A Reduction to Abstract Reachability

In this section, we detail the construction of the abstract graph G_ϕ from a SPECTRL specification ϕ. Given two sets of finite trajectories $Z_1, Z_2 \subseteq Z_f$, let us denote by $Z_1 \circ Z_2$ the concatenation of the two sets—i.e.,

$$Z_1 \circ Z_2 = \left\{ \zeta \in Z_f \mid \exists i < t, \zeta_{0;i} \in Z_1 \wedge \zeta_{(i+1):t} \in Z_2 \right\}.$$

In addition to the abstract graph $G = (U, E, u_0, F, \beta, Z_{safe})$ we also construct a set of safe terminal trajectories $Z_{term} = \bigcup_{z \in F} Z_{term}^z$ where $Z_{term}^z \subseteq Z_f$ is the set of terminal trajectories for the final vertex $u \in F$. Now, we define what it means for a finite trajectory ζ to satisfy the pair (G, Z_{term}).

Definition A.1. A finite trajectory $\zeta = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \cdots \xrightarrow{a_{t-1}} s_t$ in M satisfies the pair (G, Z_{term}) (denoted $\zeta \models (G, Z_{term})$) if there is a sequence of indices $0 = i_0 < i_1 < \cdots < i_k < t$ and a path $\rho = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_k$ in G such that

- $u_k \in F$,
- for all $j \in \{0, \ldots, k\}$, we have $s_{i_j} \in \beta(u_j)$,
- for all $j < k$, letting $c_j = u_j \rightarrow u_{j+1}$, we have $\zeta_{i_j:i_{j+1}} \in Z_{term}^{c_j}$, and
- $\zeta_{i_k:t} \in Z_{term}^{u_k}$.

We now outline the inductive construction of the pair $(G_\phi, Z_{term,\phi})$ from a specification ϕ such that any finite trajectory $\zeta \in Z_f$ satisfies ϕ if and only if ζ satisfies $(G_\phi, Z_{term,\phi})$.

Objectives ($\phi = \text{achieve } b$). The abstract graph is $G_\phi = (U, E, u_0, F, \beta, Z_{safe})$ where

- $U = \{u_0, u_b\}$ with $\beta(u_0) = S$ and $\beta(u_b) = S_b = \{s \mid s \models b\}$,
- $E = \{u_0 \rightarrow u_b\}$,
- $F = \{u_b\}$ and,
- $Z_{term}^{u_0,u_b} = Z_{term}^{u_b} = Z_f$.

Constraints ($\phi = \phi_1$ ensuring b). Let the abstract graph for ϕ_1 be $G_{\phi_1} = (U_1, E_1, u_0^1, F_1, \beta_1, Z_{safe,1})$ and the terminal trajectories be $Z_{term,1}$. Then, the abstract graph for ϕ is $G_\phi = (U, E, u_0, F, \beta, Z_{safe})$ where

- $U = U_1$, $u_0 = u_0^1$, $E = E_1$ and $F = F_1$,
- $\beta(u) = \beta_1(u) \cap S_b$ for all $u \in U \setminus \{u_0\}$ where $S_b = \{s \mid s \models b\}$, and $\beta(u_0) = S$.
- $Z_{safe} = Z_{safe,1}$.
- $Z_{term}^c = Z_{term,1}^c \cap Z_b$ for all $c \in E$ where
 $$Z_b = \{\zeta \in Z_f \mid \forall i. s_i \models b\}.$$
- $Z_{term}^u = Z_{term,1}^u \cap Z_b$ for all $u \in F$.

Sequencing ($\phi = \phi_1; \phi_2$). Let the abstract graph for ϕ_i be $G_{\phi_i} = (U_i, E_i, u_0^i, F_i, \beta_i, Z_{safe,i})$ and the terminal trajectories be $Z_{term,i}$ for $i \in \{1, 2\}$. The abstract graph $G_\phi = (U, E, u_0, F, \beta, Z_{safe})$ is constructed as follows.

