
Gone Fishing: Neural Active Learning with
Fisher Embeddings

Jordan T. Ash
Microsoft Research NYC

ash.jordan@microsoft.com

Surbhi Goel
Microsoft Research NYC

goel.surbhi@microsoft.com

Akshay Krishnamurthy
Microsoft Research NYC

akshaykr@microsoft.com

Sham Kakade
Microsoft Research NYC
University of Washington

sham.kakade@microsoft.com

Abstract

There is an increasing need for effective active learning algorithms that are com-
patible with deep neural networks. This paper motivates and revisits a classic,
Fisher-based active selection objective, and proposes BAIT, a practical, tractable,
and high-performing algorithm that makes it viable for use with neural models.
BAIT draws inspiration from the theoretical analysis of maximum likelihood esti-
mators (MLE) for parametric models. It selects batches of samples by optimizing a
bound on the MLE error in terms of the Fisher information, which we show can be
implemented efficiently at scale by exploiting linear-algebraic structure especially
amenable to execution on modern hardware. Our experiments demonstrate that
BAIT outperforms the previous state of the art on both classification and regression
problems, and is flexible enough to be used with a variety of model architectures.

1 Introduction
The active learning paradigm considers a sequential, supervised learning scenario in which unlabeled
samples are abundant but label acquisition is costly. At each round of active learning, the agent fits its
parameters using available labeled data before selecting a batch of unlabeled samples to be labeled and
integrated into its training set. A well-chosen batch of samples is one that is maximally informative
to the learner, such that it can obtain the best hypothesis possible given a fixed labeling budget.

Active learning is well established as an area of machine learning research due to the ubiquity of impor-
tant real world problems that fit the sample-abundant, label-expensive setting; commonly cited applica-
tions range from medical diagnostics [1, 2] to image labeling [3]. Mitigating large sample complexity
requirements is particularly relevant for deep neural networks, which have in recent years achieved
impressive success on a wide array of tasks but often require considerable amounts of labeled data.

Shifting the focus of active learning to deep neural networks highlights several important problems.
For one, most foundational active learning work assumes a convex setting, which is clearly violated
by massive nonlinear neural networks. Many of these approaches are computationally expensive, and
it is not clear how to adapt them for real-world use [4]. Further, because neural network training is
generally expensive, practical active learning algorithms must be able to work in the batch regime,
querying B samples at each round of active learning instead of a single point at a time [5].

Despite a long history of active learning research, these constraints draw attention to a need for
practical, principled batch active learning algorithms for neural networks. Current state-of-the-art
methods, like Batch Active Learning by Diverse Gradient Embeddings (BADGE), perform robustly in
experiments, but explanations for its behavior are fairly limited [6]. This drawback makes it unclear

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

how to scale some active learning algorithms into regimes that deviate somewhat from the setting for
which they were designed—BADGE, for example, cannot be run on regression problems, and as we
show in this paper, performs poorly when used in conjunction with a convex model.

This article adopts a probabilistic perspective of neural active learning. We view neural networks
as specifying a conditional probability distribution p(y | x, θ) over label space Y given example X ,
where θ are the network parameters. This perspective provides theoretical inspiration from the convex
regime with which to examine and design neural active learning algorithms. From this viewpoint we
motivate and revisit a classic, Fisher-based objective for idealized active selection. We argue that
approximately minimizing this objective can be done tractably in the neural regime, despite their
overparametrized structure and shifting internal representation. Accordingly, this work helps bridge
the divide between algorithms that are performant but not well understood by theory, and those that
are theoretically transparent but not computationally tractable.

Experimentally, BAIT offers improved performance over baselines in deep classification problems,
a trend that is robust to experimental conditions like batch size, model architecture, and dataset.
Crucially, BAIT is general purpose, and can be easily extended to regression settings, where many
other algorithms cannot. It further performs well on both regression and classification with convex
models, a paradigm in which other algorithms often struggle. In summary, this paper

• puts neural active learning on firm probabilistic grounding, giving a new, rigorous perspective
on the functionality of previously proposed algorithms.

