Supplementary material:
Global Convergence of Online Optimization for Nonlinear Model Predictive Control

A Expression of Newton System

For future references, we explicitly write out each component of \(\mathbf{F} \). For stage \(k \), we let \(H_k(z_k, \lambda_k) = \nabla z_k g_k(z_k) - \lambda_k^T f_k(z_k) \), \(A_k(z_k) = \nabla z_k^T f_k(z_k) \) and \(B_k(z_k) = \nabla u_k f_k(z_k) \). Then, we have
\[
H^t(\tilde{z}_t, \tilde{\lambda}_t) = \text{diag} \left(H_{t,1}, \ldots, H_{M_t-1}, \nabla z_{M_t} g_{M_t}(x_{M_t}, 0) + \mu I \right)
\] (12)
with \(H_k = H_k(z_k, \lambda_k) \) for \(k \in [t, M_t - 1] \), and have
\[
G^t(\tilde{z}_t) = \begin{pmatrix}
-I - B_t - I \\
-A_{t+1} - B_{t+1} - I \\
\vdots \\
-A_{M_t-1} - B_{M_t-1} - I
\end{pmatrix}
\] (13)
with \(A_k = A_k(z_k) \) and \(B_k = B_k(z_k) \). The gradient of Lagrangian \(L^t(\cdot) \) on the right side of \(\mathbf{F} \) can be expressed as
\[
\nabla_{\tilde{z}_t} L^t(\tilde{z}_t, \tilde{\lambda}_t; \tilde{x}_t) = \begin{pmatrix}
\nabla_{\tilde{z}_t} g_t(z_t) + \lambda_{t-1}^T (z_t) \lambda_t \\
\nabla_{\tilde{z}_t} g_t(z_t) + B_t^T (z_t) \lambda_t \\
\vdots \\
\nabla_{\tilde{z}_{M_t-1}} g_{M_t-1}(z_{M_t-1}) + \lambda_{M_t-2}^T (z_{M_t-1}) \lambda_{M_t-1} \\
\nabla_{\tilde{z}_{M_t-1}} g_{M_t-1}(z_{M_t-1}) + B_{M_t-1}^T (z_{M_t-1}) \lambda_{M_t-1} \\
\vdots \\
\nabla_{\tilde{z}_t} g_t(z_t) + \lambda_{M_t-1}^T (z_t) \lambda_{M_t-1}
\end{pmatrix}
\]
\[
\nabla_{\tilde{\lambda}_t} L^t(\tilde{z}_t, \tilde{\lambda}_t; \tilde{x}_t) = \begin{pmatrix}
x_t - \tilde{x}_t \\
x_{t+1} - f_t(z_t) \\
\vdots \\
x_{M_t} - \tilde{f}_{M_t-1}(z_t)
\end{pmatrix}
\] (14)
We also explicitly write out the gradient of the augmented Lagrangian \(\mathbf{F} \) by
\[
\begin{pmatrix}
\nabla_{\tilde{z}_t} L^t_{\eta_t} \\
\nabla_{\tilde{\lambda}_t} L^t_{\eta_t}
\end{pmatrix} = \begin{pmatrix}
I + \eta_t H^t & \eta_t (G^t)^T \\
\eta_t G^t & I
\end{pmatrix} \begin{pmatrix}
\nabla_{\tilde{z}_t} L^t \\
\nabla_{\tilde{\lambda}_t} L^t
\end{pmatrix}.
\] (15)

B Proof of Theorem 4.4

We first have a simple observation: by Assumptions 4.1, 4.2, for any \((\tilde{z}_t, \tilde{\lambda}_t) \in Z \otimes \Lambda \) by \((\tilde{z}_t, \tilde{\lambda}_t) \in Z \times \Lambda \) for all stages \(k \) of the \(t \)-th subproblem, \(\|G^t(\tilde{z}_t)\| \leq 1 + 2 \bar{Y}, \|H^t(\tilde{z}_t, \tilde{\lambda}_t)\| \leq \bar{Y}' + \mu \), and
\[
\|\nabla ((G^t)^T \nabla_{\tilde{\lambda}_t} L^t)(\tilde{z}_t, \tilde{\lambda}_t; \tilde{x}_t)\| \leq \bar{Y}', \quad \|\nabla (H^t \nabla_{\tilde{z}_t} L^t)(\tilde{z}_t, \tilde{\lambda}_t; \tilde{x}_t)\| \leq \bar{Y}' + \mu^2
\] (16)
for some constant \(\bar{Y}' \) not depending on \(\mu \). This is from the definitions (12), (14) and noting that only the last block of \(H' \) and the last row of \(\nabla_{\tilde{z}_t} L^t \) contain \(\mu \). We can also replace \(\bar{Y} \) in Assumption 4.2 by \(\bar{Y} \leftarrow (1 + 2 \bar{Y}) \vee \bar{Y}' \vee \delta \) and require \(\mu \geq \bar{Y} \). Then we have \(\|G^t\| \leq \bar{Y}, \|B^t\| \vee \|H^t\| \leq 2 \mu, \|\nabla ((G^t)^T \nabla_{\tilde{\lambda}_t} L^t)\| \leq \bar{Y}, \) and \(\|\nabla (H^t \nabla_{\tilde{z}_t} L^t)\| \leq 2 \mu^2 \). By the definition of \(H^t \) in (12), without loss of generality we let the last block of \(B^t = \mu I \).

