A Appendix

A.1 Proof of Lemma 1

Proof. Using the e-ISS property in Assumption 1 we have:

\[
\frac{1}{TN} \sum_{i=1}^{N} \sum_{t=1}^{T} \| x_t^{(i)} \| \leq \frac{1}{TN} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\gamma \sum_{k=1}^{t-1} \rho^{t-1-k} \| B_k^{(i)} u_k^{(i)} - f_k^{(i)} + w_k^{(i)} \| \right)
\]

\[
\leq (a) \frac{\gamma}{1-\rho} \frac{1}{TN} \sum_{i=1}^{N} \sum_{t=1}^{T} \| B_t^{(i)} u_t^{(i)} - f_t^{(i)} + w_t^{(i)} \|
\]

\[
\leq (b) \frac{\gamma}{1-\rho} \sqrt{\frac{1}{TN} \sum_{i=1}^{N} \sum_{t=1}^{T} \| B_t^{(i)} u_t^{(i)} - f_t^{(i)} + w_t^{(i)} \|^2},
\]

where (a) and (b) are from geometric series and Cauchy-Schwarz inequality respectively. □

A.2 Proof of Lemma 2

This proof is based on the proof of Theorem 4.1 in [28].

Proof. For any \(\Theta \in \mathcal{K}_1 \) and \(\bar{c}^{(1:N)} \in \mathcal{K}_2 \) we have

\[
\sum_{i=1}^{N} \sum_{t=1}^{T} \ell_t^{(i)} (\hat{\Theta}_t, \bar{c}_t^{(i)}) - \sum_{i=1}^{N} \sum_{t=1}^{T} \ell_t^{(i)} (\bar{\Theta}, \bar{c}^{(i)})
\]

\[
\leq (a) \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla \ell_t^{(i)} (\hat{\Theta}_t, \bar{c}_t^{(i)}) \cdot (\hat{\Theta}_t - \bar{\Theta}) + \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla \ell_t^{(i)} (\hat{\Theta}_t, \bar{c}_t^{(i)}) \cdot (\bar{c}_t^{(i)} - \bar{c}^{(i)})
\]

\[
= \sum_{i=1}^{N} \left[G_t^{(i)} (\hat{\Theta}_t) - G_t^{(i)} (\bar{\Theta}) \right] + \sum_{i=1}^{N} \sum_{t=1}^{T} \left[g_t^{(i)} (\bar{c}_t^{(i)}) - g_t^{(i)} (\bar{c}^{(i)}) \right]
\]

\[
\leq \sum_{i=1}^{N} \min_{\Theta \in \mathcal{K}_1} \sum_{i=1}^{N} G_t^{(i)} (\Theta) - \sum_{i=1}^{N} \sum_{t=1}^{T} g_t^{(i)} (\bar{c}_t^{(i)}) - \sum_{i=1}^{N} \min_{\bar{c}^{(i)} \in \mathcal{K}_2} \sum_{i=1}^{N} g_t^{(i)} (\bar{c}^{(i)}).
\]

where we have (a) because \(\ell_t^{(i)} \) is convex. Note that the total regret of \(\mathcal{A}_1 \) is \(T \cdot o(N) \) because \(G^{(i)} \) is scaled up by a factor of \(T \). □

A.3 Proof of Theorem 3

Proof. Since \(\Theta \in \mathcal{K}_1 \) and \(\bar{c}^{(1:N)} \in \mathcal{K}_2 \), applying Lemma 2 we have

\[
\sum_{i=1}^{N} \sum_{t=1}^{T} \ell_t^{(i)} (\hat{\Theta}_t, \bar{c}_t^{(i)}) = \sum_{i=1}^{N} \sum_{t=1}^{T} \ell_t^{(i)} (\Theta, \bar{c}^{(i)}) \leq T \cdot o(N) + N \cdot o(T)
\]

Recall that the definition of \(\ell_t^{(i)} \) is \(\ell_t^{(i)} (\hat{\Theta}, \bar{c}) = \| F(\phi(x_t^{(i)} ; \hat{\Theta}), \hat{c}) - y_t^{(i)} \|^2 \), and \(y_t^{(i)} = f_t^{(i)} - w_t^{(i)} \).

