f(P||Q) = \int_X q(x) f \left(\frac{p(x)}{q(x)} \right) d\mu(x),$$

with the convention that $f(0) = f(0^+)$ and $0f(p/0) = pf^*(0)$, where $f^*(0) = f^*(0^+) \in [0, \infty]$ for $f^*(t) = tf(1/t)$. We call f^* the conjugate generator to f. An illustration of the generator to $KL_{1/2}$ can be found in Fig. 3 (right). Note that the conjugacy here is unrelated to the convex conjugacy but is based on the perspective transform. The function f^* also generates an f-divergence, which is referred to as the conjugate divergence to D_f since $D_{f^*}(P||Q) = D_f(Q||P)$.

The quantization error bound (6) holds for all f-divergences which are bounded, i.e., $f(0) + f^*(0) < \infty$. The high probability bounds in Thm. 1 also hold for f-divergences, under some regularity assumptions: (a) $|f'(t)| \propto \log t^{-1}$ and $|(f^*)'(t)| \propto \log t^{-1}$ for small t, which guarantees that f is approximately Lipschitz and cannot vary too fast; (b) $tf''(t)$ and $t(f^*)''(t)$ are bounded, which is a technical assumption that helps control the variation of f around zero. The interpolated χ^2 divergence, defined analogously as the interpolated KL divergence, satisfies these conditions.

In the Appendix, we prove all the results for general f-divergences and show that both the frontier integral and the linearized cost are f-divergences satisfying the regularity conditions, recovering Thm. 1 and Thm. 3 as special cases.

5 Experiments

We investigate the empirical behavior of the divergence frontier and the frontier integral on both synthetic and real data. Our main findings are: (a) the statistical error bound approximately reveals the rate of convergence of the empirical estimator; (b) the smoothed distribution estimators improve the estimation accuracy; (c) the quantization level suggested by the theory works well empirically. The results for the divergence frontier and the frontier integral are almost identical. We focus on the latter here due to space constraints. In all the plots, we visualize the average absolute error computed from 100 repetitions with shaded region denoting one standard deviation around the mean. More details and additional results, including the ones for the divergence frontier, are deferred to Appx. G.

The code to reproduce the experiments is available online\footnote{https://github.com/langliu95/divergence-frontier-bound}.
We estimate the expected absolute error

We investigate the tightness of the statistical error bound of Thm. 1 with respect to the sample size

We measure the quality of estimation using the absolute error, which is defined as

We take the following steps to compute the frontier integral. First, we represent each image/text by

Specifically, we use the expected bound of Prop. 16 (Appx. D), from which Thm. 1 is derived.

We are interested in the estimation of the frontier integral \(FI(P, Q) \) using estimators \(\hat{FI}(\hat{P}, \hat{Q}) \) for the empirical estimator as well as the smoothed distribution estimator. We measure the quality of estimation using the absolute error, which is defined as \(|FI(\hat{P}, \hat{Q}) - FI(P, Q)| \). For the real data, we measure the error of estimating \(FI(S_k, S_n) \) by \(FI(S_k, \hat{S}_{k,n}) \).

5.2 Tightness of the Statistical Bound

We investigate the tightness of the statistical error bound of Thm. 1 with respect to the sample size \(n \) and the support size \(k \), in order to verify the validity of the theory in practically relevant settings.

We estimate the expected absolute error \(E[|FI(\hat{P}, \hat{Q}) - FI(P, Q)|] \) from a Monte Carlo estimate using 100 random trials. We compare it with the following bounds in Thm. 1:

(a) **Bound**: the distribution independent bound \((\sqrt{k/n} + k/n) \log n \).

(b) **Oracle Bound**: the distribution dependent bound \((\alpha_n(P) + \alpha_n(Q)) \log n + \beta_n(P) + \beta_n(Q) \).

We assume that the quantities \(\alpha_n \) and \(\beta_n \) defined in Thm. 1 are known.

Synthetic Data. Following the experimental settings in [47], we consider three types of distributions:
(a) the Zipf \(r \) distribution with \(r \in \{0, 1, 2\} \) where \(P(i) \propto i^{-r} \). Note that Zipf \(r \) is regularly varying with index \(-r \); see, e.g., [56, Appx. B].
(b) the Step distribution where \(P(i) = 1/2 \) for the first half bins and \(P(i) = 3/2 \) for the second half bins.
(c) the Dirichlet distribution \(\text{Dir}(\alpha) \) with \(\alpha \in \{1/2, 1\} \); see Fig. 1 (left) for an illustration. In total, there are 6 different distributions, giving 21 different pairs of \((P, Q) \). For each pair \((P, Q) \), we generate i.i.d. samples of size \(n \) from each of them, and estimate the divergence frontier as well as the frontier integral from these samples.

Real Data. We consider two domains: images and text. For the image domain, we train a StyleGAN2 [32] on the CIFAR-10 dataset [36] using the publicly available code\(^2\) with default hyperparameters. To evaluate the divergence frontiers, we use the test set of 10k images as the target distribution \(P \) and we sample 10k images from the generative model as the model distribution \(Q \). For the text domain, we fine-tune a pretrained GPT-2 [50] model with 124M parameters (i.e., GPT-2 small) on the WikiText-103 dataset [43]. We use the open-source HuggingFace Transformers library [65] for training, and generate 10k 500-token completions using top- \(p \) sampling and 100-token prefixes.

We take the following steps to compute the frontier integral. First, we represent each image/text by its features [27, 54, 37]. Second, we learn a low-dimensional feature embedding which maintains the neighborhood structure of the data while encouraging the features to be uniformly distributed on the unit sphere [53]. Third, we quantize these embeddings on a uniform lattice with its features [27, 54, 37]. Second, we learn a low-dimensional feature embedding which maintains the neighborhood structure of the data while encouraging the features to be uniformly distributed on the unit sphere [53]. Finally, we sample \(n \) i.i.d. observations from each of these distributions and consider the empirical distributions \(\hat{P}_{S_k, n} \) and \(\hat{Q}_{S_k, n} \) as well as the smoothed distribution estimators computed from these samples.

Performance Metric. We are interested in the estimation of the frontier integral \(FI(P, Q) \) using estimators \(\hat{FI}(\hat{P}, \hat{Q}) \) for the empirical estimator as well as the smoothed distribution estimator. We measure the quality of estimation using the absolute error, which is defined as \(|FI(\hat{P}, \hat{Q}) - FI(P, Q)| \). For the real data, we measure the error of estimating \(FI(S_k, S_n) \) by \(FI(S_k, \hat{S}_{k,n}) \).

\(^2\)https://github.com/NVlabs/stylegan2-ada-pytorch.
We fix k, plot each of these quantities in a log-log plot with varying n and compare their slopes. We then repeat the experiment with n fixed and k varying. We often scale the bounds by a constant for easier visual comparison of the slopes; this only changes the intercept and leaves the slope unchanged.

Thm. 1 is tight for synthetic data. Fig. 4 gives the Monte Carlo estimate and the bounds of the statistical error for various synthetic data distributions. In Fig. 4(a), we observe that the bound has approximately the same slope as the Monte Carlo estimate, while the oracle bound has a slightly worse slope. In Fig. 4(b), we observe that the oracle bound captures the correct rate for $k > 300$, while the distribution-independent bound captures the correct rate at small k. For the right two plots, both bounds capture the right rate over a wide range of tail decay. The oracle bound is tighter for fast decay, where the distribution-independent bounds on $\alpha_n(Q)$ and $\beta_n(Q)$ can be very pessimistic.

Thm. 1 is somewhat tight for real data. Fig. 5 contains the analogous plot for real data, where the observations are similar. In Fig. 5(b), we see that the oracle bound captures the right rate for small sample sizes where $k/n > 1$. However, for large n, the distribution-independent bound is better at matching the slope of the Monte Carlo estimate. The same is true for Fig. 5(c), where the oracle bound is better for large k. For parts (a) and (d), however, both bounds do not capture the right slope of the Monte Carlo estimate; Thm. 1 is not a tight upper bound in this case.

5.3 Effect of Smoothed Distribution Estimators

We now show that smoothed estimators can lead to improved estimation over the naïve empirical estimator and thus improved sample complexity as shown in Prop. 4. This is practically significant in the context of generative models, since one can have an equally good estimate of the divergence frontier with fewer samples using smoothed estimators [54, 18].

Concretely, we compare the Monte Carlo estimates of the absolute error $\mathbb{E}[|F_1(\hat{P}_n, \hat{Q}_n) - F_1(P, Q)|]$ for the plug-in estimate (denoted “Empirical”) with the corresponding estimates for smoothed estimators.

[A log-log plot of the function $f(x) = cx^\gamma$ is a straight line with slope γ, which thus captures the degree.]
We consider 4 smoothed estimators as in [47]: the (modified) Good-Turing estimator, as well as three add-constant estimators: the Laplace, Krichevsky-Trofimov and Braess-Sauer estimators.

Smoothed estimators are more efficient than the empirical estimator. We compare the smoothed estimators to the empirical one in Fig. 6 on synthetic data and Fig. 7 on real data. In general, the smoothed distribution estimators reduces the absolute error. For parts (a) and (b) of Fig. 6, the Good-Turing and the Krichevsky-Trofimov estimators have the best absolute error. For parts (c) and (d), the Good-Turing estimator is adapted to various regimes of tail-decay, outperforming the empirical estimator. The Krichevsky-Trofimov and Braess-Sauer estimators, on the other hand, exhibit small absolute error for particular decay regimes. The results are similar for real data in Fig. 7.

Practical guidance on choosing a smoothed estimator. While the smoothed estimators offer a marked improvement when k/n is large (that is, close to 1), the best estimator is problem-dependent. As a rule of thumb, we suggest the Krichevsky-Trofimov estimator which works well in the large k/n regime but is still competitive when k/n is small (i.e., large n).

5.4 Quantization Error

Next, we study the effect of the quantization level k on the total error. We consider a simple 2-dimensional synthetic setting where the distributions P, Q are either the multivariate normal or t-distributions. We use data-driven quantization with k-means to obtain a quantization S_k: each component of the partition is the region corresponding to one cluster. Finally, we plot the absolute error $|\text{FI}(P, Q) - \text{FI}(\hat{P}_{S_k}, \hat{Q}_{S_k})|$, where the $\text{FI}(P, Q)$ is computed using numerical integration and the expectation is estimated with Monte Carlo simulations.

The choice $k = \Theta(n^{1/3})$ works the best. We compare $k = n^{1/r}$ for $r = 2, 3, 4, 5$ in Fig. 8. For small n, $r \geq 3$ all perform similarly, but $r = 3$ clearly outperforms other choices for $n \geq 10^4$. While our theory does not directly apply for data-dependent partitioning schemes, the choice $k = \Theta(n^{1/3})$ suggested by Thm. 3 nevertheless works well in practice.

6 Conclusion

In this paper, we study the statistical behavior of the divergence frontiers and the proposed integral summary estimated from data. We decompose the estimation error into two components, the statistical error and the quantization error, to conform with the approximation procedure commonly used in practice. We establish non-asymptotic bounds on both of the two errors. Our bounds shed light on the optimal choice of the quantization level k—they suggest that the two errors can be balanced at $k = \Theta(n^{1/3})$. We also derive a new concentration inequality for the frontier integral, which provides the sample complexity of achieving a small error in high probability. Finally, we demonstrate both theoretically and empirically that the use of smoothed distribution estimators can improve the estimation accuracy. All the results can be generalized to a large class of interpolation-based β-divergences. Provided new theoretical results on modern data-dependent quantization schemes using deep neural networks, it would be an interesting direction for future work to specialize our bounds to such quantization schemes. Extending our results to β-divergences could also be interesting.
Acknowledgments. The authors would like to thank J. Thickstun for fruitful discussions. Part of this work was done while Z. Harchaoui was visiting the Simons Institute for the Theory of Computing. This work was supported by NSF DMS-2134012, NSF CCF-2019844, the CIFAR program “Learning in Machines and Brains”, and faculty research awards.