We then provide a formula for the KKT matrix inverse. We suppress the index \(t \) since the results hold for any \(t \geq 0 \).

Lemma B.1. Let \(G^T = YK \) where \(Y \) has orthonormal columns that span \(\text{Im}(G^T) \) and \(K \) is a nonsingular square matrix (since \(G^T \) has full column rank), and let \(Z \) have orthonormal columns that span \(\text{Ker}(G) \). If \(Z^T BZ \) is invertible, then
\[
S := \begin{pmatrix}
B & G^T \\
G & 0
\end{pmatrix}^{-1} = \begin{pmatrix}
S_1 & S_2^T \\
S_2 & S_3
\end{pmatrix}
\]
where
\[S_1 = Z(Z^T BZ)^{-1}Z^T, \]
\[S_2 = K^{-1}Y^T(I - BZ(Z^T BZ)^{-1}Z^T), \]
\[S_3 = K^{-1}Y^T(BZ(Z^T BZ)^{-1}Z^T(B - B))YK^{-1}. \]

Under Assumption 4.2, we have \(||S|| \leq 5Y^2\mu^2/\gamma_{RH}. \)

Given Lemma B.1, we apply (3) and (15) and have
\[
\begin{pmatrix}
\nabla \tilde{z} \\
\nabla \tilde{\lambda}
\end{pmatrix}
^T
\begin{pmatrix}
\Delta \tilde{z} \\
\Delta \tilde{\lambda}
\end{pmatrix} = -\begin{pmatrix}
\nabla \tilde{z} \nabla \tilde{L}^0 \\
\nabla \tilde{\lambda} \nabla \tilde{L}^0
\end{pmatrix}
^{T}
\begin{pmatrix}
B & G \\
G & 0
\end{pmatrix}
^{-1}
\begin{pmatrix}
I + \eta_2 H & \eta_1 G^T \\
\eta_2 G & I
\end{pmatrix}
\begin{pmatrix}
\nabla \tilde{z} \nabla \tilde{L}^0 \\
\nabla \tilde{\lambda} \nabla \tilde{L}^0
\end{pmatrix}.
\]

By Lemma B.1 we define \(W = I - Z(Z^T BZ)^{-1}Z^T B \) and have
\[
\begin{pmatrix}
B & G \\
G & 0
\end{pmatrix}
^{-1}
\begin{pmatrix}
I + \eta_2 H & \eta_1 G^T \\
\eta_2 G & I
\end{pmatrix}
= \begin{pmatrix}
\eta_1 I + Z(Z^T BZ)^{-1}Z^T \{ I + \eta_2 (H - B) \} & WY(K^{-1})^T \\
K^{-1}Y^TW^T \{ I + \eta_2 (H - B) \} & \eta_1 I - K^{-1}Y^T B W Y (K^{-1})^T
\end{pmatrix}
=: W_1 + W_2 + W_3,
\]
where
\[
W_1 = \begin{pmatrix}
\frac{\eta_2}{2} I & 0 \\
0 & \frac{\eta_2}{2} I
\end{pmatrix},
\]
\[
W_2 = \begin{pmatrix}
\frac{\eta_2}{2} I & \frac{\eta_2}{2} I \\
K^{-1}Y^TW^T & -\frac{\eta_2}{2} I - K^{-1}Y^T B W Y (K^{-1})^T
\end{pmatrix},
\]
\[
W_3 = \begin{pmatrix}
Z(Z^T BZ)^{-1}Z^T \{ I + \eta_2 (H - B) \} & 0 \\
\eta_2 K^{-1}Y^TW^T (H - B) & 0
\end{pmatrix}.
\]