- $U = U_1 \cup U_2 \setminus \{u_0^2\}$,
- $E = E_1 \cup E_2 \cup E_{1\rightarrow2}$ where
 $$E_{1\rightarrow2} = \{u \rightarrow u' \in E_2 \mid u \neq u_0^2\} \text{ and } E_{1\rightarrow2} = \{u \rightarrow u' \mid u' \in F_1 \& u_0^2 \rightarrow u^2 \in E_2\}.$$
- $u_0 = u_0^1$ and $F = F_2$.
- $\beta(u) = \beta_i(u)$ for all $u \in U_i$ and $i \in \{1, 2\}$.
- The safe trajectories are given by
- $Z_{safe} = Z_{safe,1}$ for all $e \in E_1$,
- $Z_{safe} = Z_{safe,2}$ for all $e \in E'_2$ and,
- $Z_{safe}^{u_1 \rightarrow u_2} = Z_{term,1} \circ Z_{safe,2}^{u_2}$ for all $u_1 \rightarrow u_2 \in E_{1 \rightarrow 2}$.

- $Z_{term}^u = Z_{term,2}^u$ for all $u \in F$.

Choice ($\phi = \phi_1$ or ϕ_2). Let the abstract graph for ϕ_i be $G_{\phi_i} = (U_i, E_i, u_0^i, F_i, \beta_i, Z_{safe,i})$ and the terminal trajectories be $Z_{term,i}$ for $i \in \{1, 2\}$. The abstract graph for ϕ is $G_\phi = (U, E, u_0, F, \beta, Z_{safe})$ where:

- $U = \left(U_1 \setminus \{u_0^1\} \right) \sqcup \left(U_2 \setminus \{u_0^2\} \right) \sqcup \{u_0\}$.
- $E = E_1 \sqcup E_2 \sqcup E_0$ where
 \[E'_i = \{ u \rightarrow u' \in E_i \mid u \neq u_0^i \} \text{ and} \]
 \[E_0 = \{ u_0 \rightarrow u^i \mid i \in \{1, 2\} \& u^0 \rightarrow u^i \in E_i \}. \]
- $F = F_1 \sqcup F_2$.
- $\beta(u) = \beta_i(u)$ for all $u \in U_i$, $i \in \{1, 2\}$ and $\beta(u_0) = S$.

- The safe trajectories are given by
 - $Z_{safe} = Z_{safe,i}$ for all $e \in E'_i$ and $i \in \{1, 2\}$,
 - $Z_{safe}^{u_0 \rightarrow u^i} = Z_{safe,i}^{u_0 \rightarrow u^i}$ for all $u_0 \rightarrow u^i \in E_0$ with $u^i \in U_i$.

- $Z_{term}^u = Z_{term,i}^u$ for all $u \in F_i$ and $i \in \{1, 2\}$.

The constructed pair $(G_\phi, Z_{term,\phi})$ has the following important properties.

Lemma A.2. For any SPECTRL specification ϕ, the following hold.

- For any finite trajectory $\zeta \in Z_f$, $\zeta \models \phi$ if and only if $\zeta \models (G_\phi, Z_{term,\phi})$.
- For any final vertex u of G_ϕ and any state $s \in \beta(u)$, the length-1 trajectory $\zeta = s$ is contained in $Z_{term,\phi}$.

Proof. Follows from the above construction by structural induction on ϕ. \hfill \Box

Proof of Theorem 3.4 Let $\zeta = s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} \cdots$ be an infinite trajectory. First we show that $\zeta \models \phi$ if and only if $\zeta \models G_\phi$.

(\implies) Suppose $\zeta \models G_\phi$. Then, there is a $t \geq 0$ such that $\zeta_{0:t} \models \phi$. From Lemma A.2 we get that $\zeta_{0:t} \models (G_\phi, Z_{term,\phi})$ which implies that $\zeta \models G_\phi$.

(\impliedby) Suppose $\zeta \models G_\phi$. Then, let $0 = i_0 < i_1 < \cdots < i_k$ be a sequence of indices realizing a path $u_0 \rightarrow \cdots \rightarrow u_k$ to a final vertex u_k in G_ϕ. Since $s_{i_k} \in \beta(u_k)$, from Lemma A.2 we have $\zeta_{i_k} \models Z_{term,\phi}$ and hence $\zeta_{0:i_k} \models (G_\phi, Z_{term,\phi})$. From Lemma A.2 we conclude that $\zeta_{0:i_k} \models \phi$ and therefore $\zeta \models \phi$.