• provides in-depth empirics that elucidate differences between neural and convex regimes, and
discusses simplifying assumptions that are sometimes reasonable in the neural case.

• proposes a practical, unifying, high-performing active learning algorithm that leverages these
insights in a computationally tractable manner.

2 Related work
Active learning is a very well-studied problem [7–9]. There are two main sample selection approaches,
diversity and uncertainty sampling, which are successful respectively for large and small batch sizes.

Diversity sampling strategies aim to select batches of data that best represent the space. In a deep
learning context, these algorithms typically embed unlabeled samples using the neural network’s
penultimate layer and select a subset of samples that might act as a proxy for the entire dataset [10, 11].
[12] proposed inducing batch diversity using a generative adversarial network formulation, selecting
samples that are maximally indistinguishable from the pool of unlabeled examples.

There is also a rich body of work on batch active learning [13–17]. These methods typically formulate
batch selection as an optimization problem that minimizes an upper-bound on some notion of model
loss.

Efficiently adapting parameters to an incrementally larger training set is not an issue in convex
settings. Accordingly, with linear models, it is more common to use uncertainty sampling and a
batch size of one. A frequently used approach is to query samples that lie closest to the current
model’s decision boundary, a quantity that’s considered inversely proportional to uncertainty [18–20].
Some similar methods offer theoretical guarantees on statistical consistency [9, 21]. Other algorithms
quantify uncertainty using the entropy of the predicted distribution over classes, or as the size of
the expected gradient induced by observing the label corresponding with a candidate sample [22].
The latter is known to be related to the T -optimality criterion in experimental design, but is unable
to account for batch diversity.

Similar approaches have been modified for use with neural networks as well. For example, [23]
exercise Dropout to sample weights to approximate the posterior distribution over labels, and use it to
identify samples that reduce model uncertainty. Adversarial example generation has been used to
approximate the distance between a sample and the decision boundary [24]. Model ensembling has
also been used to approximate sample uncertainty, where the predictive variance across constituent
models can be used to inform a sample selection strategy [25].

There are a variety of algorithms that are meant to combine uncertainty and diversity sampling [26].
This trade-off is sometimes framed as its own optimization problem, for example using a meta-
learning approach that hybridizes both strategies [27, 28]. Among these is active learning by learning,

2

which uses a bandit approach to select which query rule to employ at any given round of active
learning [28]. BADGE, described in detail in Section 5.1, also combines uncertainty and diversity
sampling, and is considered state-of-the-art for deep neural networks.

3 Notation and Setup

We consider a standard setup for batch active learning with neural network models, where there is
an instance space X , label space Y , and a distribution D over X × Y . We use DX to denote the
marginal distribution over the instance space and DY|X (x) to denote the conditional distribution over
labels given example x. For learning, we are given access to a pool U = {xi}ni=1 ∼ DX of unlabeled
examples and we have the ability to request the label for any point x ∈ U . In the tth round of batch
active learning, we select a collection {x(t)

j }Bj=1 ⊂ U of B examples (B is the batch size) and request

the labels y(t)
j ∼ DY|X (x

(t)
j) for all examples in the batch. We use these labeled examples to update

our neural network model and then we proceed to the next round.

In this setup, the ultimate objective is to achieve low loss on the data distribution D, that is we hope
our learned parameters θ̂ nearly minimize E(x,y)∼D`(x, y; θ̂), where ` is some loss function like
the cross entropy loss for classification. We always consider this objective in our experiments, but
for algorithm development it is helpful to instead consider the fixed-design or transductive setting,
where the goal is to instead minimize LU (θ) = Ex∼UEy∼DY|X (x)`(x, y; θ̂), essentially treating the
unlabeled samples U as the entire distribution. Note that these two objectives can typically be related
by generalization arguments.