We deal with each term separately. First, we have
\[
\begin{pmatrix}
\nabla \tilde{z} \nabla \tilde{L}^0 \\
\nabla \tilde{\lambda} \nabla \tilde{L}^0
\end{pmatrix}
W_3 \begin{pmatrix}
\nabla \tilde{z} \nabla \tilde{L}^0 \\
\nabla \tilde{\lambda} \nabla \tilde{L}^0
\end{pmatrix}
\]
\[
= \nabla \tilde{z} \nabla \tilde{L}^0 Z(Z^T BZ)^{-1}Z^T \nabla \tilde{z} \nabla \tilde{L}^0 + \eta_2 \nabla \tilde{\lambda} \nabla \tilde{L}^0 Z(Z^T BZ)^{-1}Z^T (H - B) \nabla \tilde{z} \nabla \tilde{L}^0
\]
\[
+ \eta_2 \nabla \tilde{\lambda} \nabla \tilde{L}^0 K^{-1}Y^TW^T (H - B) \nabla \tilde{z} \nabla \tilde{L}^0
\]
\[
= (\Delta \tilde{z})^T Z B Z \Delta \tilde{z} + \eta_2 (\Delta \tilde{z})^T B Z (Z^T BZ)^{-1}Z^T (H - B) \nabla \tilde{z} \nabla \tilde{L}^0
\]
\[
- \eta_2 (\Delta \tilde{z})^T Y Y^TW^T (H - B) \nabla \tilde{z} \nabla \tilde{L}^0
\]
\[
= (\Delta \tilde{z})^T B Z (Z^T BZ)^{-1}Z^T B \Delta \tilde{z} - \eta_2 (\Delta \tilde{z})^T (I - W^T)(H - B) \nabla \tilde{z} \nabla \tilde{L}^0
\]
\[
- \eta_2 (\Delta \tilde{z})^T Y Y^TW^T (H - B) \nabla \tilde{z} \nabla \nabla \tilde{L}^0
\]
\[
= (\Delta \tilde{z})^T B Z (Z^T BZ)^{-1}Z^T B \Delta \tilde{z} - \eta_2 (\Delta \tilde{z})^T (H - B) \nabla \tilde{z} \nabla \tilde{L}^0.
\]

Here, the second equality is due to the KKT system \(\text{[3]} \) and the fact that \(GZ = 0 \); the third equality is due to the definition of \(W \); and the fourth equality is due to \(Y Y^TW^T = W \). Let us decompose \(\Delta \tilde{z} = \Delta \tilde{v} + \Delta \tilde{u} \), where \(\Delta \tilde{v} = Z \Delta u \) is a vector in \(\text{Im}(Z) \), and \(\Delta \tilde{u} = G^T \Delta u \) is a vector in \(\text{Im}(G^T) \). Since \(G \Delta u = -\nabla \tilde{\lambda} \nabla \tilde{L}^0 \) from \(\text{[3]} \), we know \(\Delta u = -(GG^T)^{-1} \nabla \tilde{\lambda} \nabla \tilde{L}^0 \) and hence \(\Delta \tilde{u} = -G^T (GG^T)^{-1} \nabla \tilde{\lambda} \nabla \tilde{L}^0 = -Y(K^{-1})^T \nabla \tilde{\lambda} \nabla \tilde{L}^0 \). Plugging the decomposition into \(\text{[18]} \), we have
\[
\begin{pmatrix}
\nabla \tilde{z} \nabla \tilde{L}^0 \\
\nabla \tilde{\lambda} \nabla \tilde{L}^0
\end{pmatrix}
W_3 \begin{pmatrix}
\nabla \tilde{z} \nabla \tilde{L}^0 \\
\nabla \tilde{\lambda} \nabla \tilde{L}^0
\end{pmatrix}
\]
\[
= (\Delta \tilde{v})^T Z B Z \Delta \tilde{v} - 2(\Delta \tilde{v})^T Z B Y (K^{-1})^T \nabla \tilde{\lambda} \nabla \tilde{L}^0 - \eta_2 (\Delta \tilde{z})^T (H - B) \nabla \tilde{z} \nabla \tilde{L}^0
\]
\[
+ \nabla \tilde{\lambda} \nabla \tilde{L}^0 K^{-1}Y^TW^T (Z^T BZ)^{-1}Z^T B Y (K^{-1})^T \nabla \tilde{\lambda} \nabla \tilde{L}^0
\]
\[
\geq \gamma_{RH} ||\Delta \tilde{v}||^2 - 4\mu Y ||\Delta \tilde{v}|| ||\nabla \tilde{\lambda} \nabla \tilde{L}^0|| - \eta_2 \delta ||\Delta \tilde{z}|| ||\nabla \tilde{z} \nabla \tilde{L}^0||.
\]
where the second and fifth inequalities are due to Assumption 4.2, which implies $\|K^{-1}\| \leq T, \|B\| \vee \|H\| \leq 2\mu$; the third inequality is due to Young’s inequality; and the fourth equality is due to $\|\Delta T\|^2 = \|\Delta \hat{v}\|^2 + \|\Delta \hat{u}\|^2 = \|\Delta v\|^2 + \|\Delta \hat{u}\|^2$. Using the above display and supposing