Next, it follows by a straightforward induction on ϕ that the number of vertices in G_ϕ is at most $|\phi| + 1$ where $|\phi|$ is the number of operators (achieve, ensuring, ;, or) in ϕ. \hfill \Box

B Shaped Rewards for Learning Policies

To improve learning, we use shaped rewards for learning each edge policy π_e. To enable reward shaping, we assume that the atomic predicates additionally have a quantitative semantics—i.e., each atomic predicate $p \in P_0$ is associated with a function $\llbracket p \rrbracket_q : S \rightarrow \mathbb{R}$. To ensure compatibility with the Boolean semantics, we assume that

$$\llbracket p \rrbracket (s) = (\llbracket p \rrbracket_q (s) > 0). \quad (1)$$
For example, given a state $s \in S$, the atomic predicate
$$[\text{reach } s]_{q}(s') = 1 - ||s' - s||$$
indicates whether the system is in a state near s w.r.t. some norm $\| \cdot \|$. In addition, we can extend the quantitative semantics to predicates $b \in \mathcal{P}$ by recursively defining $[b_1 \land b_2]_{q}(s) = \min\{[b_1]_{q}(s), [b_2]_{q}(s)\}$ and $[b_1 \lor b_2]_{q}(s) = \max\{[b_1]_{q}(s), [b_2]_{q}(s)\}$. These definitions are a standard extension of Boolean logic to real values. In particular, they preserve (1)---i.e., $b \models s$ if and only if $[b]_{q}(s) > 0$.

In addition to quantitative semantics, we make use of the following property to define shaped rewards.

Lemma B.1. The abstract graph $G_{\phi} = (U, E, u_0, F, \beta, Z_{\text{safe}})$ of a specification ϕ satisfies the following:

- For every non-initial vertex $u \in U \setminus \{u_0\}$, there is a predicate $b \in \mathcal{P}$ such that $\beta(u) = S_b = \{ s \mid s \models b \}$.
- For every $e \in E$, either $Z_{\text{safe}}^{e} = Z_b = \{ \zeta \in Z \mid \forall i . s_i \models b \}$ for some $b \in \mathcal{P}$ or $Z_{\text{safe}}^{e} = Z_{b_1} \circ Z_{b_2}$ for some $b_1, b_2 \in \mathcal{P}$.

Proof sketch. We prove a stronger property that, in addition to the above, requires that for any $e = u_0 \rightarrow u \in E$, $Z_{\text{safe}}^{e} = Z_b$ for some $b \in \mathcal{P}$ and for any final vertex u, $Z_{\text{term}, \phi}^{u} = Z_b$ for some $b \in \mathcal{P}$. This stronger property follows from a straightforward induction on ϕ. \qed

Next, we describe the shaped rewards we use to learn an edge $e = u \rightarrow u'$ in G_{ϕ}, which have the form
$$R_{\text{step}}(s, a, s') = R_{\text{reach}}(s, a, s') + R_{\text{safe}}(s, a, s').$$
Intuitively, the first term encodes a reward for reaching $\beta(u')$, and the second term encodes a reward for maintaining safety. By Lemma B.1 $\beta(u') = S_b$ for some $b \in \mathcal{P}$. Then, we define
$$R_{\text{reach}}(s, a, s') = [b]_{q}(s').$$

The safety reward is defined by
$$R_{\text{safe}}(s, a, s') = \begin{cases}
\min\{0, [b]_{q}(s')\} & \text{if } Z_{\text{safe}}^{e} = Z_b \\
\min\{0, [b \lor b']_{q}(s')\} & \text{if } Z_{\text{safe}}^{e} = Z_b \circ Z_{b'} \land \psi_b \\
\min\{0, [b']_{q}(s')\} & \text{if } Z_{\text{safe}}^{e} = Z_b \circ Z_{b'} \land \neg \psi_b.
\end{cases}$$

Here, ψ_b is internal state keeping track of whether b has held so far---i.e., $\psi_b \leftarrow \psi_b \land [b](s)$ at state s. Intuitively, the first case is the simpler case, which checks if every state in the trajectory satisfies b, and the latter two cases handle a sequence where b should hold for the first part of the trajectory, and b' should hold for the remainder.

C Proof of Theorem 4.2

Proof. Let the abstract graph be $G = (U, E, u_0, F, \beta, Z_{\text{safe}})$. Let us first define what it means for a rollout to achieve a path in G.