Therefore we have

\[
\ell_t^{(i)} (\hat{\Theta}_t, \bar{c}_t^{(i)}) = \| f_t^{(i)} - f_t^{(i)} + w_t^{(i)} \|^2 = \| B_t^{(i)} u_t^{(i)} - f_t^{(i)} + w_t^{(i)} \|^2
\]

\[
\ell_t^{(i)} (\Theta, \bar{c}^{(i)}) = \| w_t^{(i)} \|^2 \leq W^2.
\]
The OGD algorithm initializes OGD with learning rates (where \(\eta \)). Then applying Lemma 1 we have upper bounded by \(\eta \). From Lemma 7, using learning rates upper bounded as \(\gamma \). Recall that \(g \), \(R \), and \(\text{ACE} \). Define \(x \) as the total regret of the outer-adapter \(A_1 \), and \(R(A_2) \) as the total regret of the inner-adapter \(A_2 \). Recall that in Theorem 3 we show that \(\text{ACE}(\text{OMAC}) \leq \frac{1}{\sqrt{T}} \). Now we will prove Corollary 4 by analyzing \(R(A_1) \) and \(R(A_2) \) respectively.

Proof of Corollary 4 Since the true dynamics \(f(x, c) = Y_1(x)\hat{\Theta} + Y_2(x)c \), we have upper bounded as \(\| \nabla_c g_t(i) \| = \| 2Y_2(x_t(i))^T \left(Y_1(x_t(i))\hat{\Theta} + Y_2(x_t(i))c_t(i) - Y_1(x_t(i))\hat{\Theta} - Y_2(x_t(i))c_t(i) + w_t(i) \right) \| \). From Lemma 7 using learning rates \(\eta_i(i) = \frac{2K_i}{c_2\sqrt{T}} \) for all \(i \), the regret of \(A_2 \) at each outer iteration is upper bounded by \(3K_i^2C_2N \sqrt{T} \). Then the total regret of \(A_2 \) is bounded as \(R(A_2) \leq 3K_iC_2N \sqrt{T} \).
Now let us study A_1. Similarly, recall that $G^{(i)}(\hat{\Theta}) = \sum_{t=1}^{T} \nabla_{\Theta} \ell^{(i)}_t(\hat{\Theta}^{(i)}, \hat{c}^{(i)}) \cdot \hat{\Theta}$, which is convex (linear) w.r.t. $\hat{\Theta}$. The gradient of $G^{(i)}$ is upper bounded as

$$\|\nabla_{\hat{\Theta}} G^{(i)}\| = \left\| \sum_{t=1}^{T} 2Y_1(x_t^{(i)})^\top \left(Y_1(x_t^{(i)})\hat{\Theta}^{(i)} + Y_2(x_t^{(i)})\hat{c}^{(i)} - Y_1(x_t^{(i)})\Theta - Y_2(x_t^{(i)})c^{(i)} + w_t^{(i)} \right) \right\|$$

$$\leq T \left(2K_1^2K_{\Theta} + 2K_1K_c + 2K_2^2K_{\Theta} + 2K_1K_2K_c + 2K_1W \right)$$

Finally using Theorem 3 we have

$$\text{ACE(OMAC)} \leq \frac{\gamma}{1 - \rho} \sqrt{W^2 + \frac{\mathcal{R}(A_1) + \mathcal{R}(A_2)}{TN}}$$

From Lemma 7 using learning rates $\bar{\eta}^{(i)} = \frac{2K_{\Theta}}{T C_1 \sqrt{N}}$, the total regret of A_1 is upper bounded as

$$\mathcal{R}(A_1) \leq 3K_{\Theta} T C_1 \sqrt{N}.$$

Finally using Theorem 3 we have

$$\text{ACE(baseline adaptive control)} \leq \frac{\gamma}{1 - \rho} \sqrt{W^2 + \frac{\mathcal{R}(A_1) + \mathcal{R}(A_2)}{TN}}$$