$$\frac{\gamma_{RH}}{2} - \eta_2 \delta^2 \geq 0 \iff \eta_2 \leq \frac{\gamma_{RH}}{2\delta^2},$$

we further have

$$\left(\begin{array}{c} \nabla \hat{L}^0 \nabla \hat{L}^0 \end{array} \right) W_3 \left(\begin{array}{c} \nabla \hat{L}^0 \nabla \hat{L}^0 \end{array} \right)^T \geq - \left(\frac{8\mu^2 Y^2 \gamma_{RH} + \eta_2}{\eta_2} \right) \|\nabla \hat{L}^0\|^2 - \eta_2 \delta^2 \|\nabla \hat{L}^0\|^2$$

$$\geq - \frac{4\mu^2 Y^2 \gamma_{RH}}{\eta_2} \|\nabla \hat{L}^0\|^2 - \frac{\eta_2}{4} \|\nabla \hat{L}^0\|^2.$$

Let us now deal with W_2. By Schur complement, in order to show $W_2 \succeq 0$, we only have to let

$$\frac{\eta_1}{2} I - K^{-1}Y^T BWYW(K^{-1})^T - \frac{2}{\eta_2} K^{-1}Y^T W^T Y(K^{-1})^T \succeq 0.$$

Note that $-K^{-1}Y^T BWYW(K^{-1})^T \succeq -K^{-1}Y^T BY(K^{-1})^T$ and

$$\|K^{-1}Y^T BWYW(K^{-1})^T + \frac{2}{\eta_2} K^{-1}Y^T W^T Y(K^{-1})^T\| \leq 2\mu Y^2 + \frac{2\mu Y^2}{\eta_2} \|W\|^2$$

$$\leq 2\mu Y^2 + \frac{2\mu Y^2}{\eta_2} \left(1 + \frac{2\mu}{\gamma_{RH}} \right)^2 = 2\mu Y^2 + \frac{2\mu Y^2}{\eta_2} + \frac{8\mu Y^2}{\eta_2 \gamma_{RH}} + \frac{8\mu^2 Y^2}{\eta_2 \gamma_{RH}^2}$$

$$\leq 12\mu Y^2 + \frac{8\mu^2 Y^2}{\eta_2 \gamma_{RH}} \leq \frac{10\mu Y^2}{\eta_2 \gamma_{RH}}.$$

where the fifth inequality supposes $\gamma_{RH} \leq \sqrt{2}\delta$ (without loss of generality, since δ is upper bound and γ_{RH} is lower bound in Assumption 4.2) so that $\eta_2 \gamma_{RH} \leq 1$; and the last inequality uses $\mu \geq 2\gamma_{RH}$. Thus, we only have to let

$$\frac{\eta_1}{2} \geq \frac{10\mu Y^2}{\eta_2 \gamma_{RH}} \iff \eta_1 \eta_2 \geq \frac{32\mu^2 Y^2}{\gamma_{RH}^2},$$

then (21) is satisfied and $W_2 \succeq 0$. Combining (17), (20), and noting that W_1 is a diagonal matrix, we obtain that under (19) and (22),

$$\left(\begin{array}{c} \nabla \hat{L}^0 \nabla \hat{L}^0 \end{array} \right) \eta \left(\begin{array}{c} \Delta \hat{z} \Delta \lambda \end{array} \right) \leq - \left(\frac{\eta_2}{2} \right) \left(\begin{array}{c} \nabla \hat{L}^0 \nabla \hat{L}^0 \end{array} \right)^T \left(\begin{array}{c} \nabla \hat{L}^0 \nabla \hat{L}^0 \end{array} \right)^T \frac{32\mu^2 Y^2}{\gamma_{RH}^2}.$$

Using $\gamma_{RH} \leq 6\mu \delta Y$, we can easily check that, as long as $\eta = (\eta_1, \eta_2)$ satisfies

$$\eta_1 \geq \frac{25\mu^2 Y^2}{\gamma_{RH}} =: \tau_1, \quad \eta_2 \leq \frac{\gamma_{RH}}{2\delta^2} =: \tau_2, \quad \eta_1 \eta_2 \geq \frac{32\mu^2 Y^2}{\gamma_{RH}} =: \tau_3,$$

we have

$$\left(\begin{array}{c} \nabla \hat{L}^0 \nabla \hat{L}^0 \end{array} \right) \eta \left(\begin{array}{c} \Delta \hat{z} \Delta \lambda \end{array} \right) \leq - \frac{\eta_2}{4} \left\| \left(\begin{array}{c} \nabla \hat{L}^0 \nabla \hat{L}^0 \end{array} \right) \right\|^2.$$