Definition C.1. We say that an infinite trajectory ζ achieves the path ρ (denoted $\zeta \models \rho$) if $\zeta \models G_{\rho}$, where $G_{\rho} = (U_{\rho}, E_{\rho}, u_0, \{u_k\}, \beta \downarrow \rho, Z_{\text{safe}} \downarrow \rho)$ with $U_{\rho} = \{ u_j \mid 0 \leq j \leq k \}$. $E_{\rho} = \{ u_j \rightarrow u_{j+1} \mid 0 \leq j < k \}$ and $\beta \downarrow \rho$ and $Z_{\text{safe}} \downarrow \rho$ are β and Z_{safe} restricted to the vertices and the edges of G_{ρ}, respectively.

From the definition it is clear that for any infinite trajectory ζ, if $\zeta \models \rho$ then $\zeta \models G$ and therefore
$$Pr_{\zeta \sim D_{\pi, \rho}} [\zeta \models G] \geq Pr_{\zeta \sim D_{\pi, \rho}} [\zeta \models \rho]. \quad (2)$$

Let us now define a slightly stronger notion of achieving an edge.
Definition C.2. An infinite trajectory \(\zeta = s_0 \rightarrow s_1 \rightarrow \cdots \) is said to greedily achieve the path \(\rho \) (denoted \(\zeta \models \rho \)) if there is a sequence of indices \(0 = i_0 \leq i_1 < \cdots < i_k \) such that for all \(j < k \),

- \(\zeta_{i_j: \infty} \models e_j = u_j \rightarrow u_{j+1} \) and,
- \(i_{j+1} = i(\zeta_{i_j: \infty}, e_j) \).

where \(\zeta_{i_j: \infty} = s_{i_j} \rightarrow s_{i_j+1} \rightarrow \cdots \).

That is, \(\zeta \models \rho \) if a partition of \(\zeta \) realizing \(\rho \) can be be constructed greedily by picking \(i_{j+1} \) to be the smallest index \(i \geq i_j \) (strictly bigger if \(j > 0 \)) such that \(s_i \in \beta(u_{j+1}) \) and \(\zeta_{i,j} \in \mathbb{Z}_{\text{safe}} \). Since \(\zeta \models \rho \) implies \(\zeta \models \rho \), we have

\[
\Pr_{\zeta \sim \mathcal{D}_\pi} [\zeta \models \rho] \geq \Pr_{\zeta \sim \mathcal{D}_\pi} [\zeta \models \rho].
\]

(3)

Let \(\rho_{j:k} \) denote the \(j \)-th suffix of \(\rho \). We can decompose the probability \(\Pr_{\zeta \sim \mathcal{D}_\pi} [\zeta \models \rho] \) as follows.

\[
\Pr_{\zeta \sim \mathcal{D}_\pi} [\zeta \models \rho] = \Pr_{\zeta \sim \mathcal{D}_\pi} [\zeta \models e_0 \land \zeta_{i(\zeta,e_0):\infty} \models \rho_{1:k}]
\]

\[
= \Pr_{\zeta \sim \mathcal{D}_\pi} [\zeta \models e_0] \cdot \Pr_{\zeta \sim \mathcal{D}_\pi} [\zeta_{i(\zeta,e_0):\infty} \models \rho_{1:k} | \zeta \models e_0]
\]

\[
= P(e_0; \pi_{e_0}, \eta_0) \cdot \Pr_{\zeta \sim \mathcal{D}_\pi} [\zeta \models \rho_{1:k}]
\]

where the last equality followed from the definition of \(\eta_{\rho_{0:1}} \) and the Markov property of \(\mathcal{M} \). Applying the above decomposition recursively, we get

\[
\Pr_{\zeta \sim \mathcal{D}_\pi} [\zeta \models \rho] = \prod_{j=0}^{k-1} P(e_j; \pi_{e_j}, \eta_{\rho_{0:j}})
\]

\[
= \exp(\log(\prod_{j=0}^{k-1} P(e_j; \pi_{e_j}, \eta_{\rho_{0:j}})))
\]

\[
= \exp(-\sum_{j=0}^{k-1} \log P(e_j; \pi_{e_j}, \eta_{\rho_{0:j}}))
\]

\[
= \exp(-c(\rho)).
\]

Therefore, from Equations 2 and 3 we get the required bound. \(\square \)

D Experimental Methodology

Our tool learns the low-level NN policies for edges using an off-the-shelf RL algorithm. For the Rooms and Fetch environments, we learn policies using ARS [32] and TD3 [14] with shaped rewards, respectively.