Now let us analyze $\text{ACE(baseline adaptive control)}$. To simplify notations, we define $\tilde{Y}(x) = [Y_1(x) \ \ Y_2(x)]: \mathbb{R}^n \to \mathbb{R}^{n \times (p + h)}$ and $\tilde{\alpha} = [\tilde{\Theta}; \tilde{c}] \in \mathbb{R}^{p + h}$. The baseline adaptive controller updates the whole vector $\tilde{\alpha}$ at every time step. We denote the ground truth parameter by $\alpha^{(i)} = [\Theta; c^{(i)}]$, and the estimation by $\hat{\alpha}^{(i)} = [\hat{\Theta}; \hat{c}^{(i)}]$. We have $\|\alpha^{(i)}\| \leq \sqrt{K_{\Theta}^2 + K_c^2}$. Define $\mathcal{K} = \{\hat{\alpha} = [\hat{\Theta}; \hat{c}] : \|\hat{\Theta}\| \leq K_{\Theta}, \|\hat{c}\| \leq K_c\}$, which is a convex set in $\mathbb{R}^{p + h}$.

Note that the loss function for the baseline adaptive control is $\bar{\ell}^{(i)}(\hat{\alpha}) = \|\tilde{Y}(x_t^{(i)})\hat{\alpha} - Y_1(x_t^{(i)})\Theta - Y_2(x_t^{(i)})c^{(i)} + w_t^{(i)}\|^2$. The gradient of $\bar{\ell}^{(i)}$ is

$$\nabla_{\hat{\Theta}} \bar{\ell}^{(i)}(\hat{\alpha}) = 2 \begin{bmatrix} Y_1(x_t^{(i)})^\top \\ Y_2(x_t^{(i)})^\top \end{bmatrix} (Y_1(x_t^{(i)})\hat{\Theta} + Y_2(x_t^{(i)})\hat{c} - Y_1(x_t^{(i)})\Theta - Y_2(x_t^{(i)})c^{(i)} + w_t^{(i)}),$$

whose norm on \mathcal{K} is bounded by

$$\sqrt{4(K_1^2 + K_2^2)(2K_1K_\Theta + 2K_2K_c + W)^2} = \sqrt{C_1^2 + C_2^2}.$$

Therefore, from Lemma 7 running OGD on \mathcal{K} with learning rates $\frac{2\sqrt{K_{\Theta}^2 + K_c^2}}{\sqrt{C_1^2 + C_2^2} \sqrt{T}}$ gives the following guarantee at each outer iteration:

$$\sum_{t=1}^{T} \bar{\ell}^{(i)}(\hat{\alpha}^{(i)}) - \bar{\ell}^{(i)}(\alpha^{(i)}) \leq 3\sqrt{K_{\Theta}^2 + K_c^2} \sqrt{C_1^2 + C_2^2} \sqrt{T}.$$

Finally, similar as (12) we have

$$\text{ACE(baseline adaptive control)} \leq \frac{\gamma}{1 - \rho} \sqrt{\sum_{i=1}^{N} \sum_{t=1}^{T} \bar{\ell}^{(i)}(\hat{\alpha}^{(i)})}$$

$$\leq \frac{\gamma}{1 - \rho} \sqrt{\sum_{i=1}^{N} 3\sqrt{K_{\Theta}^2 + K_c^2} \sqrt{C_1^2 + C_2^2} \sqrt{T} + \sum_{i=1}^{N} \sum_{t=1}^{T} \bar{\ell}^{(i)}(\alpha^{(i)})}$$

$$\leq \frac{\gamma}{1 - \rho} \sqrt{W^2 + 3\sqrt{K_{\Theta}^2 + K_c^2} \sqrt{C_1^2 + C_2^2} \frac{1}{\sqrt{T}}}.$$

Note that this bound does not improve as the number of environments (i.e., N) increases.
A.5 Proof of Theorem 6

Proof. For any \(\Theta \in \mathcal{K}_1 \) and \(c^{(1:N)} \in \mathcal{K}_2 \) we have

\[
\sum_{i=1}^N \sum_{t=1}^T \ell_t^{(i)}(\hat{c}_t^{(j)}, c_t^{(j)}) - \sum_{i=1}^N \sum_{t=1}^T \ell_t^{(i)}(\Theta, c_t^{(i)}) = \sum_{i=1}^N \sum_{t=1}^T \left[\ell_t^{(i)}(\hat{c}_t^{(i)}, c_t^{(i)}) - \ell_t^{(i)}(\Theta, c_t^{(i)}) \right] + \sum_{i=1}^N \sum_{t=1}^T \left[\ell_t^{(i)}(\hat{c}_t^{(i)}, c_t^{(i)}) - \ell_t^{(i)}(\Theta, c_t^{(i)}) \right]
\]

(24)

Then combining with Lemma 1 results in the ACE bound.