This completes the proof of the first part of the statement. For the second part of the statement, we note that $\eta_2^2 = 1$ and each While loop decreases η_2 by ρ. Thus, to satisfy $\eta_2 \leq \tau_2$, the number of the
required While loop iterations T only need satisfy $\rho^T \geq 1/\tau_2$. For the similar reason, we require $\rho^T \geq \tau_3/\mu^2$ and $\rho^T \geq \sqrt{\tau_1/\mu^2}$. Combining them together, we know if T satisfies

$$\rho^T \geq \left(\frac{1}{\tau_2} \vee \frac{\tau_3}{\mu^2} \vee \sqrt{\frac{\tau_1}{\mu^2}} \right) = \frac{32 \Upsilon^2}{\gamma_{RH}^2},$$

then no other iterations will go into the While loop again. Thus, we know $\rho^T \leq \frac{32 \Upsilon^5 \gamma_{RH}}{\mu^2}$. Moreover,

$$\bar{\eta}_2 = 1/\rho^T \geq \frac{\gamma_{RH}}{32 \Upsilon^2 \rho}, \quad \text{and} \quad \bar{\eta}_1 = \mu^2 (\rho^T)^2 \leq \frac{32 \rho^2 \mu^2 \Upsilon^4}{\gamma_{RH}^4}.$$

This completes the second part of the statement.

C Proof of Lemma 4.1

We note that $YY^T + ZZ^T = I$. Thus, $YY^T (I - BZ(Z^T BZ)^{-1} Z^T) = I - BZ(Z^T BZ)^{-1} Z^T$. Using this observation, the formula of S can be verified directly by checking $SS^{-1} = I$. Moreover, under Assumption 4.2, we know

$$\| (Z^T BZ)^{-1} \| \leq 1/\gamma_{RH}, \quad \| K^{-1} \| \leq \Upsilon, \quad \text{and} \quad \| B \| \leq 2\mu.$$

Therefore,

$$\| S \| \leq \| S_1 \| + 2\| S_2 \| + \| S_3 \| \leq \frac{1}{\gamma_{RH}} + 2\Upsilon (1 + \frac{2\mu}{\gamma_{RH}}) + \Upsilon^2 \left(\frac{4\mu^2}{\gamma_{RH}} + 2\mu \right).$$

Without loss of generality, we suppose $\Upsilon \geq 4$ and $\mu \geq 2(\gamma_{RH} + 1)$. Then

$$\| S \| \leq \frac{6\Upsilon\mu}{\gamma_{RH}} + 2\Upsilon^2 + \frac{4\Upsilon^2\mu^2}{\gamma_{RH}} \leq \frac{\Upsilon^2 \mu^2}{\gamma_{RH}} + \frac{4\Upsilon^2 \mu^2}{\gamma_{RH}} + \frac{5\Upsilon^2 \mu^2}{\gamma_{RH}}.$$

This completes the proof.

D Proof of Theorem 4.5

We drop off the index t for simplicity. By the definition of $\mathcal{L}_\eta (\cdot)$ in (5), we have

$$\nabla^2 \mathcal{L}_\eta (\tilde{z}, \tilde{\lambda}; \bar{x}) = \begin{pmatrix} H + \eta_2 \nabla z (H \nabla \bar{z} \mathcal{L}) + \eta_1 \nabla \bar{z} (G^T \nabla \bar{z} \mathcal{L}) & \eta_2 \nabla \bar{z} (H \nabla \bar{z} \mathcal{L}) + G \\ \eta_2 \nabla \bar{z} (H \nabla \bar{z} \mathcal{L}) + G & \eta_2 \nabla \bar{z} (H \nabla \bar{z} \mathcal{L}) + G \end{pmatrix}.$$

Using Assumption 4.2 [16], and Theorem 4.4, we know

$$\| \nabla^2 \mathcal{L}_\eta (\tilde{z}, \tilde{\lambda}; \bar{x}) \| \leq \frac{32 \rho^2 \mu^2 \Upsilon^5}{\gamma_{RH}^4} =: \mu^2 \Upsilon'.$$

Therefore, by Taylor expansion

$$\mathcal{L}_{\eta}^1 \leq \mathcal{L}_{\eta}^0 + \alpha \left(\frac{\nabla z \mathcal{L}_0^0}{\nabla \bar{z} \mathcal{L}_0^0} \right)^T \left(\Delta \tilde{z} \right) + \frac{\mu^2 \Upsilon'^2}{2} \left(\Delta \tilde{\lambda} \right)^2.$$

Moreover, by Lemma B.1 and the condition (7), we further have

$$\left| \left(\frac{\nabla \bar{z} \mathcal{L}_0^0}{\nabla \bar{z} \mathcal{L}_0^0} \right)^T \left(\nabla \bar{z} \Delta \tilde{z} \right) \right| \leq \frac{-100 \rho^4 \mu^4}{\tilde{\eta}_2 \gamma_{RH}} \left(\frac{\nabla \bar{z} \mathcal{L}_0^0}{\nabla \bar{z} \mathcal{L}_0^0} \right)^T \left(\Delta \tilde{\lambda} \right).$$