For each specification on an environment, we first construct its abstract graph. In DiRL, each edge policy \(\pi_e \) is trained using \(k \) episodes of interactions with the environment. For the purpose of generating a learning curve, we run DiRL for each specification with several values of \(k \). For each \(k \) value, we plot the sum total of the samples taken to train all edge policies against the probability with which the computed policy reaches a final subgoal region.

For a fair comparison with the baselines, if each episode for learning an edge policy in DiRL is run for \(m \) steps, we run the episodes of the baselines for \(m \cdot d + c \) steps, where \(d \) is the maximum path length to reach a final vertex in the abstract graph of the specification and \(c > 0 \) is a buffer. Intuitively, this approach ensures that all tools get a similar number of steps in each episode to learn the specification.
Figure 5: 16-Rooms Environments. Blue square indicates the initial room. Red squares represent obstacles. (a) illustrates the segments in the specifications.

E Case Study: Rooms Environment

We consider environments with several interconnected rooms. The rooms are separated by thick walls and are connected through bi-directional doors.

The environments are a 9-Rooms environment, a 16-Rooms environment with all doors open, and 16-Rooms environment with some doors open. The red blocks indicate obstacles. A robot can pass through those rooms by moving around the red blocks. The robot is initially placed randomly in the center of the room with the blue box (bottom-left corner).

Rooms are identified by the tuple \((r, c) \) denoting the room in the \(r \)-th row and \(c \)-th column. We use the convention that the bottom-left corner is room \((0,0) \). Predicate \(\text{reach} \ (r, c) \) is interpreted as reaching the center of the \((r, c) \)-th room and predicate \(\text{avoid} \ (r, c) \) is interpreted as avoiding the center of the \((r, c) \)-th room. For clarity, we omit the word achieve from specifications of the form achieve \(b \) denoting such a specification using just the predicate \(b \).

E.1 9-Rooms Environment

Specifications.

1. \(\phi_1 := \text{reach} \ (2, 0); \text{reach} \ (0, 0) \)
 Go to the top-left corner and then return to the bottom-left corner (initial room); red blocks not considered obstacles.
 This specification is difficult for standard RL algorithms that do not store whether the first sub-task has been achieved. In these cases, a stateless policy will not be able to determine whether to move upwards or downwards. In contrast, DiRL (as well as SpectRl and RM based approaches) augment the state space to automatically keep track of which sub-tasks have been achieved so far.

2. \(\phi_2 := \text{reach} \ (2, 0) \text{or reach} \ (0, 2) \)
 Either go to the top-left corner or to the bottom-right corner (obstacles are not considered).

3. \(\phi_3 := \phi_2; \text{reach} \ (2, 2) \)
 After completing \(\phi_2 \), go to the top-right corner (obstacles not considered).
 This specification combines two choices of similar difficulty yet only one is favorable to fulfilling the specification since the direct path to the top-right corner from the bottom-right one is obstructed by walls.

4. \(\phi_4 := \text{reach} \ (2, 0) \text{ ensuring avoid} \ (1, 0) \)
 Reach the top-left (while considering the obstacles).

5. \(\phi_5 := \phi_4 \text{ or reach} \ (0, 2); \text{reach} \ (2, 2) \)
 Either go to the top-left corner or bottom-right corner enroute to the top-right corner (while considering the obstacles).
 This specification is similar to \(\phi_3 \) except that the choices are of unequal difficulty due to the placement of the red obstacle. In this case, the non-greedy choice is favorable for completing the task.
Hyperparameters. The edge policies are learned using ARS \cite{22} (version V2-t) with neural network policies and the following hyperparameters.

- Step-size $\alpha = 0.3$.
- Standard deviation of exploration noise $\nu = 0.05$.
- Number of directions sampled per iteration is 30.
- Number of top performing directions to use $b = 15$.