A.6 Proof of Theorem 6

Proof. Note that in this case the available measurement of \(f \) at the end of the outer iteration \(i \) is:

\[
y_t^{(j)} = Y(x_t^{(j)})\Theta c^{(j)} - w_t^{(j)}, \quad 1 \leq j \leq i, 1 \leq t \leq T.
\]

(25)

Recall that the Ridge-regression estimation of \(\Theta \) is given by

\[
\hat{\Theta}^{(i+1)} = \arg \min_{\hat{\Theta}} \|\hat{\Theta}\|_F^2 + \sum_{j=1}^i \sum_{t=1}^T \|Y(x_t^{(j)})\hat{\Theta} c^{(j)} - y_t^{(j)}\|^2
\]

(26)

\[
= \arg \min_{\hat{\Theta}} \|\hat{\Theta}\|_F^2 + \sum_{j=1}^i \sum_{t=1}^T \|Z_t^{(j)} \text{vec}(\Theta) - y_t^{(j)}\|^2.
\]

Note that \(y_t^{(j)} = (c^{(j)})^T \otimes Y(x_t^{(j)}) \cdot \text{vec}(\Theta) - w_t^{(j)} = Z_t^{(j)} \text{vec}(\Theta) - w_t^{(j)} \). Define \(V_i = \lambda I + \sum_{t=1}^i \sum_{t=1}^T Z_t^{(j)^T} Z_t^{(j)} \). Then from the Theorem 2 of [32] we have

\[
\|\text{vec}(\hat{\Theta}^{(i+1)} - \Theta)\|_F \leq R \sqrt{\frac{i}{\delta}} \sqrt{\log\left(1 + \frac{\sqrt{\lambda} T \cdot n K_2^2 K_c^2 / \delta}{\delta}\right) + \sqrt{\lambda} K_0}
\]

(27)

for all \(i \) with probability at least \(1 - \delta \). Note that the environment diversity condition implies: \(V_i \succ \Omega(i) I \). Finally we have

\[
\|\hat{\Theta}^{(i+1)} - \Theta\|_F^2 = \|\text{vec}(\hat{\Theta}^{(i+1)} - \Theta)\|^2 \leq O\left(\frac{1}{i} O(\log(iT/\delta)) \right) = O\left(\frac{\log(iT/\delta)}{i}\right).
\]

(28)

Then with a fixed \(\hat{\Theta}^{(i+1)} \), in outer iteration \(i + 1 \) we have

\[
y_t^{(i+1)}(\hat{c}) = Y(x_t^{(i+1)})\hat{\Theta}^{(i+1)}\hat{c} - Y(x_t^{(i+1)})\Theta c^{(i+1)} + w_t^{(i+1)}.
\]

(29)

Since \(A_2 \) gives sublinear regret, we have

\[
\sum_{t=1}^T \|Y(x_t^{(i+1)})\hat{\Theta}^{(i+1)}\hat{c} - Y(x_t^{(i+1)})\Theta c^{(i+1)} + w_t^{(i+1)}\|^2
\]

(30)

\[
- \min_{\hat{c} \in \mathcal{K}_2} \sum_{t=1}^T \|Y(x_t^{(i+1)})\hat{\Theta}^{(i+1)}\hat{c} - Y(x_t^{(i+1)})\Theta c^{(i+1)} + w_t^{(i+1)}\|^2 = o(T)
\]

Note that

\[
\min_{\hat{c} \in \mathcal{K}_2} \sum_{t=1}^T \|Y(x_t^{(i+1)})\hat{\Theta}^{(i+1)}\hat{c} - Y(x_t^{(i+1)})\Theta c^{(i+1)} + w_t^{(i+1)}\|^2 \leq \sum_{t=1}^T \|Y(x_t^{(i+1)})\hat{\Theta}^{(i+1)}\hat{c} - Y(x_t^{(i+1)})\Theta c^{(i+1)} + w_t^{(i+1)}\|^2
\]

(31)

\[
\leq TW^2 + T \cdot K_Y^2 \cdot O\left(\frac{\log(iT/\delta)}{i}\right) \cdot K_c^2
\]
where (a) uses (28).