Plugging the above display into (23),

$$\mathcal{L}_{\eta}^1 \leq \mathcal{L}_{\eta}^0 + \alpha \left(1 - \frac{50 \rho^6 \Upsilon'' \Upsilon^4}{\tilde{\eta}_2 \gamma_{RH}} \alpha \right) \left(\frac{\nabla \bar{z} \mathcal{L}_0^0}{\nabla \bar{z} \mathcal{L}_0^0} \right)^T \left(\Delta \tilde{z} \right).$$

Thus, as long as

$$1 - \frac{50 \rho^6 \Upsilon'' \Upsilon^4}{\tilde{\eta}_2 \gamma_{RH}} \alpha \geq \beta \iff \alpha \leq \frac{(1 - \beta) \gamma_{RH}}{50 \rho^6 \Upsilon'' \Upsilon^4} \iff \alpha \leq \frac{(1 - \beta) \gamma_{RH}^2}{32 \cdot 50 \rho^6 \Upsilon'' \Upsilon^4} =: \bar{\alpha},$$

then Armijo condition (6) is satisfied. Thus, if we use backtracking line search, the selected stepsize $\alpha \geq \nu \bar{\alpha} =: \bar{\alpha}$ for some $\nu \in (0, 1)$. Moreover, by Armijo condition,

$$\mathcal{L}_{\eta}^1 \leq \mathcal{L}_{\eta}^0 + \alpha \beta \left(\frac{\nabla \bar{z} \mathcal{L}_0^0}{\nabla \bar{z} \mathcal{L}_0^0} \right)^T \left(\Delta \tilde{z} \right) \leq \mathcal{L}_{\eta}^0 - \frac{\tilde{\eta}_2 \beta}{4} \left(\frac{\nabla \bar{z} \mathcal{L}_0^0}{\nabla \bar{z} \mathcal{L}_0^0} \right)^2.$$

This completes the proof.
E Proof of Lemma 4.6

By the definition (5), we know
\[
L_t^{t+1} - L_{t+1}^{t+1} = \sum_{k=t+1}^{M_t} \{ g_k(z_{k,t+1}^0) + (\lambda_{k-1,t+1}^0)^T x_{k,t+1}^0 - (\lambda_{k,t+1}^0)^T f_k(z_{k,t+1}^0) \} + g_{M_t}(x_{M,t,t+1}^0, 0) \\
+ \mu \| x_{M_t,t+1,t+1}^0 + (\lambda_{M_t,t+1,t+1}^0)^T x_{M_t,t+1,t+1} - (\lambda_{M_t,t+1,t+1})^T \overline{x}_{t+1} \\
= \sum_{k=t+1}^{M_t-1} \{ g_k(z_{k,t}^1) + (\lambda_{k-1,t}^1)^T x_{k,t}^1 - (\lambda_{k,t}^1)^T f_k(z_{k,t}^1) \} + g_{M_t}(x_{M,t,t}^1, 0) + (\lambda_{M_t-1,t}^1)^T x_{M,t}^1 \\
- (\lambda_{M_t-1,t}^1)^T f_{t}(z_{t}^1).
\]

Using the above display, we further have
\[
Term_1 = L_t^{t+1} - L_{t+1}^{t+1} \\
= \sum_{k=t+1}^{M_t-1} \{ g_k(z_{k,t}^1) + (\lambda_{k-1,t}^1)^T x_{k,t}^1 - (\lambda_{k,t}^1)^T f_k(z_{k,t}^1) \} + g_{M_t}(x_{M,t,t}^1, 0) + (\lambda_{M_t-1,t}^1)^T x_{M,t}^1 \\
- \mu \| x_{M,t}^1 - \overline{x}_{t} \|^2 + \frac{\mu}{2} \| x_{M,t}^1 \|^2.
\]

where the last inequality is due to Assumption 4.3(ii). For Term_2, we apply the formula (14) and the transition (8). We have
\[
\| \nabla \lambda_{t+1} L_{t+1}^{t+1} \|^2 = \sum_{k=t+1}^{M_t} \| x_{k+1,t+1}^0 - f_k(z_{k,t+1}^0) \|^2 + \| x_{t+1,t+1}^0 - \overline{x}_{t+1} \|^2 \\
= \sum_{k=t+1}^{M_t-1} \| x_{k+1,t}^1 - f_k(z_{k,t}^1) \|^2 + \| f_{M_t}(x_{M,t,t}^1, 0) \|^2 + \| x_{t+1,t+1}^1 - f_{t}(z_{t}^1) \|^2 \\
= \sum_{k=t}^{M_t-1} \| x_{k+1,t}^1 - f_k(z_{k,t}^1) \|^2 + \| f_{M_t}(x_{M,t,t}^1, 0) \|^2.
\]