To plot the learning curve, we use values of $k \in \{3000, 6000, 12000, 18000, 24000, 30000\}$ where each episode consists of $m = 20$ steps.

Results. The learning curves for these specifications are shown in Figure 6. While most tools perform reasonably well on specifications ϕ_2 (Figure 6b) and ϕ_4 (Figure 6d), the baselines are unable to learn to satisfy ϕ_3 (Figure 6c) and ϕ_5 (Figure 6e) except for R-AVI which learns to satisfy ϕ_3 as well.

E.2 16-Rooms Environment

Specifications. We describe the five specifications used for the 16-rooms environment, which are designed to increase in difficulty. First, we define a segment as the following specification: Given the current location of the agent, the goal is to reach a room diagonally opposite to it by visiting at least one of the rooms at the remaining two corners of the rectangle formed by the current room and the goal room—e.g., in the 9-Rooms environment, to visit S_3 from the initial room, the agent must visit either S_1 or S_2 first.

Then, we design specifications of varying sizes by sequencing several segments one after the other. In the first segment, the agent’s current location is the initial room. In subsequent segments, the current location is the goal room of the previous segment. In addition, the agent must always avoid the obstacles in the environment. We create five such specifications, one half-segment and specifications up to four segments (ϕ_1 to ϕ_5), as illustrated in Figure 5a and described below:

1. ϕ_1 corresponds to the half-segment enroute (2,2) from (0,0). Thus ϕ_1 is a choice between (0,2) and (2,0).
2. ϕ_2 is the first segment that goes from (0,0) to (2,2)
Case Study: Fetch Environment

The fetch robotic arm from OpenAI Gym is visualized in Figure 8. Let us denote by $s_r = (s_r^x, s_r^y, s_r^z) \in \mathbb{R}^3$ the position of the gripper, $s_o \in \mathbb{R}^3$ the relative position of the object (black block) w.r.t. the gripper, $s_g \in \mathbb{R}^3$ the goal location (red sphere) and $s_w \in \mathbb{R}$ the width of the gripper. Let c denote the width of the object and $z = (0, 0, c + \epsilon)$ for $\epsilon > 0$. Then, we define the following predicates:

- **NearObj** holds true in states in which the gripper is wide open, aligned with the object and is slightly above the object:
 \[
 \text{NearObj}(s) = \left(||s_o + z||_2^2 + (s_w - 2c)^2 < \delta_1 \right)
 \]

- **HoldingObj** holds true in states in which the gripper is close to the object and its width is close to the object’s width:
 \[
 \text{HoldingObj}(s) = \left(||s_o||_2^2 + (s_w - c)^2 < \delta_2 \right)
 \]
• \(\text{LiftedObj} \) holds true in states in which the object is above the surface level of the table:

\[
\text{LiftedObj}(s) = (s^r + s^o > \delta_3)
\]

• \(\text{ObjAt}[g] \) holds true in states in which the object is close to \(g \):

\[
\text{ObjAt}[g](s) = (\|s_r + s_o - g\|^2 < \delta_4)
\]

Then the specifications we use are the following:

• \(\Phi_1 = \text{NearObj; HoldingObj; LiftedObj; ObjAt}[s_g] \).
• \(\Phi_2 = \text{NearObj; HoldingObj; LiftedObj; ObjAt}[g_1] \) where \(g_1 \) is a fixed goal.
• \(\Phi_3 = (\text{NearObj; HoldingObj; LiftedObj}); ((\text{ObjAt}[g_1]; \text{ObjAt}[g_2]) \text{ or } (\text{ObjAt}[g_3]; \text{ObjAt}[g_4])) \).

Hyperparameters. We use TD3 [14] for learning edge policies with the following hyperparameters.

• Discount \(\gamma = 0.95 \).
• Adam optimizer; actor learning rate \(0.0001 \); critic learning rate \(0.001 \).
• Soft update targets \(\tau = 0.005 \).
• Replay buffer of size \(200000 \).
• 100 training steps performed every 100 environment steps.
• A minibatch of 256 steps used per training step.
• Exploration using gaussian noise with \(\sigma = 0.15 \).

We run experiments for \(k \in \{1000, 2000, 4000\} \) and each episode consists of \(m = 40 \) steps.

\[^3\text{We denote achieve } b \text{ using just the predicate } b.\]