References

Appendix

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A f-divergence: review and examples</td>
<td>15</td>
</tr>
<tr>
<td>B Properties of the frontier integral</td>
<td>16</td>
</tr>
<tr>
<td>C Regularity assumptions</td>
<td>17</td>
</tr>
<tr>
<td>C.1 Assumptions</td>
<td>17</td>
</tr>
<tr>
<td>C.2 Examples satisfying the assumptions</td>
<td>17</td>
</tr>
<tr>
<td>C.3 Properties and useful lemmas</td>
<td>20</td>
</tr>
<tr>
<td>D Plug-in estimator: statistical error</td>
<td>21</td>
</tr>
<tr>
<td>D.1 Statistical error</td>
<td>21</td>
</tr>
<tr>
<td>D.2 Concentration bound</td>
<td>24</td>
</tr>
<tr>
<td>E Add-constant smoothing: statistical error</td>
<td>25</td>
</tr>
<tr>
<td>F Quantization error</td>
<td>27</td>
</tr>
<tr>
<td>G Experimental details</td>
<td>29</td>
</tr>
<tr>
<td>G.1 Synthetic data</td>
<td>29</td>
</tr>
<tr>
<td>G.2 Real data</td>
<td>34</td>
</tr>
<tr>
<td>H Length of the divergence frontier</td>
<td>35</td>
</tr>
<tr>
<td>I Technical lemmas</td>
<td>38</td>
</tr>
</tbody>
</table>
A f-divergence: review and examples

We review the definition of f-divergences and give a few examples.

Let $f: (0, \infty) \to \mathbb{R}$ be a convex function with $f(1) = 0$. Let $P, Q \in \mathcal{P}(\mathcal{X})$ be dominated by some measure $\mu \in \mathcal{P}(\mathcal{X})$ with densities p and q, respectively. The f-divergence generated by f is

$$D_f(P\|Q) = \int_{\mathcal{X}} q(x) f\left(\frac{p(x)}{q(x)}\right) d\mu(x),$$

with the convention that $f(0) := \lim_{t \to 0^+} f(t)$ and $0f(p/0) = pf^*(0)$, where $f^*(0) = \lim_{x \to 0^+} x f(1/x) \in [0, \infty]$. Hence, $D_f(P\|Q)$ can be rewritten as

$$D_f(P\|Q) = \int_{q > 0} q(x) f\left(\frac{p(x)}{q(x)}\right) d\mu(x) + f^*(0) P[q = 0],$$

with the agreement that the last term is zero if $P[q = 0] = 0$ no matter what value $f^*(0)$ takes (which could be infinity). For any $c \in \mathbb{R}$, it holds that $D_f(P\|Q) = D_f(P\|Q)$ where $f_c(t) = f(t) + c(t-1)$. Hence, we also assume, w.l.o.g., that $f(t) \geq 0$ for all $t \in (0, \infty)$. To summarize, f is convex and nonnegative with $f(1) = 0$. As a result, f is non-increasing on $(0, 1]$ and non-decreasing on $[1, \infty)$.

The conjugate generator to f is the function $f^*: (0, \infty) \to [0, \infty)$ defined by

$$f^*(t) = tf(1/t),$$

where again we define $f^*(0) = \lim_{t \to 0^+} f^*(t)$. Since f^* can be constructed by the perspective transform of f, it is also convex. We can verify that $f^*(1) = 0$ and $f^*(t) \geq 0$ for all $t \in (0, \infty)$, so it defines another divergence D_{f^*}. We call this the conjugate divergence to D_f since

$$D_{f^*}(P\|Q) = D_f(Q\|P).$$

The divergence D_f is symmetric if and only if $f = f^*$, and we write it as $D_f(P, Q)$ to emphasize the symmetry.

Example 5. We illustrate a number of examples.

(a) KL divergence: It is an f-divergence generated by $f_{KL}(t) = t \log t - t + 1$.

(b) Interpolated KL divergence: For $\lambda \in (0, 1)$, the interpolated KL divergence is defined as

$$KL_{\lambda}(P\|Q) = KL(P\|\lambda P + (1 - \lambda) Q),$$

which is a f-divergence generated by

$$f_{KL, \lambda}(t) = t \log \left(\frac{t}{\lambda t + 1 - \lambda}\right) - (1 - \lambda)(t - 1).$$

(c) Jensen-Shannon divergence: The Jensen-Shannon Divergence is defined as

$$D_{JS}(P, Q) = \frac{1}{2} KL_{1/2}(P\|Q) + \frac{1}{2} KL_{1/2}(Q\|P).$$

More generally, we have the λ-skew Jensen-Shannon Divergence $[46]$, which is defined for $\lambda \in (0, 1)$ as $D_{JS, \lambda} = \lambda KL_{\lambda}(P\|Q) + (1 - \lambda)KL_{1 - \lambda}(Q\|P)$. This is an f-divergence generated by

$$f_{JS, \lambda}(t) = \lambda t \log \left(\frac{t}{\lambda t + 1 - \lambda}\right) + (1 - \lambda) \log \left(\frac{1}{\lambda t + 1 - \lambda}\right).$$

Note that this is the linearized cost defined in (1)

(d) Frontier Integral: From Prop. 6, FI is an f-divergence generated by

$$f_{FI}(t) = \frac{t + 1}{2} - \frac{t}{t - 1} \log t.$$

The conjugacy between f and f^* is unrelated to the usual Fenchel or Lagrange duality in convex analysis, but is related to the perspective transform.
(e) Interpolated \(\chi^2 \) divergence: Similar to the interpolated KL divergence, we can define the interpolated \(\chi^2 \) divergence \(D_{\chi^2, \lambda} \) and the corresponding convex generator \(f_{\chi^2, \lambda} \) for \(\lambda \in (0, 1) \) as

\[
D_{\chi^2, \lambda}(P\|Q) = D_{\chi^2}(P\|\lambda P + (1 - \lambda)Q), \quad \text{and,} \quad f_{\chi^2, \lambda}(t) = \frac{(t - 1)^2}{\lambda t + 1 - \lambda}.
\]

The usual Neyman and Pearson \(\chi^2 \) divergences are respectively obtained in the limits \(\lambda \to 1 \) and \(\lambda \to 0 \).

(f) Squared Le Cam distance: The squared Le Cam distance is, up to scaling, a special case of the interpolated \(\chi^2 \) divergence with \(\lambda = 1/2 \):

\[
D_{\text{LC}}(P, Q) = \frac{1}{4} D_{\chi^2, 1/2}(P\|Q).
\]

(g) Squared Hellinger Distance: It is an \(f \)-divergence generated by \(f_H(t) = (1 - \sqrt{t})^2 \).

B Properties of the frontier integral

We prove some properties of the frontier integral here.

First, the frontier integral can be computed in closed form as below.

Proposition 6. Let \(P \) and \(Q \) be dominated by some probability measure \(\mu \) with density \(p \) and \(q \), respectively. Then,

\[
\text{FI}(P, Q) = \int_x \{p(x) \neq q(x)\} \left(\frac{p(x) + q(x)}{2} - \frac{p(x)q(x)}{p(x) - q(x)} \log \frac{p(x)}{q(x)}\right) \, d\mu(x),
\]

with the convention \(0 \log 0 = 0 \). Moreover, \(\text{FI} \) is an \(f \)-divergence generated by the convex function

\[
f_{\text{FI}}(t) = \frac{t + 1}{2} - \frac{t}{t - 1} \log t,
\]

with the understanding that \(f_{\text{FI}}(1) = \lim_{t \to 1} f_{\text{FI}}(t) = 0 \).

Proof of Prop. 6. Let \(\bar{\lambda} = 1 - \lambda \). By Tonelli’s theorem, it holds that \(\text{FI}(P, Q) = 2 \int_x h(p(x), q(x)) \, d\mu(x) \), where

\[
h(p, q) = \int_0^1 (\lambda p \log p + \bar{\lambda} q \log q - (\lambda p + \bar{\lambda} q) \log(\lambda p + \bar{\lambda} q)) \, d\lambda.
\]

When \(p = q \), the integrand is 0. If \(q = 0 \), then the second term inside the integral is 0, while the first term is

\[
\int_0^1 \lambda p \log \frac{1}{\lambda} \, d\lambda = \frac{p}{4}.
\]

Finally, when \(p \neq q \) are both non-zero, we evaluate the integral to get,

\[
h(p, q) = \frac{p}{2} \log p + \frac{q}{2} \log q - \frac{2p^2 \log p + p^2 - 2q^2 \log q + q^2}{4(p - q)},
\]

and rearranging the expression completes the proof. \(\square \)

Next, the frontier integral is symmetric and bounded.

Proposition 7. The frontier integral satisfies the following properties:

(a) \(\text{FI}(P, Q) = \text{FI}(Q, P) \).

(b) \(0 \leq \text{FI}(P, Q) \leq 1 \) with \(\text{FI}(P, Q) = 0 \) if and only if \(P = Q \).

Proof of Prop. 7. The first part follows from the closed form expression in Prop. 6. For the second part, we get the upper bound as

\[
\text{FI}(P, Q) \leq \int_x \frac{p(x) + q(x)}{2} \, d\mu(x) = 1.
\]

We have \(\text{FI}(P, Q) \geq 0 \) with \(\text{FI}(P, P) = 0 \) since \(\text{FI} \) is an \(f \)-divergence. Further, since \(f_{\text{FI}} \) is strictly convex at 1, we get that \(\text{FI}(P, Q) = 0 \) only if \(P = Q \). \(\square \)
C Regularity assumptions

In this section, we state and discuss the regularity assumptions required for the statistical error bounds. Throughout, we assume that \mathcal{X} is a finite set (for instance, on the quantized space). We upper bound the expected error of the empirical f-divergences estimated from data.

We use the convention that all higher order derivatives of f and f^* at 0 are defined as the corresponding limits as $x \to 0^+$ (if they exist). Further, we use the notation

$$\psi(p, q) = qf(p/q) = pf^*(q/p),$$

so that $D_f(P||Q) = \sum_{a \in \mathcal{X}} \psi(P(a), Q(a))$.

C.1 Assumptions

We make the following assumptions about the functions f and f^*.

Assumption 8. The generator f is twice continuously differentiable with $f'(1) = 0$. Moreover,

(A1) We have $C_0 := f(0) < \infty$ and $C_*^0 := f^*(0) < \infty$.

(A2) There exist constants $C_1, C_*^1 < \infty$ such that for every $x \in (0, 1)$, we have,

$$|f'(t)| \leq C_1 (1 \lor \log 1/t), \hspace{1em} \text{and,} \hspace{1em} |(f^*)'(t)| \leq C_*^1 (1 \lor \log 1/t).$$

(A3) There exist constants $C_2, C_*^2 < \infty$ such that for every $t \in (0, \infty)$, we have,

$$\frac{t}{2} f''(t) \leq C_2, \hspace{1em} \text{and,} \hspace{1em} \frac{t}{2} (f^*)''(t) \leq C_*^2.$$

Remark 9. We discuss the asymptotics of the assumptions.

(a) Assumption (A1) ensures boundedness of the f-divergence. Indeed, $f(0) = \infty$ leads to $D_f(P||Q) = \infty$ if there exists an atom $a \in \mathcal{X}$ such that $P(a) = 0$ but $Q(a) \neq 0$. This happens, for instance, with the reverse KL divergence $(f(t) = -\log t + t - 1)$. By symmetry, $f^*(0) = \infty$ leads to a case where $D_f(P||Q) = \infty$ if there exists an atom $a \in \mathcal{X}$ such that $Q(a) = 0$ but $P(a) \neq 0$, as in the (forward) KL divergence.

(b) Since f' is monotonic nondecreasing and $f'(1) = 0$ (with strict inequality if f is strictly convex at 1), in fact, $f'(0) = -\infty$ for each of the divergences considered in Example 5. Assumption (A2) requires $f'(t)$ to behave as $\log 1/t$ when $t \to 0$. Likewise for $(f^*)'$.