Using the above display, we further have
\[
Term_2 = \frac{\bar{\eta}}{2} \left(\| \nabla \lambda_{t} L_{t}^{t+1} \|^2 - \| \nabla \lambda_{t+1} L_{t+1}^{t+1} \|^2 \right) \\
= \frac{\bar{\eta}}{2} \| x_{t,t}^1 - \overline{x}_{t} \|^2 - \frac{\bar{\eta}}{2} \| f_{M_t}(x_{M,t,t}^1, 0) \|^2 \\
\geq \frac{\bar{\eta}}{2} \| x_{t,t}^1 - \overline{x}_{t} \|^2 - \frac{\bar{\eta}}{2} \| x_{M,t}^1 \|^2,
\]

(24)

Let us deal with each term separately. For Term_1, we apply the definition of Lagrangian function, the transition (5) and the fact that \(g(0, 0) = 0 \). Then
\[
L_{t+1}^{t+1} = \sum_{k=t}^{M_t-1} \{ g_k(z_{k,t}^1) + (\lambda_{k-1,t}^1)^T x_{k,t}^1 - (\lambda_{k,t}^1)^T f_k(z_{k,t}^1) \} + g_{M_t}(x_{M,t,t}^1, 0) + (\lambda_{M_t-1,t}^1)^T x_{M,t}^1 \\
- \mu \| x_{M,t}^1 - \overline{x}_{t} \|^2 + \frac{\mu}{2} \| x_{M,t}^1 \|^2,
\]

(25)

(26)
where the last inequality is due to Assumption 4.2. Last, for Term 3, we apply the formula (14) and the transition (8). We have

\begin{align*}
\| \nabla z_{t+1} L^{t+1,0} \|^2 &= \sum_{k=t+1}^{M_t} \left(\left\| \nabla x_k g_k (z_{k,t+1}^0, \lambda_{k-1,t+1}^0) - A_k^T z_{k,t+1}^0 \lambda_{k,t+1}^0 \right\| + \| \nabla x_{M_k} g_{M_k} (z_{M_k,t+1}^0, \lambda_{M_k,t+1}^0) \| \right)^2 \\
&= \sum_{k=t+1}^{M_t-1} \left(\left\| \nabla x_k g_k (z_{k,t}^1) + \lambda_{k-1,t}^1 - A_k^T (z_{k,t}^1) \lambda_{k,t}^1 \right\| + \left\| \nabla x_{M_k} g_{M_k} (x_{M_k,t}^1, 0) + \lambda_{M_k,t-1}^1 \right\| \right)^2 \\
&= \sum_{k=t+1}^{M_t-1} \left(\left\| \nabla x_k g_k (z_{k,t}^1) + \lambda_{k-1,t}^1 - A_k^T (z_{k,t}^1) \lambda_{k,t}^1 \right\| \right)^2 \\
&= \sum_{k=t+1}^{M_t-1} \left(\left\| \nabla x_k g_k (z_{k,t}^1) + \lambda_{k-1,t}^1 - A_k^T (z_{k,t}^1) \lambda_{k,t}^1 \right\| \right)^2.
\end{align*}

Using the above display, we further have

\begin{align*}
\text{Term 3} &= \frac{n_2}{2} \left(\| \nabla z_t L^{t,1} \|^2 - \| \nabla z_{t+1} L^{t+1,0} \|^2 \right) \\
&\geq \frac{n_2}{2} \left(\| \nabla x_{M_t} g_{M_t} (x_{M_t,t}^1, 0) + \lambda_{M_t-1,t}^1 + \mu x_{M_t,t}^1 \|^2 - \left\| \left(\nabla x_{M_t} g_{M_t} (x_{M_t,t}^1, 0) + \lambda_{M_t-1,t}^1 \right) \right\|^2 \right) \\
&\geq \frac{n_2}{2} \left(\| \nabla x_{M_t} g_{M_t} (x_{M_t,t}^1, 0) + \lambda_{M_t-1,t}^1 + \mu x_{M_t,t}^1 \|^2 \right) \\
&\geq \frac{n_2}{2} \left(\frac{\mu^2 - \gamma^2}{2} \| x_{M_t,t}^1 \|^2 + \frac{n_2}{2} \mu \| x_{M_t,t}^1 \|^2 \right) \\
&\geq \frac{n_2}{2} \left(\frac{\mu^2 - \gamma^2}{2} \right) \| x_{M_t,t}^1 \|^2 + \frac{n_2}{2} \mu \| x_{M_t,t}^1 \|^2,
\end{align*}