Finally we have

$$
\sum_{t=1}^{T} \| \hat{f}^{(i+1)}_t - f^{(i+1)}_t + w^{(i+1)}_t \|^2 \\
= \sum_{t=1}^{T} \| Y(x^{(i+1)}_t)\hat{\Theta}^{(i+1)}_t - Y(x^{(i+1)}_t)\Theta c^{(i+1)}_t + w^{(i+1)}_t \|^2 \\
\leq o(T) + TW^2 + O(T \frac{\log(iT/\delta)}{i})
$$

(32)

for all i with probability at least $1 - \delta$. (b) is from (30), and (31). Then with Lemma 1 we have (with probability at least $1 - \delta$)

$$
ACE \leq \frac{\gamma}{1 - \rho} \sqrt{\frac{\sum_{i=1}^{N} o(T) + TW^2 + O(T \frac{\log(iT/\delta)}{i})}{TN}} \\
\leq \frac{\gamma}{1 - \rho} \sqrt{\frac{W^2 + \frac{o(T)}{T} + O(\log(NT/\delta)) \sum_{i=1}^{N} \frac{1}{i}}{TN}} \\
\leq \frac{\gamma}{1 - \rho} \sqrt{\frac{W^2 + \frac{o(T)}{T} + O(\log(NT/\delta) \log(N))}{N}}.
$$

(33)

If we relax the environment diversity condition to $\Omega(\sqrt{i})$, in (28) we will have $O(\frac{\log(iT/\delta)}{\sqrt{N}})$. Therefore in (33) the last term becomes $O(\frac{\log(iT/\delta)}{\sqrt{N}} \sum_{i=1}^{N} \frac{1}{\sqrt{i}} \leq O(\frac{\log(iT/\delta)}{\sqrt{N}})$.

A.7 Experimental details

A.7.1 Theoretical justification of Deep OMAC

Recall that in Deep OMAC (Table 4 in Section 5) the model class is $F(\phi(x; \hat{\Theta}), \hat{c}) = \phi(x; \hat{\Theta}) \cdot \hat{c}$, where $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^{n \times h}$ is a neural network parameterized by $\hat{\Theta}$. We provide the following proposition to justify such choice of model class.

Proposition 1. Let $\hat{f}(x, \hat{c}) : [-1, 1]^n \times [-1, 1]^h \rightarrow \mathbb{R}$ be an analytic function of $[x, \hat{c}] \in [-1, 1]^{n + h}$ for $n, h \geq 1$. Then for any $\epsilon > 0$, there exist $h(\epsilon) \in \mathbb{Z}^+$, a polynomial $\hat{\phi}(x) : [-1, 1]^n \rightarrow \mathbb{R}^{h(\epsilon)}$ and another polynomial $c(\hat{c}) : [-1, 1]^h \rightarrow \mathbb{R}^{h(\epsilon)}$ such that

$$
\max_{[x, \hat{c}] \in [-1, 1]^{n + h}} \| \hat{f}(x, \hat{c}) - \hat{\phi}(x)^T c(\hat{c}) \| \leq \epsilon
$$

and $h(\epsilon) = O((\log(1/\epsilon))^{1/h})$.

Note that here the dimension of c depends on the precision $1/\epsilon$. In practice, for OMAC algorithms, the dimension of \hat{c} or c (i.e., the latent space dimension) is a hyperparameter, and not necessarily equal to the dimension of \hat{c} (i.e., the dimension of the actual environmental condition). A variant of this proposition is proved in [34]. Since neural networks are universal approximators for polynomials, this theorem implies that the structure $\phi(x; \hat{\Theta}) \hat{c}$ can approximate any analytic function $\hat{f}(x, \hat{c})$, and the dimension of \hat{c} only increases polylogarithmically as the precision increases.