(c) Likewise, we have that $f''(0) = \infty$ and $(f^*)''(\infty) = 0$ for each of the divergence considered in Example 5. However, Assumption (A3) makes assumptions on the rates of these limits. Namely, f'' should diverge no faster than $1/t$ as $t \to 0$ and f'' should converge to 0 at least as fast as $1/t^2$ as $t \to \infty$. We can summarize the implied asymptotics of f'' as

$$f''(t) = \begin{cases} \Omega(1/t), & \text{if } t \to 0, \\ O(1/t^2), & \text{if } t \to \infty. \end{cases}$$

C.2 Examples satisfying the assumptions

We now consider the examples in Example 5. The constants are summarized in Tab. 1.

KL divergence. We have

$$f_{\text{KL}}(t) = t \log t - t + 1 \hspace{1em} \text{and} \hspace{1em} f^*_{\text{KL}}(t) = -t \log t - t - 1.$$

We have $f(0) = 1$ but $f^*(0) = \infty$. Therefore, the KL divergence does not satisfy our assumptions. Indeed, this is because the KL divergence can be unbounded.

Interpolated KL Divergence. Let $\lambda \in (0, 1)$ be a parameter and denote $\bar{\lambda} = 1 - \lambda$. We have

$$f_{\text{KL},\lambda}(t) = t \log \left(\frac{t}{\lambda t + \lambda}\right) - \bar{\lambda}(t - 1) \hspace{1em} \text{and} \hspace{1em} f^*_{\text{KL},\lambda}(t) = -\log(\bar{\lambda}t + \lambda) + \bar{\lambda}(t - 1).$$

The corresponding derivatives are

$$f'_{\text{KL},\lambda}(t) = \frac{\bar{\lambda}}{\lambda t + \lambda} + \log \left(\frac{t}{\lambda t + \lambda}\right) - \bar{\lambda}, \hspace{1em} \left(f^*_{\text{KL},\lambda}\right)'(t) = \bar{\lambda} - \frac{\bar{\lambda}}{\lambda t + \lambda},$$

$$f''_{\text{KL},\lambda}(t) = \frac{\bar{\lambda}}{(\lambda t + \lambda)^2}, \hspace{1em} \left(f^*_{\text{KL},\lambda}\right)''(t) = \frac{\bar{\lambda}^2}{(\lambda t + \lambda)^2}.$$

Table 1: Examples of f-divergences and whether they satisfy Assumptions (A1)-(A3). Here, $\lambda \in (0, 1)$ is a parameter of the interpolated or skew divergences, and we define $\bar{\lambda} := 1 - \lambda$.

<table>
<thead>
<tr>
<th>f-divergence</th>
<th>Satisfies Assumptions?</th>
<th>C_0</th>
<th>C_0^*</th>
<th>C_1</th>
<th>C_1^*</th>
<th>C_2</th>
<th>C_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>KL</td>
<td>No</td>
<td>1</td>
<td>∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpolated KL</td>
<td>Yes</td>
<td>$\bar{\lambda}$</td>
<td>$\log \frac{1}{\lambda} - \bar{\lambda}$</td>
<td>1</td>
<td>$\bar{\lambda}^2$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{\bar{\lambda}}{8\lambda}$</td>
</tr>
<tr>
<td>JS</td>
<td>Yes</td>
<td>$\frac{1}{2} \log 2$</td>
<td>$\frac{1}{2} \log 2$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Skew JS</td>
<td>Yes</td>
<td>$\bar{\lambda} \log \frac{1}{\lambda}$</td>
<td>$\lambda \log \frac{1}{\lambda}$</td>
<td>λ</td>
<td>$\bar{\lambda}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>Frontier integral</td>
<td>Yes</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>4</td>
<td>4</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>LeCam</td>
<td>Yes</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>2</td>
<td>2</td>
<td>$\frac{8}{27}$</td>
<td>$\frac{8}{27}$</td>
</tr>
<tr>
<td>Interpolated χ^2</td>
<td>Yes</td>
<td>$\frac{1}{\lambda}$</td>
<td>$\frac{1}{\lambda}$</td>
<td>$\frac{1}{2\lambda}$</td>
<td>$\frac{2}{27\lambda^2}$</td>
<td>$\frac{4}{27\lambda^2}$</td>
<td>$\frac{4}{27\lambda^2}$</td>
</tr>
<tr>
<td>Hellinger</td>
<td>No</td>
<td>1</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposition 10. The interpolated KL divergence generated by $f_{KL, \lambda}$ satisfies Assumption 8 with

$$C_0 = 1 - \lambda, \quad C_0^* = \log \frac{1}{\lambda} - 1 + \lambda, \quad C_1 = 1, \quad C_1^* = \frac{(1 - \lambda)^2}{\lambda}, \quad C_2 = \frac{1}{2}, \quad C_2^* = \frac{1 - \lambda}{8\lambda}.$$

Proof. First, C_0, C_0^* can be computed directly. Second, it is clear that

$$-f_{KL, \lambda}'(t) = \log \frac{1}{t} + \log(\lambda t + \bar{\lambda}) - \frac{\bar{\lambda}}{\lambda t + \lambda} + \bar{\lambda} \leq \log \frac{1}{t} + \log 1 - \bar{\lambda} + \bar{\lambda} = \log \frac{1}{t}$$

for all $x \in (0, 1)$. Moreover, since f is convex and $f_{KL, \lambda}'(1) = 0$, it holds that $f'_{KL, \lambda}(x) \leq 0$ for all $x \in (0, 1)$, and thus $C_1 = 1$. Next, we note that $|(f_{KL, \lambda}'(x)| \leq \bar{\lambda}^2/\lambda$ holds uniformly on $(0, 1)$ (or equivalently that $f_{KL, \lambda}'$ is Lipschitz); this gives C_1^*. Next, we have

$$C_2 = \sup_{t > 0} \left\{ \frac{1}{2} t f''_{KL, \lambda}(t) \right\} \leq \frac{1}{2},$$

since the function inside the sup is monotonic decreasing on $(0, \infty)$. Finally, we have

$$C_2^* = \sup_{t > 0} \left\{ \frac{1}{2} t (f_{KL, \lambda}''(t) \right\} = \frac{\bar{\lambda}}{8\lambda},$$

since the term inside the sup is maximized at $t = \lambda/\bar{\lambda}$. \hfill \square

Skew Jensen-Shannon Divergence. Let $\lambda \in (0, 1)$ be a parameter and $\bar{\lambda} = 1 - \lambda$. We have,

$$f_{JS, \lambda}(t) = \lambda t \log \left(\frac{t}{\lambda t + \lambda} \right) + \bar{\lambda} \log \left(\frac{1}{\lambda t + \lambda} \right) = f_{JS, 1-\lambda}(t).$$

Its derivatives are

$$f'_{JS, \lambda}(t) = \lambda \log \left(\frac{t}{\lambda t + \lambda} \right) \quad \text{and} \quad f''_{JS, \lambda}(t) = \frac{\lambda \bar{\lambda}}{t(\lambda t + \lambda)}.$$

Proposition 11. The λ-skew JS divergence generated by $f_{JS, \lambda}$ above satisfies Assumption 8 with

$$C_0 = (1 - \lambda) \log \frac{1}{1 - \lambda}, \quad C_0^* = \lambda \log \frac{1}{\lambda}, \quad C_1 = \lambda, \quad C_1^* = 1 - \lambda, \quad C_2 = \frac{\lambda}{2}, \quad C_2^* = \frac{1 - \lambda}{2}.$$

Proof. For C_1, we have

$$-f'_{JS, \lambda}(t) = \lambda \log \frac{1}{t} + \lambda \log(\lambda t + \bar{\lambda}) \leq \lambda \log \frac{1}{t}.$$
for \(x \in (0, 1) \). Next, we have

\[
C_2 = \frac{\lambda x}{2} \sup_{t > 0} \frac{1}{\lambda t + \lambda} = \frac{\lambda}{2}.
\]

Frontier integral. We have

\[
f_{FI}(t) = \frac{t + 1}{2} - \frac{t}{t - 1} \log t = f_{FI}^*(t).
\]

Its derivatives are

\[
f_{FI}'(t) = \frac{(1-t)(3-t) + 2 \log t}{2(1-t)^2} \quad \text{and} \quad f_{FI}''(t) = \frac{2t \log t + t^2 + 1}{t(1-t)^3}.
\]

Proposition 12. The frontier integral satisfies Assumption 8 with

\[
C_0 = \frac{1}{2} = C_0^*, \quad C_1 = 1 = C_1^*, \quad C_2 = \frac{1}{2} = C_2^*.
\]

Proof. We get \(C_0 \) by calculating the limit as \(x \to 0 \) using L'Hôpital's rule. For \(C_2 \), we note that the term inside the sup below is decreasing in \(x \) to get

\[
C_2 = \sup_{t > 0} \frac{2t \log t - t^2 + 1}{(1-t)^3} = \frac{1}{2}.
\]

By definition,

\[
f_{FI}(t) = 2 \int_0^1 f_{IS, \lambda}(t) \, d\lambda,
\]

so that, by Prop. 11,

\[
-f_{FI}'(t) = -2 \int_0^1 f_{IS, \lambda}(t) \, d\lambda \leq 2 \int_0^1 \lambda \log \frac{1}{t} \, d\lambda = \log \frac{1}{t}.
\]

Interpolated \(\chi^2 \) divergence. Let \(\lambda \in (0, 1) \) be a parameter and denote \(\bar{\lambda} = 1 - \lambda \). We have,

\[
f_{\chi^2, \lambda}(t) = \frac{(t-1)^2}{\lambda t + 1 - \lambda} = f_{\chi^2, 1-\lambda}^*(t).
\]

Its derivatives are

\[
f_{\chi^2, \lambda}'(t) = \frac{(t-1)(\lambda t + \bar{\lambda} + 1)}{(\lambda t + \bar{\lambda})^2} \quad \text{and} \quad f_{\chi^2, \lambda}''(t) = \frac{2}{(\lambda t + \bar{\lambda})^3}.
\]

Proposition 13. For \(\lambda \in (0, 1) \), the interpolated \(\chi^2 \)-divergence satisfies Assumption 8 with

\[
C_0 = \frac{1}{1 - \lambda}, \quad C_0^* = \frac{1}{\bar{\lambda}}, \quad C_1 = \frac{2}{(1 - \lambda)^2}, \quad C_1^* = \frac{2}{\bar{\lambda}^2}, \quad C_2 = \frac{4}{27\lambda(1-\lambda)^2}, \quad C_2^* = \frac{4}{27\bar{\lambda}^2(1-\lambda)}.
\]

Proof. Note that \(0 \geq f_{\chi^2, \lambda}'(0) = -(1 + \bar{\lambda})/\bar{\lambda}^2 \geq -2/\bar{\lambda}^2 \) is bounded. Since \(f_{\chi^2, \lambda}' \) is monotonic increasing with \(f_{\chi^2, \lambda}'(1) = 0 \), this gives the bound on \(C_1 \). Next, we bound

\[
C_2 = \sup_{t > 0} \frac{t}{(\lambda t + \lambda)^3} = \frac{4}{27\lambda^2(1-\lambda)}
\]

since the supremum is attained at \(t = \bar{\lambda}/(2\lambda) \).

Squared Hellinger distance. We have,

\[
f_H(t) = (1 - \sqrt{t})^2 = f_H^*(t), \quad f_H'(t) = 1 - \frac{1}{\sqrt{t}}, \quad f_H''(t) = \frac{1}{2} t^{-3/2}.
\]

The squared Hellinger divergence does not satisfy our assumptions since for \(t < 1 \), \(|f_H'(x)| \approx 1/\sqrt{t} \) diverges faster than the \(\log 1/t \) rate required by Assumption (A2).
C.3 Properties and useful lemmas

We state here some useful properties and lemmas that we use throughout the paper.