where the second inequality is due to the definition of $\nabla z_t L^{t,1}$; and the third and the fourth inequalities are due to Assumption 4.2 which implies $\| \nabla x_{M_t} g_{M_t} (x_{M_t,t}^1, 0) \| \leq \gamma \| x_{M_t,t}^1 \|$. Noting that $\lambda_{M_t-1,t}^1 = 0$ and, by (3),

\[
\mu \Delta x_{M_t,t} + \Delta \lambda_{M_t-1,t} = - \left(\nabla x_{M_t} g_{M_t} (x_{M_t,t}^0, 0) + \lambda_{M_t-1,t}^1 + \mu x_{M_t,t}^0 \right) = 0,
\]

we then have

\[
(x_{M_t,t}^1)^T \lambda_{M_t-1,t} = - \alpha t \mu (x_{M_t,t}^1)^T \Delta x_{M_t,t} = - \mu \| x_{M_t,t}^1 \|^2.
\]

Suppose $\mu \geq 4 \gamma$, then $\mu^2 - \gamma^2 - 2 \mu \gamma \| x_{M_t,t}^1 \|^2 \geq \mu^2 / 2$. Together with the above three displays,

\[
\text{Term 3} \geq \frac{n_2}{2} \mu \| x_{M_t,t}^1 \|^2.
\]

Combining (24), (25), (26), and (27), and noting that $\tilde{n}_2 \mu^2 \leq \mu^2 \leq \tilde{n}_1 \gamma^2 / 2$, we have

\begin{align*}
\mathcal{L}_{t}^{t-1} - \mathcal{L}_{t-1}^{t+1,0} &\geq \left(\frac{n_1}{2} - C \right) \| x_{t,t} - \tilde{x}_t \|^2 + \left(\frac{\mu}{2} - \frac{n_1}{2} \gamma^2 - \tilde{n}_2 \mu \right) \| x_{M_t,t}^1 \|^2 \\
&\geq \left(\frac{\mu}{2} - C \right) \| x_{t,t} - \tilde{x}_t \|^2 - \frac{n_1}{2} \gamma^2 \| x_{M_t,t}^1 \|^2 \geq - \frac{n_1}{2} \gamma^2 \| x_{M_t,t}^1 \|^2,
\end{align*}

where the last inequality holds if $C \leq \mu^2 / 2$. By Lemma B.1 [Theorem 4.4 and Assumption 4.3](1),

\[
\tilde{n}_1 \gamma^2 \| x_{M_t,t}^1 \|^2 \leq \frac{32 \rho^2 \gamma^6}{\gamma_R H} \alpha^2 \| \Delta x_{M_t,t} \|^2 = \frac{32 \rho^2 \gamma^6}{\gamma_R H} \alpha^2 \| \Delta \lambda_{M_t-1,t} \|^2 \\
\leq \frac{32 \rho^2 \gamma^6}{\gamma_R H} c^2 \| (\Delta \tilde{x}_t, \Delta \lambda_t) \|^2 \leq \frac{32 \rho^2 \gamma^6 c^2}{\gamma_R H} \| \Delta \tilde{x}_t, \Delta \lambda_t \|^2.
\]

We require

\[
\frac{32 \rho^2 \gamma^6 c^2}{\gamma_R H} \leq \frac{\tilde{n}_2 \alpha \beta}{8} \leq \frac{32 \rho^2 \gamma^6 c^2}{\gamma_R H} \leq \frac{\beta \gamma_R H \tilde{\alpha}}{8 \times 32 \rho^2 \gamma^2} \leq \frac{\beta \gamma_R H \tilde{\alpha}}{240} \leq \frac{\beta (1 - \beta) \gamma_R^3}{20^2 \times 32^2 \rho \mu \gamma \gamma^8} \leq \frac{\gamma_R H}{n_0}.
\]
where the first implication is due to Theorem 4.4 and the second implication is due to Theorem 4.5. Then, we have

\[L^{t,1}_{\bar{\eta}} - L^{t+1,0}_{\bar{\eta}} \geq -\frac{\bar{\eta}_2 \bar{\alpha} \beta}{8} \| \nabla L^{t,0} \|^2. \]

This completes the proof.

F Proof of Theorem 4.7

Summing over \(t \) from \(\tau \) to \(\infty \) on both sides of (11), we have

\[\frac{\bar{\eta}_2 \bar{\alpha} \beta}{8} \sum_{t=\tau}^{\infty} \| \nabla L^{t,0} \|^2 \leq L^{0,\tau}_{\bar{\eta}} - \min_{z \otimes \Lambda} L_{\bar{\eta}}(\tilde{z}, \tilde{\lambda}; \bar{x}) < \infty. \]

Thus, \(\| \nabla L^{t,0} \|^2 \to 0 \) as \(t \to \infty \). We complete the proof.