A.7.2 Pendulum dynamics model and controller design

In experiments, we consider a nonlinear pendulum dynamics with unknown gravity, damping and external 2D wind $w = [w_x; w_y] \in \mathbb{R}^2$. The continuous-time dynamics model is given by

$$
ml^2 \ddot{\theta} - ml \dot{\theta} \sin \theta = u + f(\theta, \dot{\theta}, c(w)),
$$

(34)
This model generalizes the pendulum with external wind model in [35] by introducing extra modelling mismatches (e.g., gravity mismatch and unknown damping). In this model, \(\alpha_1 \) is the damping coefficient, \(\alpha_2 \) is the air drag coefficient, \(r \) is the relative velocity of the pendulum to the wind, \(F_{\text{wind}} \) is the air drag force vector, and \(\vec{l} \) is the pendulum vector. Define the state of the pendulum as \(x = [\theta; \dot{\theta}] \). The discrete dynamics is given by

\[
x_{t+1} = \begin{bmatrix}
\theta_t + \delta \cdot \frac{\dot{\theta}_t}{m l^2} \\
\dot{\theta}_t + \frac{\theta_t + \delta \cdot \dot{\theta}_t}{m l^2} + f(x_t, c) \end{bmatrix} = \begin{bmatrix} 1 & \delta \\ 0 & 1 \end{bmatrix} x_t + \begin{bmatrix} 0 \\ \delta m l^2 \end{bmatrix} (u_t + ml \ddot{\theta} \sin \theta_t + f(x_t, c)),
\]

where \(\delta \) is the discretization step. We use the controller structure \(u_t = -Kx_t - ml \ddot{\theta} \sin \theta_t - \hat{f} \) for all 6 controllers in the experiments, but different controllers have different methods to calculate \(\hat{f} \) (e.g., the no-adapt controller uses \(\hat{f} = 0 \) and the omniscient one uses \(\hat{f} = f \)). We choose \(K \) such that \(A - BK \) is stable (i.e., the spectral radius of \(A - BK \) is strictly smaller than 1), and then the e-ISS assumption in Assumption [1] naturally holds. We visualize the pendulum experiment results in fig. 2.

A.7.3 Quadrotor dynamics model and controller design

Now we introduce the quadrotor dynamics with aerodynamic disturbance. Consider states given by global position, \(p \in \mathbb{R}^3 \), velocity \(v \in \mathbb{R}^3 \), attitude rotation matrix \(R \in \text{SO}(3) \), and body angular velocity \(\omega \in \mathbb{R}^3 \). Then dynamics of a quadrotor are

\[
\begin{align*}
\dot{p} &= v, \\
\dot{v} &= mg + Rft + f, \\
\dot{R} &= RS(\omega), \\
J\dot{\omega} &= J\omega \times \omega + \tau,
\end{align*}
\]

where \(m \) is the mass, \(J \) is the inertia matrix of the quadrotor, \(S(\cdot) \) is the skew-symmetric mapping, \(g \) is the gravity vector, \(f_t = [0, 0, T] \) and \(\tau = [\tau_x, \tau_y, \tau_z] \) are the total thrust and body torques from four rotors, and \(f = [f_x, f_y, f_z] \) are forces resulting from unmodelled aerodynamic effects and varying wind conditions. In the simulator, \(f \) is implemented as the aerodynamic model given in [36].

Controller design. Quadrotor control, as part of multicopter control, generally has a cascaded structure to separate the design of the position controller, attitude controller, and thrust mixer.
(allocation). In this paper, we incorporate the online learned aerodynamic force \(\hat{f} \) in the position controller via the following equation:

\[
f_d = -mg - m(K_P \cdot p + K_D \cdot v) - \hat{f},
\]

(38)

where \(K_P, K_D \in \mathbb{R}^{3\times3} \) are gain matrices for the PD nominal term, and different controllers have different methods to calculate \(\hat{f} \) (e.g., the omniscient controller uses \(\hat{f} = f \)). Given the desired force \(f_d \), a kinematic module decomposes it into the desired \(R_d \) and the desired thrust \(T_d \) so that

\[
R_d \cdot [0, 0, T_d]^\top \approx f_d.
\]

Then the desired attitude and thrust are sent to a lower level attitude controller (e.g., the attitude controller in [51]).