First, we express the derivatives of \(\psi(p, q) = qf(p/q) \) in terms of the derivatives of \(f \):

\[
\frac{\partial \psi}{\partial p}(p, q) = f' \left(\frac{p}{q} \right) = f^* \left(\frac{q}{p} \right) - \frac{q}{p} f^* \left(\frac{q}{p} \right) \quad (12a)
\]

\[
\frac{\partial \psi}{\partial q}(p, q) = f \left(\frac{p}{q} \right) - \frac{p}{q} f' \left(\frac{p}{q} \right) = (f^*)' \left(\frac{q}{p} \right) \quad (12b)
\]

\[
\frac{\partial^2 \psi}{\partial p^2}(p, q) = \frac{1}{q} f'' \left(\frac{p}{q} \right) = \frac{q^2}{p^2} (f^*)'' \left(\frac{q}{p} \right) \geq 0 \quad (12c)
\]

\[
\frac{\partial^2 \psi}{\partial q^2}(p, q) = \frac{p^2}{q^2} f'' \left(\frac{p}{q} \right) = \frac{1}{p} (f^*)'' \left(\frac{q}{p} \right) \geq 0 \quad (12d)
\]

\[
\frac{\partial^2 \psi}{\partial p \partial q}(p, q) = -\frac{p}{q^2} f'' \left(\frac{p}{q} \right) = -\frac{q}{p^2} (f^*)'' \left(\frac{q}{p} \right) \leq 0, \quad (12e)
\]

where the inequalities \(f'', (f^*)'' \geq 0 \) followed from convexity of \(f \) and \(f^* \) respectively.

The next lemma shows that the function \(\psi \) is nearly Lipschitz, up to a log factor. This lemma can be leveraged to directly obtain a bound on statistical error of the \(f \)-divergence in terms of the expected total variation distance, provided the probabilities are not too small.

Lemma 14. Suppose that \(f \) satisfies Assumption 8. Consider \(\psi : [0, 1] \times [0, 1] \to [0, \infty) \) given by \(\psi(p, q) = qf(p/q) \). We have, for all \(p, p', q, q' \in [0, 1] \) with \(p \lor p' > 0, q \lor q' > 0 \), that

\[
|\psi(p', q) - \psi(p, q)| \leq \left(C_1 \max \left\{ 1, \log \frac{1}{p \lor p'} \right\} + C_0^* \lor C_2 \right) |p - p'| \quad (A3)
\]

\[
|\psi(p, q') - \psi(p, q)| \leq \left(C_1^* \max \left\{ 1, \log \frac{1}{q \lor q'} \right\} + C_0 \lor C_2^* \right) |q - q'| .
\]

Proof. We only prove the first inequality. The second one is identical with the use of \(f^* \) rather than \(f \). Suppose \(p' \geq p \). From the fact that \(\psi \) is convex in \(p \) together with a Taylor expansion of \(\psi(\cdot, q) \) around \(p' \), we get,

\[
0 \leq \psi(p, q) - \psi(p', q) - (p - p') \frac{\partial \psi}{\partial p}(p', q) = \frac{1}{2} \int_{p'}^p \frac{\partial^2 \psi}{\partial p^2}(s, q)(p - s)ds
\]

\[
= -\frac{p}{2} \int_p^{p'} \frac{\partial^2 \psi}{\partial p^2}(s, q)ds + \frac{1}{2} \int_p^{p'} \frac{\partial^2 \psi}{\partial p^2}(s, q)ds
\]

\[
\leq 0 + C_2(p' - p) ,
\]

where we used \(\frac{\partial^2 \psi}{\partial p^2} \) is non-negative due to convexity and, by (12c) and Assumption (A3),

\[
\frac{s}{p} \frac{\partial^2 \psi}{\partial p^2}(s, q) = s \frac{f''(s/q)}{q} \leq 2C_2 .
\]

This yields

\[-(p' - p) \frac{\partial \psi}{\partial p}(p', q) \leq \psi(p, q) - \psi(p', q) \leq -(p' - p) \frac{\partial \psi}{\partial p}(p', q) + C_2(p' - p) .
\]

We consider two cases based on the sign of \(\frac{\partial \psi}{\partial p}(p', q) \geq 0 \). Since \(q \to f'(p/q) \) is decreasing in \(q \), we have

\[
0 \leq (p' - p) \frac{\partial \psi}{\partial p}(p', q) = (p' - p)f'(p/q) \leq \lim_{q \to 0}(p' - p)f'(p/q) = (p' - p)f^*(0) ,
\]

where we used \(f'(\infty) = f^*(0) \) from Lem. 15. From Assumption (A1), we get the bound

\[
|\psi(p, q) - \psi(p', q)| \leq (C_0^* \lor C_2)(p' - p) .
\]

20
Furthermore, if \(\frac{\partial \psi}{\partial p} (p', q) < 0 \). By Assumption (A2), it holds that
\[
\left| \frac{\partial \psi}{\partial p} (p', q) \right| \leq C_1 \max\{1, \log(q/p')\} \leq C_1 \max\{1, \log(1/p')\},
\]
and thus
\[
|\psi(p, q) - \psi(p', q)| \leq \left(C_1 \max \left\{ 1, \log \left(\frac{1}{p'} \right) \right\} + C_2 \right) (p' - p).
\]
\(\Box \)

With the above lemma, the estimation error of the empirical \(f \)-divergence can be upper bounded by the total variation distance between the empirical measure and its population counterpart up to a logarithmic factor, where:
\[
\| \hat{P}_n - P \|_{TV} = \sum_{a \in \mathcal{X}} |\hat{P}_n(a) - P(a)|.
\] (13)

Next, we state and prove a technical lemma.

Lemma 15. Suppose the generator \(f \) satisfies Assumptions (A1) and (A2). Then,
\[
\lim_{t \to \infty} f'(t) = f^*(0), \quad \text{and} \quad \lim_{t \to \infty} (f^*)'(t) = f(0).
\]

Proof. We start by observing that
\[
\lim_{t \to 0} t |f'(t)| \leq C_1 \lim_{t \to 0} t \vee t \log \frac{1}{t} = 0.
\]
Next, a direct calculation gives
\[
(f^*)'(1/t) = f(t) - tf'(t),
\]
so that taking the limit \(t \to 0 \) gives
\[
\lim_{t \to 0} (f^*)'(t) = f(0) - \lim_{t \to 0} tf'(t) = f(0).
\]
The proof of the other part is identical. \(\Box \)

D Plug-in estimator: statistical error

In this section, we prove the high probability concentration bound for the plug-in estimator. There are two keys steps: bounding the statistical error and giving a deviation bound.

Throughout this section, we assume that \(P \) and \(Q \) are discrete. Let \(\{X_i\}_{i=1}^n \) and \(\{Y_j\}_{j=1}^m \) be two independent i.i.d. samples from \(P \) and \(Q \), respectively. We consider the plug-in estimator of the \(f \)-divergences, i.e., \(D_f(\hat{P}_n || \hat{Q}_m) \). The main results are (a) an upper bound for its statistical error, and (b) a high probability concentration bound. They all hold for the linearized cost \(L_\lambda(\hat{P}_n, \hat{Q}_m) \) and the frontier integral \(FL(\hat{P}_n, \hat{Q}_m) \) due to Prop. 11 and Prop. 12.

D.1 Statistical error

Proposition 16. Suppose that \(f \) satisfies Assumption 8 and \(k := |\text{Supp}(P)| \vee |\text{Supp}(Q)| \in \mathbb{N} \cup \{\infty\} \). Let \(n, m \geq 3 \). Let \(c_1 = C_1 + C_1' \) and \(c_2 = C_2 \vee C_0' + C_2' \vee C_0 \). We have,
\[
\mathbb{E}[D_f(P||Q) - D_f(\hat{P}_n||\hat{Q}_m)] \leq \left(C_1 \log n + C_0' \vee C_2 \right) \alpha_n(P) + \left(C_1' \log m + C_0 \vee C_2' \right) \alpha_m(Q)
\]
\[
+ \left(C_1 + C_0' \vee C_2 \right) \beta_n(P) + \left(C_1' + C_0 \vee C_2' \right) \beta_m(Q),
\] (14)
where \(\alpha_n(P) = \sum_{a \in X} \sqrt{n^{-1}P(a)} \) and \(\beta_n(P) = \mathbb{E}\left[\sum_{a: \hat{P}_n(a) = 0} P(a) \max\{1, \log(1/P(a))\} \right] \).

Furthermore, if \(k < \infty \), then
\[
\mathbb{E}[D_f(P||Q) - D_f(\hat{P}_n||\hat{Q}_m)] \leq \left(c_1 \log (n \wedge m) + c_2 \right) \left(\sqrt{\frac{k}{n \wedge m}} + \frac{k}{n \wedge m} \right).
\] (15)
The proof relies on two key lemmas—the approximate Lipschitz lemma (Lem. 14) and the missing mass lemma (Lem. 18). The argument breaks into two cases in \(P \) (and analogously for \(Q \)) for each atom \(a \in X \):

(a) \(\hat{P}_n(a) > 0 \): Since \(\hat{P}_n \) is an empirical measure, we have that \(\hat{P}_n(a) \geq 1/n \). In this case the approximate Lipschitz lemma gives us the Lipschitzness in \(\| P - \hat{P}_n \|_{TV} \) up to a factor of \(\log n \).

(b) \(\hat{P}_n(a) = 0 \): In this case, the mass corresponding to \(P(a) \) is missing in the empirical measure and we directly bound its expectation following similar arguments as in the missing mass literature; see, e.g., [3, 40].

For the first part, we further upper bound the expected total variation distance of the plug-in estimator, which is

\[\| \hat{P}_n - P \|_{TV} = \sum_{a \in X} |\hat{P}_n(a) - P(a)|. \]

Lemma 17. Assume that \(P \) is discrete. For any \(n \geq 1 \), it holds that

\[\mathbb{E} \| \hat{P}_n - P \|_{TV} \leq \alpha_n(P). \]

Furthermore, if \(k = |\text{Supp}(P)| < \infty \), then

\[\mathbb{E} \| \hat{P}_n - P \|_{TV} \leq \alpha_n(P) \leq \sqrt{k/n}. \]

Proof. Using Jensen’s inequality, we have,

\[\mathbb{E} \sum_{a \in \text{Supp}(P)} |\hat{P}_n(a) - P(a)| \leq \sum_{a \in \text{Supp}(P)} \sqrt{\mathbb{E} (\hat{P}_n(a) - P(a))^2} \]

\[= \sum_{a \in \text{Supp}(P)} \sqrt{P(a)(1 - P(a)) \frac{1}{n}} \leq \alpha_n(P), \]

If \(k < \infty \), then it follows from Jensen’s inequality applied to the concave function \(t \mapsto \sqrt{t} \) that

\[\frac{1}{k} \sum_{i=1}^{k} \sqrt{a_k} \leq \sqrt{\frac{1}{k} \sum_{i=1}^{k} a_k}. \]

Hence, \(\alpha_n(P) \leq k/n \) and it completes the proof. \(\square \)

For the second part, we treat the missing mass directly.

Lemma 18 (Missing Mass). Assume that \(k = |\text{Supp}(P)| < \infty \). Then, for any \(n \geq 3, \)

\[\mathbb{E} \left[\sum_{a \in X} \mathbb{1}\{\hat{P}_n(a) = 0\} P(a) \right] \leq \frac{k}{n} \]

\[\beta_n(P) := \mathbb{E} \left[\sum_{a \in X} \mathbb{1}\{\hat{P}_n(a) = 0\} P(a) \left(1 \lor \log \frac{1}{P(a)} \right) \right] \leq \frac{k \log n}{n}, \]

where \(a \lor b := \max\{a, b\} \).