4 Probabilistic Perspective

We consider neural networks as specifying a probability distribution p(y | x, θ) over the label
space Y given an example x, where θ are the network parameters. Adopting this view, it is most
natural to use the loss function `(x, y; θ) = − log p(y | x, θ), choosing parameters that maximize the
likelihood of observed labeled data. In classification problems, for example, we apply the softmax
operation to the output of the network and then evaluate the cross-entropy loss with the ground truth
label. For regression problems, we use the square loss, which treats the neural network as specifying
a Gaussian distribution for each x.

Bayesian linear regression. As a warm-up, it is illustrative to consider an experimental design
setting with Bayesian linear regression. We consider a d-dimensional linear regression problem where
we assume the parameter vector θ? has prior distributionN (0, λ−1I) and the conditional distribution
DY|X (x) = p(· | x, θ?) = N (〈θ?, x〉, σ2) is Gaussian. For any set of labeled data {xj , yj}mj=1, the
resulting maximum a posteriori (MAP) estimate is given by ridge regression with regularizer λσ2:

θ̂ = argmin
θ

m∑
j=1

(〈xj , θ〉 − yj)2 + λσ2‖θ‖22 (1)

In the experimental design setting, we have unlabeled data U = {xi}ni=1 and our goal is to select
a set S ⊂ U of B points so that the resulting MAP estimate has the lowest Bayes risk. Letting
Σ = 1

n

∑n
i=1 xix

>
i denote the second moment matrix of the unlabeled data, the Bayes risk is

BayesRisk(S) = E
[
(θ̂S − θ?)>Σ(θ̂S − θ?)

]
, (2)

where θ̂S is the MAP estimate after querying for labels on subset S, and the expectation is with
respect to the noise in the labels and the prior over θ?.

Lemma 1 in the Appendix shows that for a subset S ⊂ U , letting ΛS =
∑
x∈S xx

> + λσ2I , the
Bayes risk in this setting is exactly:

BayesRisk(S) = σ2 tr(Λ−1
S Σ). (3)

Observe that the RHS does not depend on labels, implying that minimizing the RHS over subsets S
is feasible and optimal selection strategy under this criteria. This also verifies that multiple batches of

3

active learning are not required for Bayesian linear regression, although this observation does not
carry forward to the neural setting. BAIT is designed to approximately minimize this objective.

Classical regime. An objective similar to (3) also emerges naturally in the analysis of maximum
likelihood estimators (MLE) in the convex regime. Here, classical statistical theory posits that the
model is well-specified, so that there is some parameter θ? such that DY|X (x) = p(· | x, θ?) for
each x ∈ X . It is also common to impose regularity conditions including strong convexity of the
loss function LU (θ) [29, 30]. While these conditions certainly do not hold in the neural setting,
BAIT builds on much of this classical technology. The key quantity is the Fisher information matrix
I(x; θ) := Ey∼p(·|x,θ)∇2`(x, y; θ) which is known to determine the asymptotic distribution of the
maximum likelihood estimator [29]. In many probabilistic models, including linear and logistic regres-
sion, the hessian of the loss function does not depend on the label y, which we assume going forward.

For active learning in the classical setup, [4] give a two-phase sampling scheme with provably
near-optimal performance. In the first phase, the algorithm samples a batch of B points uniformly at
random, requests their labels, and optimizes the log-likelihood to obtain an initial estimate θ1. In the
idealized version of the second phase, a batch of B points is chosen to optimize

argmin
S⊂U,|S|≤B

tr

(∑
x∈S

I(x; θ1)

)−1

IU (θ1)

 (4)

where IU (θ1) is the Fisher over all samples,
∑
x∈U I(x; θ1). This combinatorial problem is intractable

in general, so [4] instead solve a semidefinite relaxation (SDP). They request labels on the obtained
batch B of points and re-fit the model to obtain the final estimate θ̂. For their setup, they prove the
statistical properties of this two-phase estimator are near optimal.