Proof. We prove the second inequality. The first one is identical. Note that \(\mathbb{E}[\mathbb{1}\{\hat{P}_n(a) = 0\}] = \mathbb{P}(\hat{P}_n(a) = 0) = (1 - P(a))^n \). Therefore, the left hand side (LHS) of the second inequality is

\[\text{LHS} = \sum_{a \in X} (1 - P(a))^n P(a) \max\{1, - \log P(a)\} \]

\[\leq \sum_{a \in X} \frac{1}{n} \lor \frac{\log n}{n} = \frac{k \log n}{n}, \]

where we used Lem. 31 and Lem. 32. \(\square \)
Moreover, for any \(\lambda \in [0, 1) \), it holds that

\[
\mathbb{E} \left| \text{KL}(\hat{P}_n \| \hat{Q}_m) - \text{KL}(P \| Q) \right|
\leq \left[\left(1 + \frac{(1 - \lambda)^2}{\lambda} \right) \log \left(\frac{1}{\lambda} - 1 + \lambda \right) \sqrt{\frac{1}{2} + \left(1 - \lambda \right) \frac{1 - \lambda}{8\lambda} } \right]
\times \left(\sqrt{\frac{k}{n \wedge m}} + \frac{k}{n \wedge m} \right).
\]

Moreover, for any \(\lambda_{m,m} \in (0, 1/2) \),

\[
\mathbb{E} \left[\sup_{\lambda \in [\lambda_m, 1 - \lambda_m]} \left\{ \left| \text{KL}(\hat{P}_n \| \hat{Q}_m) - \text{KL}(P \| Q) \right| + \left| \text{KL}(\hat{Q}_m \| \hat{P}_n) - \text{KL}(Q \| P) \right| \right\} \right]
\leq 2 \left(1 + \frac{1}{\lambda_{m,m}} \right) \log n + \log \frac{1}{\lambda_{m,m}} + \frac{1}{2} + 1 \sqrt{\frac{1}{8\lambda_{m,m}}} \left(\sqrt{\frac{k}{n \wedge m}} + \frac{k}{n \wedge m} \right).
\]

Proof. We only prove the second inequality. The first one is a direct consequence of Prop. 10 and Prop. 16. From the proof of Prop. 16 we have

\[
\left| \text{KL}(\hat{P}_n \| \hat{Q}_m) - \text{KL}(P \| Q) \right|
\leq \sum_{a \in \mathcal{A}} \mathbb{E} \left[\mathbb{I} \{ \hat{P}_n(a) = 0 \} P(a) \left(C_1 \max \{1, \log(1/P(a))\} + C_0^\kappa \lor C_2 \right) \right]
+ \sum_{a \in \mathcal{A}} \mathbb{I} \{ \hat{Q}_m(a) = 0 \} Q(a) \left(C_1^\kappa \max \{1, \log(1/Q(a))\} + C_0 \lor C_2^\kappa \right)
+ \sum_{a \in \mathcal{A}} P(a) - \hat{P}_n(a) \left| \left(C_1 \log n + C_0^\kappa \lor C_2 \right) \right| + \sum_{a \in \mathcal{A}} |Q(a) - \hat{Q}_m(a)| \left(C_1^\kappa \log m + C_0 \lor C_2^\kappa \right).
\]
Note that, for the interpolated KL divergence, we have
\[C_0 = 1 - \lambda \leq 1, \quad C_0^* = \log \frac{1}{\lambda} - 1 + \lambda \leq \log \frac{1}{\lambda n,m} \]
\[C_1 = 1, \quad C_1^* = \frac{(1 - \lambda)^2}{\lambda} \leq \frac{1}{\lambda n,m} \]
\[C_2 = 1/2, \quad C_2^* = \frac{1 - \lambda}{8\lambda} \leq \frac{1}{8\lambda n,m} \]
for all \(\lambda \in [\lambda n,m, 1 - \lambda n,m] \). The claim then follows from the same steps of Prop. 16.

D.2 Concentration bound

We now state and prove the concentration bound for general \(f \)-divergences which satisfy our regularity assumptions. We start by considering concentration around the expectation.

Proposition 21. Consider the \(f \)-divergence \(D_f \) where \(f \) satisfies Assumptions (A1)-(A3). For any \(t > 0 \) and any discrete distributions \(P, Q \), we have,
\[
\mathbb{P} \left(|D_f(\hat{P}_n \| \hat{Q}_m) - E[D_f(\hat{P}_n \| \hat{Q}_m)]| > \varepsilon \right) \leq 2 \exp \left(-\frac{(n \wedge m)\varepsilon^2}{2(c_1 \log (n \wedge m) + c_2)^2} \right),
\]
where \(c_1 = C_1 + C_1^* \) and \(c_2 = C_2 \vee C_2^* \vee C_0 \).

Proof. We first establish that \(D_f \) satisfies the bounded deviation property and then invoke McDiarmid’s inequality.

We start with some notation. As before, define \(\psi(p,q) = q f(p/q) \). Without loss of generality, let \(X = \text{Supp}(P) \cup \text{Supp}(Q) \). Define the function \(\Phi : X^{n+m} \to \mathbb{R} \) so that
\[\Phi(X_1, \ldots, X_n, Y_1, \ldots, Y_m) = D_f(\hat{P}_n \| \hat{Q}_m). \]

We now show the bounded deviation property of \(\Phi \). Fix some \(T = (x_1, \ldots, x_n, y_1, \ldots, y_m) \in X^{n+m} \) and let \(T' = (x_1', \ldots, x_n', y_1', \ldots, y_m') \in X^{n+m} \) be such that \(T \) and \(T' \) differ only on \(x_i = a \neq a' = x'_i \). Suppose the number of occurrences of \(a \) in the \(x \)-component of \(T \) is \(l \) and of \(a' \) is \(l' \), while their corresponding \(y \)-components are \(mq \) and \(mq' \) respectively. We now have
\[
|\Phi(T') - \Phi(T)| = \left| \psi \left(\frac{s - 1}{n}, q \right) - \psi \left(\frac{s}{n}, q \right) + \psi \left(\frac{s' + 1}{n}, q' \right) - \psi \left(\frac{s'}{n}, q' \right) \right|
\leq \psi \left(\frac{s - 1}{n}, q \right) - \psi \left(\frac{s}{n}, q \right) + \psi \left(\frac{s' + 1}{n}, q' \right) - \psi \left(\frac{s'}{n}, q' \right)
\leq \frac{2}{n} (C_1 \log n + C_0 \vee C_2) =: B_i,
\]
where we used the triangle inequality first and then invoked Lem. 14. Likewise, if \(A \) and \(A' \) differ only in \(y_i \) and \(y'_i \), an analogous argument gives
\[
|\Phi(T') - \Phi(T)| \leq \frac{2}{m} (C_1^* \log m + C_0 \vee C_2^*) =: B_i^*.
\]
With this we can use McDiarmid’s inequality (cf. Thm. 29) to bound
\[
\mathbb{P} \left(|D_f(\hat{P}_n \| \hat{Q}_m) - E[D_f(\hat{P}_n \| \hat{Q}_m)]| > \varepsilon \right) \leq h(\varepsilon),
\]
where
\[
h(\varepsilon) = 2 \exp \left(-\frac{2 \varepsilon^2}{\sum_{i=1}^n B_i^2 + \sum_{i=n+1}^{n+m}(B_i^*)^2} \right) \leq 2 \exp \left(-\frac{(n \wedge m)\varepsilon^2}{2(c_1 \log (n \wedge m) + c_2)^2} \right).
\]

Hence, the concentration bound around the population \(f \)-divergence follows directly from Prop. 16 and Prop. 21.
Theorem 22. Assume that P and Q are discrete and let $k = \left| \text{Supp}(P) \right| \lor \left| \text{Supp}(Q) \right| \in \mathbb{N} \cup \{\infty\}$. For any $\delta \in (0, 1)$, it holds that, with probability at least $1 - \delta$,

\[
\left| D_f(\hat{P}_n\|\hat{Q}_m) - D_f(P\|Q) \right| \leq (c_1 \log(n \land m) + c_2) \sqrt{\frac{2}{n \land m} \log \frac{2}{\delta}} + (C_1 \log n + C_0^\ast \lor C_2) \alpha_n(P) + (C_1^\ast \log m + C_0 \lor C_2) \alpha_m(Q) + (C_1 + C_0 \lor C_2) \beta_n(P) + (C_1^\ast + C_0 \lor C_2) \beta_m(Q).
\]

Furthermore, if $k < \infty$, then, with probability at least $1 - \delta$,

\[
\left| D_f(\hat{P}_n\|\hat{Q}_m) - D_f(P\|Q) \right| \leq (c_1 \log(n \land m) + c_2) \left(\sqrt{\frac{2}{n \land m} \log \frac{2}{\delta}} + \sqrt{\frac{k}{n \land m} + \frac{k}{n \land m}} \right).
\]

Proof of Thm. 22. We only prove the second inequality. The first one follows from a similar argument. According to Prop. 16, we have

\[
\left| D_f(\hat{P}_n\|\hat{Q}_m) \right| \leq \mathbb{E}[D_f(\hat{P}_n\|\hat{Q}_m)] + \mathbb{E}[D_f(\hat{P}_n\|\hat{Q}_m) - D_f(P\|Q)]
\]

\[
\geq \left| D_f(\hat{P}_n\|\hat{Q}_m) - D_f(P\|Q) \right| - \mathbb{E}[D_f(\hat{P}_n\|\hat{Q}_m)] - D_f(P\|Q)
\]

\[
\geq \left| D_f(\hat{P}_n\|\hat{Q}_m) - D_f(P\|Q) \right| - (c_1 \log(n \land m) + c_2) \left(\sqrt{\frac{k}{n \land m} + \frac{k}{n \land m}} \right).
\]

By Prop. 21, it holds that

\[
P \left(\left| D_f(\hat{P}_n\|\hat{Q}_m) - D_f(P\|Q) \right| > \varepsilon + (c_1 \log(n \land m) + c_2) \left(\sqrt{\frac{k}{n \land m} + \frac{k}{n \land m}} \right) \right) \leq h(\varepsilon),
\]

where

\[
h(\varepsilon) = 2 \exp \left(-\frac{(n \land m)\varepsilon^2}{2(c_1 \log(n \land m) + c_2)^2} \right).
\]

The claim then follows from setting $h(\varepsilon) = \delta$ and solving for ε.

\[\square\]

E Add-constant smoothing: statistical error

In this section, we apply add-constant smoothing to estimate the f-divergences and study its statistical error. All the results hold for the linearized cost $L_\lambda(\hat{P}_n, \hat{Q}_n)$ and the frontier integral $\text{FI}(\hat{P}_n, \hat{Q}_n)$ due to Prop. 11 and Prop. 12.

For notational simplicity, we assume that P and Q are supported on a common finite alphabet with size $k < \infty$. Without loss of generality, let \mathcal{X} be the support. Consider $P \in \mathcal{P}(\mathcal{X})$ and an i.i.d. sample $\{X_i\}_{i=1}^n \sim P$. The add-constant estimator of P is defined by

\[
\hat{P}_{n,b}(a) = \frac{N_a + b}{n + kb}, \quad \text{for all } a \in \mathcal{X},
\]

where $b > 0$ is a constant and $N_a = |\{i \in [n] : X_i = a\}|$ is the number of times the symbol a appears in the sample. In practice, $b = b_n$ could be different depending on the value of N_a, but we use the same constant b for simplicity. Similarly, We define $\hat{Q}_{m,b}$ with $M_a = |\{i \in [m] : Y_i = a\}|$.

The goal is to upper bound the statistical error

\[
\mathbb{E} \left| D_f(P\|Q) - D_f(\hat{P}_{n,b}\|\hat{Q}_{m,b}) \right|
\]

under Assumption 8.

Compared to the statistical error of the plug-in estimator, a key difference is that each entry in the add-constant estimator is at least $(n + kb)^{-1} \land (m + kb)^{-1}$. Hence, we can directly apply the approximate Lipschitz lemma without the need to control the missing mass part. Another difference is that the total variation distance is now between the add-constant estimator and its population counterpart, which can be bounded as follows.
Lemma 23. Assume that $k = \text{Supp}(P) < \infty$. Then, for any $b > 0$,
\[
\sum_{a \in \mathcal{X}} \mathbb{E} \left| \hat{P}_{n,b}(a) - P(a) \right| \leq \sum_{a \in \mathcal{X}} \sqrt{\frac{n P(a)(1 - P(a)) + bk |P(a) - 1/k|}{n + kb}} \leq \frac{\sqrt{kn + 2b(k - 1)}}{n + kb}.
\]

Proof. Note that
\[
\left| \hat{P}_{n,b}(a) - P(a) \right| = \left| \frac{N_a - n P(a)}{n + kb} + b(1 - k P(a)) \right| \leq \left| \frac{N_a - n P(a)}{n + kb} \right| + \left| b(1 - k P(a)) \right|.
\]
Using Jensen’s inequality, we have
\[
\sum_{a \in \mathcal{X}} \mathbb{E} \left| \hat{P}_{n,b}(a) - P(a) \right| \leq \sum_{a \in \mathcal{X}} \left[\sqrt{\frac{n P(a)(1 - P(a))}{n + kb}} + \frac{c |1 - k P(a)|}{n + kb} \right].
\]
We claim that
\[
\sum_{a \in \mathcal{X}} \left| P(a) - \frac{1}{k} \right| \leq \frac{2(k - 1)}{k}.
\]
If this is true, we have
\[
\sum_{a \in \mathcal{X}} \mathbb{E} \left| \hat{P}_{n,b}(a) - P(a) \right| \leq \frac{\sqrt{kn + 2b(k - 1)}}{n + kb},
\]
since $\sum_{a \in \mathcal{X}} \sqrt{P(a)(1 - P(a))} \leq \sqrt{k}$ It then remains to prove the claim. Take $a_1, a_2 \in \mathcal{X}$ such that $P(a_1) \geq k^{-1} \geq P(a_2)$. It is clear that
\[
\left| P(a_1) - \frac{1}{k} \right| + \left| P(a_2) - \frac{1}{k} \right| \leq \left| P(a_1) + P(a_2) - \frac{1}{k} \right| + \left| P(a_2) - P(a_2) - \frac{1}{k} \right|
\]
Repeating this argument gives
\[
\sum_{a \in \mathcal{X}} \left| P(a) - \frac{1}{k} \right| \leq 1 - \frac{1}{k} + k - \frac{1}{k} = \frac{2(k - 1)}{k}.
\]

The next proposition gives the upper bound for the statistical error of the add-constant estimator.

Proposition 24. Suppose that f satisfies Assumption 8 and $k = |\mathcal{X}| < \infty$. We have, for any $n, m \geq 3$,
\[
\mathbb{E} \left| D_f(P || Q) - D_f(\hat{P}_{n,b} || \hat{Q}_{m,b}) \right| \leq \left[\frac{\alpha_n(P)}{n + kb} + \gamma_{n,k}(P) \right] \left(C_1 \log(n/b + k) + C_0^* \cap C_2 \right)
\]
\[
+ \left[\frac{\alpha_m(Q)}{m + kb} + \gamma_{m,k}(Q) \right] \left(C_1^* \log(m/b + k) + C_0 \cap C_2^* \right)
\]
\[
\leq \left(C_1 \log(n/b + k) + C_0^* \cap C_2 \right) \frac{\sqrt{kn} + 2b(k - 1)}{n + kb}
\]
\[
+ \left(C_1^* \log(m/b + k) + C_0 \cap C_2^* \right) \frac{\sqrt{km} + 2b(k - 1)}{m + kb},
\]
where $\gamma_{n,k}(P) = (n + bk)^{-1}bk \sum_{a \in \mathcal{X}} |P(a) - 1/k|$.

Proof. Following the proof of Prop. 16, we define

\[\Delta_{n,m}(a) := \left| \psi(P(a), Q(a)) - \psi(\hat{P}_{n,b}(a), \hat{Q}_{m,b}(a)) \right|. \]

We have from the triangle inequality that

\[\Delta_{n,m}(a) \leq \left(\psi(P(a), Q(a)) - \psi(\hat{P}_{n,b}(a), Q(a)) \right) + \left(\psi(\hat{P}_{n,b}(a), Q(a)) - \psi(\hat{P}_{n,b}(a), \hat{Q}_{m,b}(a)) \right), \]

Since \(\hat{P}_{n,b}(a) \geq b/(n + kb) \), the approximate Lipschitz lemma (Lem. 14) gives

\[\mathcal{T}_1(a) \leq |P(a) - \hat{P}_{n,b}(a)| \left(C_1 \log(n/b + k) + C_0^* \vee C_2 \right), \]

By Lem. 23, it holds that

\[\frac{\sum_{a \in \mathcal{X}} \mathbb{E}[\mathcal{T}_1(a)]}{C_1 \log(n/b + k) + C_0^* \vee C_2} \leq \sum_{a \in \mathcal{X}} \left[\frac{\sqrt{nP(a)}}{n + kb} + \frac{bk|1/k - P(a)|}{n + kb} \right] = \frac{n\alpha_n(P)}{n + kb} + \gamma_{n,k}(P) \]

\[\leq \frac{\sqrt{kn} + 2b(k - 1)}{n + kb}. \]

Since \(\psi(p, q) = qf(p/q) = pf^*(q/p) \), an analogous bound holds for \(\mathcal{T}_2(a) \) with the appropriate adjustment of constants and the sample size. Putting these together, we get,

\[\mathbb{E}[D_f(P \parallel Q) - D_f(\hat{P}_{n,b} \parallel \hat{Q}_{m,b})] \leq \mathbb{E} \left[\sum_{a \in \mathcal{X}} |\Delta_{n}(a)| \right] \leq \left[\frac{n\alpha_n(P)}{n + kb} + \gamma_{n,k}(P) \right] \left(C_1 \log(n/b + k) + C_0^* \vee C_2 \right) \]

\[+ \left[\frac{m\alpha_m(Q)}{m + kb} + \gamma_{m,k}(Q) \right] \left(C_1^* \log(m/b + k) + C_0 \vee C_2^* \right) \]

\[\leq \left(C_1 \log(n/b + k) + C_0^* \vee C_2 \right) \frac{\sqrt{kn} + 2b(k - 1)}{n + kb} \]

\[+ \left(C_1^* \log(m/b + k) + C_0 \vee C_2^* \right) \frac{\sqrt{km} + 2b(k - 1)}{m + kb}. \]

\(\square \)

The concentration bound for the add-constant estimator can be proved similarly.

F Quantization error

In this section, we study the quantization error of f-divergences, i.e.,

\[\inf_{|\mathcal{S}| \leq k} \left| D_f(P \parallel Q) - D_f(P_{\mathcal{S}} \parallel Q_{\mathcal{S}}) \right|, \]

where the infimum is over all partitions of \(\mathcal{X} \) of size no larger than \(k \), and \(P_{\mathcal{S}} \) and \(Q_{\mathcal{S}} \) are the quantized versions of \(P \) and \(Q \) according to \(\mathcal{S} \), respectively. Note that we do not assume \(\mathcal{X} \) to be discrete in this section. All the results hold for the linearized cost \(L_{\lambda}(P_n, Q_n) \) and the frontier integral \(\mathcal{F}(P_n, Q_n) \) due to Prop. 11 and Prop. 12.

Our analysis is inspired by the following result, which shows that the f-divergence can be approximated by its quantized counterpart; see, e.g., [22, Theorem 6].

Theorem 25. For any \(P, Q \in \mathcal{P}(\mathcal{X}) \), it holds that

\[D_f(P \parallel Q) = \sup_{\mathcal{S}} D_f(P_{\mathcal{S}} \parallel Q_{\mathcal{S}}), \]

where the supremum is over all finite partitions of \(\mathcal{X} \).
The next theorem holds for general f-divergences without the requirement of Assumption 8.

Theorem 26. For any $k \geq 1$, we have

$$\sup_{P,Q} \inf_{|S| \leq 2k} |D_f(P||Q) - D_f(P_S||Q_S)| \leq \frac{f(0) + f^*(0)}{k}.$$

Proof. Assume $f(0) + f^*(0) < \infty$. Otherwise, there is nothing to prove. Fix two distributions P, Q over \mathcal{X}. Partition the measurable space \mathcal{X} into

$$\mathcal{X}_1 = \left\{ x \in \mathcal{X} : \frac{dP}{dQ}(x) \leq 1 \right\}, \quad \text{and} \quad \mathcal{X}_2 = \left\{ x \in \mathcal{X} : \frac{dP}{dQ}(x) > 1 \right\},$$

so that

$$D_f(P||Q) = \int_{\mathcal{X}_1} f\left(\frac{dP}{dQ}(x)\right) dQ(x) + \int_{\mathcal{X}_2} f^*\left(\frac{dQ}{dP}(x)\right) dP(x) =: D_f^+(P||Q) + D_f^+(Q||P).$$

We quantize \mathcal{X}_1 and \mathcal{X}_2 separately, starting with \mathcal{X}_1. Define sets S_1, \ldots, S_k as

$$S_m = \left\{ x \in \mathcal{X}_1 : \frac{f(0)(m-1)}{k} \leq f\left(\frac{dP}{dQ}(x)\right) \leq \frac{f(0)m}{k} \right\},$$

where the last set S_k is also extended to include $\{ x \in \mathcal{X}_1 : f((dP/dQ)(x)) = f(0) \}$. Since f is nonincreasing on $[0, 1)$, it follows that $\sup_{x \in S_m} f((dP/dQ)(x)) \leq f(0)$. As a result, the collection $\mathcal{S} = \{ S_1, \ldots, S_k \}$ is a partition of \mathcal{X}_1. This gives

$$\frac{f(0)}{k} \sum_{m=1}^k (m-1) Q[S_m] \leq D_f^+(P||Q) \leq \frac{f(0)}{k} \sum_{m=1}^k m Q[S_m]. \quad (21)$$

Further, since f is nonincreasing on $[0, 1)$, we also have

$$\frac{f(0)(m-1)}{k} \leq f\left(\inf_{x \in S_m} \frac{dP}{dQ}(x)\right) \leq f\left(\sup_{x \in S_m} \frac{dP}{dQ}(x)\right) \leq \frac{f(0)m}{k}.$$

Hence, it follows that

$$\frac{f(0)}{k} \sum_{m=1}^k (m-1) Q[S_m] \leq D_f^+(P_S||Q_S) \leq \frac{f(0)}{k} \sum_{m=1}^k m Q[S_m]. \quad (22)$$

Putting (21) and (22) together gives

$$\inf_{|S_1| \leq k} \left| D_f^+(P||Q) - D_f^+(P_S||Q_S) \right| \leq \frac{f(0)}{k} \sum_{m=1}^k Q[S_m] \leq \frac{f(0)}{k}, \quad (23)$$

since $\sum_{m=1}^k Q[S_m] = Q[\mathcal{X}_1] \leq 1$. Repeating the same argument with P and Q interchanged and replacing f by f^* gives

$$\inf_{|S_2| \leq k} \left| D_f^+(Q||P) - D_f^+(Q_S||P_S) \right| \leq \frac{f^*(0)}{k}. \quad (24)$$

To complete the proof, we upper bound the inf of S over all partitions of \mathcal{X} with $|S| = k$ by the inf over $S = S_1 \cup S_2$ with partitions S_1 of \mathcal{X}_1 and S_2 of \mathcal{X}_2, and $|S_1| = |S_2| = k$. Now, under this partitioning, we have, $D_f^+(P_S||Q_S) = D_f^+(P_{S_1}||Q_{S_1})$ and $D_f^+(Q_S||P_S) = D_f^+(Q_{S_2}||P_{S_2})$. Putting this together with the triangle inequality, we get,

$$\inf_{|S| \leq 2k} \left| D_f(P||Q) - D_f(P_S||Q_S) \right| \leq \inf_{S = S_1 \cup S_2} \left\{ \left| D_f^+(P||Q) - D_f^+(P_S||Q_S) \right| + \left| D_f^+(Q||P) - D_f^+(Q_S||P_S) \right| \right\}$$

$$= \inf_{|S_1| \leq k} \left| D_f^+(P||Q) - D_f^+(P_{S_1}||Q_{S_1}) \right| + \inf_{|S_2| \leq k} \left| D_f^+(Q||P) - D_f^+(Q_{S_2}||P_{S_2}) \right|$$

$$\leq \frac{f(0) + f^*(0)}{k}.$$

\qed
Then, for any k be a partition of \mathcal{X} such that $|S| = k \geq 2$ and its quantization error satisfies the bound in Thm. 26, i.e.,

$$|D_f(P\|Q) - D_f(P_{S_k}\|Q_{S_k})| \leq \frac{f(0) + f^*(0)}{k}.$$

Then, for any $n, m \geq 3$,

$$E \left| D_f(P_{S_k,n}\|Q_{S_k,m}) - D_f(P\|Q) \right| \leq (C_1 \log n + C_0 \lor C_2) \alpha_n(P) + \left(C_1^* \log m + C_0 \lor C_2^* \alpha_m(Q) + (C_1 + C_0 \lor C_2) \beta_n(P) + (C_1^* + C_0 \lor C_2^*) \beta_m(Q) + \frac{f(0) + f^*(0)}{k}\right)$$

$$\leq (c_1 \log (n \land m) + c_2) \left(\sqrt{\frac{k}{n \land m}} + \frac{k}{n \land m}\right) + \frac{f(0) + f^*(0)}{k},$$

where $c_1 = C_1 + C_1^*$ and $c_2 = C_2 \lor C_0 + C_2^* \lor C_0$.

According to Thm. 27, a good choice of quantization level k is of order $\Theta(n^{1/3})$ which balances between the two types of errors.

G Experimental details

We investigate the empirical behavior of the divergence frontier and the frontier integral on both synthetic and real data. Our main findings are: 1) the statistical error bound is tight—it approximately reveals the rate of convergence of the plug-in estimator. 2) The smoothed distribution estimators improve the estimation accuracy. For simplicity, we consider $m = n$ throughout this section.

Performance Metric. We are interested in the estimation of the divergence frontier $\mathcal{F}(P, Q)$ and the frontier integral $\text{FI}(P, Q)$ using estimators $\hat{\mathcal{F}}(P_n, Q_n)$ and $\hat{\text{FI}}(P_n, Q_n)$, respectively. We measure the quality of estimation using the absolute error, which is defined as

$$\sup_{\lambda \in [0.01, 0.99]} \left\{ \left| \text{KL}(\hat{P}_n\|\hat{R}_\lambda) - \text{KL}(P\|R) \right| + \left| \text{KL}(\hat{Q}_n\|\hat{R}_\lambda) - \text{KL}(Q\|R) \right| \right\}$$

for the divergence frontier (cf. Cor. 2 with $\lambda_0 = 0.01$), and, $|\text{FI}(\hat{P}_n, \hat{Q}_n) - \text{FI}(P, Q)|$ for the frontier integral. Here $\hat{R}_\lambda := \lambda \hat{P}_n + (1 - \lambda) \hat{Q}_n$. For the real data, we measure the error of estimating $\mathcal{F}(P_{S_k}, Q_{S_k})$ by $\mathcal{F}(\hat{P}_{S_k,n}, \hat{Q}_{S_k,n})$ and similarly for FI. The results for the divergence frontier are almost identical to the result for the frontier integral. We present both of them in the plots but focus on the latter in the text.

G.1 Synthetic data

We focus on the case when the support is finite and illustrate the statistical behavior of the Frontier Integral on synthetic data.

Settings. Let $k = |\mathcal{X}|$ be the support size. Following the experimental settings in [47], we consider three types of distributions: 1) the Zipf(r) distribution with $r \in \{0, 1, 2\}$ where $P(i) \propto i^{-r}$. Note that Zipf(r) is regularly varying with index $-r$; see, e.g., [56, Appendix B]. 2) the Step distribution where $P(i) = 1/2$ for the first half bins and $P(i) = 3/2$ for the second half bins. 3) the Dirichlet
As shown in Fig. 9, the two bounds decreases with n at a similar rate. The oracle bound demonstrates the largest improvement compared to the bound when both P and Q have fast-decaying tails (i.e., with index -2). In some cases, the Monte Carlo estimate demonstrates a similar rate of convergence as the bounds; while, in other cases, the Monte Carlo estimate can have a faster rate. This suggests that the bound (5) is at least close to being tight up to a multiplicative constant.

Fig. 10 shows that the oracle bound increases with k at a slower rate than the one of the bound. In fact, it is much slower when both P and Q decay fast. For the Monte Carlo estimate, it can have either a slower or faster rate than the bound depending on the underlying distributions.

The results for the third experiment is in Fig. 11. While the bound remains the same for different tails of Q, the oracle bound is adapted to the decaying index of Q. The absolute error of the Monte Carlo estimate is usually increasing in the beginning and then decreasing after some threshold.

Distribution estimators. We then compare 4 different distribution estimators with the empirical measures (“Empirical”) as discussed in [47]. For each $a \in \mathcal{X}$, let n_a be the number of times a appears in the sample $\{X_i\}_{i=1}^n$ and let ϕ_t be the number of symbols appearing t times in the sample. The (modified) Good-Turing estimator is defined as $\hat{P}_{GT,n}(a) \propto n_a$ if $n_a > \phi_{n_a+1}$ and $\hat{P}_{GT,n}(a) \propto \lceil \phi_{n_a+1} + 1 \rceil (n_a + 1) / \phi_{n_a}$ otherwise. The remaining three estimators are all based on the add-b smoothing introduced in Sec. 3. For the Braess-Sauer estimator, the parameter $b = b_0$ is
We consider the same three experiments as for the statistical error. As shown in Fig. 12, the rate (log-log scale) for the frontier integral (top) and the divergence frontier (bottom) has a similar performance as empirical measures. When P estimators are much larger than the one of empirical measures, while the Good-Turing estimator performs better than the empirical measures P for relatively small sample size and performs worse as the sample size increases. When one of the measures slightly while the Good-Turing estimator performs better than the empirical measures P estimator. When n the Krichevsky-Trofimov data-dependent and chosen as $b \equiv b_a = 1/2$ if $n_a = 0, b_a = 1$ if $n_a = 1$ and $b_a = 3/4$ otherwise. For the Krichevsky-Trofimov estimator, the parameter $b \equiv 1/2$. For the Laplace estimator, the parameter $b \equiv 1$. See Tab. 2 for a summary.

We consider the same three experiments as for the statistical error. As shown in Fig. 12, the rate of convergence in n of all estimators are similar except for some fluctuations of the Good-Turing estimator. When $P = Q$ (i.e., Zipf(1)), the add-constant estimators outperforms the empirical measures slightly while the Good-Turing estimator performs better than the empirical measures for relatively small sample size and performs worse as the sample size increases. When one of the distribution has a fast-decaying tail (i.e., $P \sim$ Zipf(2)), the absolute error of the add-constant estimators are much larger than the one of empirical measures, while the Good-Turing estimator has a similar performance as empirical measures. When P and Q are different and do not have
Figure 12: Statistical error versus sample size on synthetic data with $k = 10^3$ (log-log scale) for the frontier integral (top) and the divergence frontier (bottom). (a): Zipf(1) and Step; (b): Zipf(0) and Dir(1/2); (c): Zipf(2) and Dir(1); (d): Zipf(1) and Zipf(1).

Figure 13: Absolute error versus support size on synthetic data with $n = 2 \times 10^4$ (log-log scale) for the frontier integral (top) and the divergence frontier (bottom). (a): Zipf(1) and Step; (b): Zipf(0) and Dir(1/2); (c): Zipf(2) and Dir(1); (d): Zipf(1) and Zipf(1).

fast-decaying tails, the Krichevsky-Trofimov estimator enjoys the largest improvement compared to the empirical measures.

Fig. 13 presents the results for increasing support size. The findings are similar to the ones in the first experiment except that the absolute error is increasing here rather than decreasing.

Fig. 14 shows that the Good-Turing estimator is relatively more robust to the tail decaying index than other estimators. When $P \sim$ Zipf(2), the absolute error of the add-constant estimators is much larger than the one of the empirical measures in the beginning and then becomes slightly smaller in the end. In other cases, this behavior is reversed.

To summarize, when two distributions are the same, all estimators perform similarly with the Good-Turing estimator being the worst. When there is one distribution whose tail decays fast,
Figure 14: Absolute error versus sample size on synthetic data with $k = 10^3$ and $n = 10^4$ (log-log scale) for the frontier integral (top) and the divergence frontier (bottom). (a): $P \sim \text{Dir}(1)$; (b): $P \sim \text{Step}$; (c): Zipf(0); (d): Zipf(2).

Figure 15: Absolute error versus number of bins for different quantization strategies with support size 600 (log-log scale). (a): $\text{Dir}(1)$ and $\text{Dir}(1/2)$; (b): Zipf(0) and $\text{Dir}(1/2)$; (c): Zipf(2) and Step; (d): Zipf(1) and Zipf(2).

the Good-Turing estimator slightly outperforms the empirical measure; while the add-constant estimators have much larger absolute errors. When the tails of both distributions decay slowly, the Krichevsky-Trofimov estimator has the best performance over all estimators.

Quantization error. We study the bound on the quantization error as in (6). Since the absolute error is always zero when $P = Q$, we have $21 - 6 = 15$ different pairs of (P, Q). We consider three different quantization strategies: 1) the *uniform* quantization which quantizes the distributions into equally spaced bins based on their original ordering; 2) the *greedy* quantization which sorts the bins according to the ratios $\{P(a)/Q(a)\}_{a \in X}$ and then add split one bin at a time so that the Frontier Integral is maximized; 3) the *oracle* quantization we used to prove (6); see also Fig. 15.

As shown in Fig. 15, the absolute error of the oracle quantization can have a faster rate than $O(k^{-1})$ in some cases. To be more specific, when both P and Q have slow-decaying tails, its absolute error decays roughly as $O(k^{-1.7})$; when one of them has fast-decaying tail, its absolute error decays slower than $O(k^{-1})$ in the beginning and then faster than $O(k^{-1})$. Comparing different quantization strategies, the oracle quantization always outperforms the greedy one. When either P or Q is not ordered, the uniform quantization has the worst performance. When both P and Q are ordered, its absolute error is not monotonic—it is quite small in the beginning and then becomes larger.
G.2 Real data

We analyze the performance of the bounds as well as the various smoothed estimators in the context evaluating generative models for images and text using divergence curves. All experiments models are trained on a workstation with 8 Nvidia Quadro RTX GPUs (24G memory each). The image experiments were trained with 2 GPUs at once while the text ones used all 8.

Tasks and datasets. We consider two domains: images and text. For the image domain, we train a generative model for the CIFAR-10 dataset [36] based on StyleGAN2-Ada [32]. We use the publicly available code\(^6\) with their default hyperparameters and train on 2 GPUs. In order to enable the code to run faster, we make two architectural simplifications: (a) we reduce the channel dimensions for each convolution layer in the generator from 512 to 256, and, (b) we reduce the number of styled convolution layers for each resolution from 2 to 1. In particular, the latter effectively cuts the number of convolution layers in half. This leads to a 6.6x reduction in running time at the cost of a slightly worse FID [27] of 4.7 rather than the 2.4 of the original network. In order to compute the divergence frontier, we use the test set of 10000 images as the target distribution \(P\) and we sample 10000 images from the generative model as the model distribution \(Q\).

For the text domain, we finetune a pretrained GPT-2 [50] model with 124M parameters (i.e., GPT-2 small) on the Wikitext-103 dataset [43]. We use the open-source HuggingFace Transformers library [65] for training. To form a sufficiently large evaluation set, we finetune on 90% of the wikitext-103 training dataset, and use the remaining 10% plus the validation set as an evaluation set. Finetuning is done on 4 GPUs for 2k iterations, with sequences of 1024 tokens and a batch size of 8 sequences. For generation, we split the evaluation set into 10k sequences of 500 tokens, and split each sequence into a prefix of length 100 and a continuation of length 400. The prefix paired with the continuation (a “completion”) is considered a sample from \(P\). Using the finetuned model we generate a continuation for each prefix using top-\(p\) sampling with \(p = 0.9\). Each prefix paired with its generated continuation is considered a sample from \(Q\).

Settings. In order to compute the divergence frontier, we jointly quantize \(P\) and \(Q\), not directly in a raw image/text space, but in a feature space [54, 37, 27]. Specifically, we represent each image by its features from a pretrained ResNet-50 model [25], and each text generation by its terminal hidden state under a pretrained the 774M GPT-2 model (i.e., GPT-2 large). In order to quantize these features, we learn a 4 or 5 dimensional embedding of the image/text features using a deep network which maintains the neighborhood structure of the data while encouraging the features to be uniformly distributed on the unit sphere [53], and simply quantize these embeddings on a uniform lattice with \(k\) bins. For each support size \(k\), this gives us quantized distributions \(P_{S_k}, Q_{S_k}\). We then sample \(n\) i.i.d points each from these distributions and consider the empirical distributions \(\hat{P}_{S_k,n}, \hat{Q}_{S_k,n}\) as well as the add-constant and Good-Turing estimators computed form these samples. We repeat this 100 times to a Monte Carlo estimate of the expected absolute error \(\mathbb{E}[F] (\hat{P}_{S_k,n}, \hat{Q}_{S_k,n}) - F(\hat{P}_{S_k}, \hat{Q}_{S_k})\) as well as its standard error.

Statistical error. We compare the distribution-dependent bound (“oracle bound”) and the distribution-free bound (“bound”) to the Monte Carlo estimates described above. We consider two experiments. First, we fix the support size \(k\) and vary the sample size \(n\) from 100 to 25000. Second, we fix the sample size \(n\) and vary the support size \(k\) from 8 to 2048 in powers of 2.

We observe Fig. 16 that both the distribution-free and distribution-dependent bounds decrease with the sample size \(n\) at a similar rate. For \(k = 1024\) or \(k = 2048\), we observe that the bound has approximately the same slope as the Monte Carlo estimate in log-log scale; this means that they exhibit a near-identical rate of convergence than the bound for \(k = 64\) or \(k = 128\). Therefore, the bounds capture the worst-case behavior of real image and text data.

Next, we see from Fig. 17 that the two bounds again exhibit near-identical rates with the support size \(k\). We observe again that the slope of the Monte Carlo estimate and that of the bounds are close for \(n = 1000\), indicating a similar scaling with respect to \(k\). However, the Monte Carlo estimate grows faster than the bound for \(n = 10000\).

\(^6\)https://github.com/NVlabs/stylegan2-ada-pytorch
Table 3: The frontier integral with pretrained and finetuned feature embedding models.

<table>
<thead>
<tr>
<th>Quantization level k</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pretrained</td>
<td>3.38e-5</td>
<td>2.64e-5</td>
<td>2.84e-4</td>
<td>1.47e-3</td>
<td>3.25e-3</td>
<td>6.28e-3</td>
<td>1.18e-2</td>
<td>2.52e-2</td>
<td>5.09e-2</td>
<td></td>
</tr>
<tr>
<td>Finetuned</td>
<td>7.23e-6</td>
<td>1.37e-4</td>
<td>3.98e-4</td>
<td>1.77e-3</td>
<td>2.36e-3</td>
<td>5.31e-3</td>
<td>9.84e-3</td>
<td>1.95e-2</td>
<td>3.49e-2</td>
<td>6.34e-2</td>
</tr>
</tbody>
</table>

Distribution estimators. As in the previous section, we compare the empirical estimator, the (modified) Good-Turing estimator, and three add-b smoothing estimators, namely Laplace, Krichevsky-Trofimov and Braess-Sauer. We consider the same two experiments as for the statistical error.

From Fig. 18, we see that for \(n > k \), we observe similar rates (i.e., similar slopes) for all estimators with respect to the sample size \(n \). The absolute error of the Good-Turing estimator is the worst among all estimators considered for \(k = 64 \) or \(k = 128 \) and \(n \) large. However, for \(k = 1024 \) or \(k = 2048 \), the empirical estimator is the worst. The various add-b estimators work the best in the regime of \(n < k \), where each add-b estimator attains the smallest error at a different \(n \). In particular, the Laplace estimator is the best or close to the best in all each of the settings considered.

Fig. 19 shows the corresponding results for varying \(k \). The results are similar to the previous setting, expect the error increases with \(k \) rather than decreases.

Performance across training. Next, we visualize the divergence frontiers and the corresponding frontier integral across training in Fig. 20. On the left, we plot the divergence curve at initialization (or with the pretrained model in case of text), at the first checkpoint (“Partly”) and the fully trained model (“Final”). We observe that the divergence frontiers for the fully trained model are closer to the origin than the partially trained ones or the model at initialization. This denotes a smaller loss of precision and recall for the fully trained model. The frontier integral, as a summary statistic, shows the same trend (right).

Fine-tuning the feature embedding model. In our real data experiments, we follow the common practice in this line of research [54, 18, 49] and use a pre-trained feature embedding model to extract feature representations. We also design a procedure to fine-tune the feature embedding model for comparing two distributions here. Concretely, we compare the frontier integral using the following two feature embedding models. First, we use a pretrained 4-layer ConvNet to extract feature embeddings for the generations of the StyleGAN. Second, we reinitialize the output layer of the 4-layer ConvNet, finetune it to distinguish true images from generated ones, and use the finetuned ConvNet to extract features. Finally, we compute the frontier integral using k-means clustering for various values of \(k \). As shown in Tab. 3, the frontier integrals computed via the finetuned ConvNet are slightly larger than the ones without finetuning. This is as expected since the finetuned model usually gives a better feature representation in the sense of distinguishing distributions.

H Length of the divergence frontier

In this section, we discuss how the length of the divergence frontier is different from the frontier integral. In particular, we show that the length of the divergence frontier is lower bounded by the Jeffery divergence, which could be unbounded, whereas the frontier integral is always bounded between 0 and 1.

Setup. Let \(P, Q \) be two distributions on a finite alphabet \(\mathcal{X} \). Recall that the divergence frontier is defined as the parametric curve \(\mathcal{F}(P, Q) := (x(\lambda), y(\lambda)) \) for \(\lambda \in (0, 1) \) where

\[
\begin{align*}
x(\lambda) &= \text{KL}_{1-\lambda}(Q\|P) = \sum_{a \in \mathcal{X}} Q(a) \log \frac{Q(a)}{\lambda P(a) + (1-\lambda)Q(a)} \\
y(\lambda) &= \text{KL}_{\lambda}(P\|Q) = \sum_{a \in \mathcal{X}} P(a) \log \frac{P(a)}{\lambda P(a) + (1-\lambda)Q(a)} .
\end{align*}
\]

Recall that the Jeffery divergence between \(P \) and \(Q \) is defined as

\[
\text{JD}(P, Q) = \text{KL}(P\|Q) + \text{KL}(Q\|P) = \sum_{a \in \mathcal{X}} (P(a) - Q(a)) \left(\log P(a) - \log Q(a) \right) .
\]
Figure 16: Absolute error versus sample size n on real data (log-log scale) for the frontier integral (top) and the divergence frontier (bottom). Left Two: Image data (CIFAR-10) with support sizes $k = 128$ and $k = 1024$. Right Two: Text data (WikiText-103) with support sizes $k = 64$ and $k = 2048$. The bounds are scaled by 15.

Figure 17: Absolute error versus support size k on real data (log-log scale) for the frontier integral (top) and the divergence frontier (bottom). Left Two: Image data (CIFAR-10) with sample sizes $n = 1000$ and $n = 10000$. Right Two: Text data (WikiText-103) with sample sizes $n = 1000$ and $n = 10000$. The bounds are scaled by 15.

Note that $\text{JD}(P, Q)$ is unbounded when there exists an atom such that $P(a) = 0, Q(a) \neq 0$ or $P(a) \neq 0, Q(a) = 0$.

We show that the length of the divergence frontier between P, Q is lower bounded by the corresponding Jeffrey’s divergence, which can be unbounded.

Proposition 28. Consider two distributions P, Q on a finite alphabet X. The length $\text{length}(\mathcal{F}(P, Q))$ of the divergence frontier $\mathcal{F}(P, Q)$ satisfies

$$\text{length}(\mathcal{F}(P, Q)) \geq \frac{1}{\sqrt{2}} \text{JD}(P, Q).$$
Figure 18: Absolute error versus sample size n on real data (log-log scale) for the frontier integral (top) and the divergence frontier (bottom). Left Two: Image data (CIFAR-10) with support size $k = 128$ and $k = 1024$ Right Two: Text data (WikiText-103) with support size $k = 64$ and $k = 2048$.

Figure 19: Absolute error versus support size k on real data for the frontier integral (top) and the divergence frontier (bottom). Left Two: Image data (CIFAR-10) with sample sizes $n = 1000$ and $n = 10000$. Right Two: Text data (WikiText-103) with sample sizes $n = 1000$ and $n = 10000$.

Proof. We assume without loss of generality that $P(a) + Q(a) > 0$ for each $a \in \mathcal{X}$. Define shorthand $R_\lambda = \lambda P + (1 - \lambda)Q$. We bound the length of the divergence frontier $\mathcal{F}(P,Q)$, which is given by
We state here some technical results used in the paper.

Theorem 29 (McDiarmid’s Inequality). Let X_1, \ldots, X_n be independent random variables such that X_i has range \mathcal{X}_i. Let $\Phi : \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \to \mathbb{R}$ be any function which satisfies the bounded difference property. That is, there exist constants $B_1, \ldots, B_n > 0$ such that for every $i = 1, \ldots, n$ and $(x_1, \ldots, x_n), (x'_1, \ldots, x'_n) \in \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$ which differ only on the ith coordinate (i.e., $x_j = x'_j$ for $j \neq i$), we have,

\[|\Phi(x_1, \ldots, x_n) - \Phi(x'_1, \ldots, x'_n)| \leq B_i. \]

Then, for any $t > 0$, we have,

\[\mathbb{P}(|\Phi(X_1, \ldots, X_n) - \mathbb{E}[\Phi(X_1, \ldots, X_n)]| > t) \leq 2 \exp \left(-\frac{2t^2}{\sum_{i=1}^n B_i^2} \right). \]

Property. Suppose $f : (0, \infty) \to [0, \infty)$ is convex and continuously differentiable with $f(1) = 0 = f'(1)$. Then, $f'(x) \leq 0$ for all $x \in (0, 1)$ and $f'(x) \geq 0$ for all $x \in (1, \infty)$.

Proof. Monotonicity of f' means that we have for any $x \in (0, 1)$ and $y \in (1, \infty)$ that $f'(x) \leq f'(y)$. \(\square\)
Lemma 31. For all \(x \in (0, 1) \) and \(n \geq 3 \), we have

\[
0 \leq (1 - x)^n x \log \frac{1}{x} \leq \frac{\log n}{n}.
\]

Proof. Let \(h(x) = (1 - x)^n x \log(1/x) \) be defined on \((0, 1)\). Since \(\lim_{x \to 0} h(x) = 0 < h(1/n) \), the global supremum does not occur as \(x \to 0 \). We first argue that \(h \) obtains its global maximum in \((0, 1/n)\). We calculate

\[
h'(x) = (1 - x)^{n-1} \left(-nx \log \frac{1}{x} + (1 - x) \left(\log \frac{1}{x} - 1 \right) \right) \leq (1 - x)^{n-1} (1 - nx) \log \frac{1}{x}.
\]

Note that \(h'(x) < 0 \) for \(x > 1/n \), so \(h \) is strictly decreasing on \((1/n, 1)\). Therefore, it must obtain its global maximum on \((0, 1/n)\). On this interval, we have,

\[
(1 - x)^n x \log \frac{1}{x} \leq x \log \frac{1}{x} \leq \frac{\log n}{n},
\]

since \(x \log(1/x) \) is increasing on \((0, \exp(-1))\). \(\Box \)

The next lemma comes from [3, Theorem 1].

Lemma 32. For all \(x \in (0, 1) \) and \(n \geq 1 \), we have

\[
0 \leq (1 - x)^n x \leq \exp(-1)/(n + 1) < 1/n.
\]