Despite the theoretical properties, solving an SDP is not feasible in high dimensions; instead we
provide a new, greedy algorithm for minimizing the objective that is usable in the neural regime.
Several other works have also looked at this objective, either from a purely theoretical perspective [4,
31] or via relaxations [32–34]. However, some of these do not ensure batch diversity, and none have
been extended to the neural regime.

This formulation essentially generalizes (3), since in linear regression the Fisher information I(x; θ)
is the covariance matrix xx>/σ2: the objectives in (3) and (4) differ only in their use of the regularizer
controlled by λ. That is, essentially the same objective can be derived from two different perspectives,
making it a compelling object for active selection. As such, our starting point for the neural setting is
the ideal-but-intractable optimization problem in (4).

5 BAIT

Batch Active learning via Information maTrices (BAIT) is inspired by this theory, but adapted to the
sequential, neural setting. To do this effectively, several key issues need to be addressed:

1. For neural models, the pointwise information matrix I(x; θ) is typically extremely large.

2. The internal representation learned by the network changes with each round of active
learning, so computation from previous rounds cannot be reused.

3. Solving the objective in Equation (4), as suggested in more theoretical work, is computa-
tionally infeasible [4].

Outlined as Algorithm 1, BAIT addresses item 1 in a somewhat standard way, by operating
on the last layer of the network [6, 10]. We consider last-layer Fisher matrices I(x; θL) :=
Ey∼p(·|x,θ̂)∇

2`(x, y; θL) for last-layer parameters θL. Note that in the linear setting θL = θ. Here, if
the top-layer representation starts to well-approximate a convex model, then the information geometry
induced solely by these parameters can guide active sampling. Further, as we discuss shortly, this
top-layer framework gives us a more principled understanding of the empirical success of BADGE.

One more subtle issue (item 2) is the interplay between the changing representation as learning
progresses. We address this with an iterative scheme, where the Fisher information matrix is
continually recomputed as the algorithm changes its representation during the course of learning.

4

Algorithm 1 BAIT

Require: Neural network f(x; θ), unlabeled pool of examples U , initial number of examples B0,
number of iterations T , number of examples in a batch B.

1: Initialize S by drawing B0 labeled points from U & fit model on S: θ1 = argminθ ES [`(x, y; θ)]
2: for t = 1, 2, . . . , T : {forward greedy optimization} do
3: Compute I(θLt) = 1

|U |
∑
x∈U I(x; θLt)

4: Initialize M0 = λI + 1
|S|
∑
x∈S I(x; θLt)

5: for i = 1, 2, . . . , 2B: do
6: x̃ = argminx∈U tr((Mi + I(x; θLt))−1I(θLt))
7: Mi+1 ←Mi + I(x̃; θLt), S ← x̃
8: end for
9: for i = 2B, 2B − 1, ..., B: {backward greedy optimization} do

10: x̃ = argminx∈S tr((Mi − I(x; θLt))−1I(θLt))
11: Mi−1 ←Mi − I(x̃; θLt), S ← S \ x̃
12: end for
13: Train model on S: θt = argminθ ES [`(x, y; θ)].
14: end for
15: return Final model θT+1.

Rather than solving an SDP, BAIT approximates a solution to Equation (4) using a greedy approach,
which we show can be made efficient in both classification and regression settings. At each step of
the algorithm, the key computation lies in evaluating

x̃ = argmin
x∈U

tr((Mi + I(x; θLt))−1I(θLt)), (5)

where Mi is the Fisher corresponding to samples that have been selected so far.

Unfortunately, the trace function is not submodular, and is thus not well suited for standard greedy
optimization. To address this, during each iteration, where the goal is identify B points to query,
sampling is done in two stages. For a batch of B points, the first stage greedily oversamples, adding
2B samples to the initial batch. In the second stage, BAIT prunes B samples from the batch, better
minimizing the objective described in (4). We find that this forward-backward strategy sometimes
improves performance over the forward-only alternative (Figure 1). See Algorithm 1 for details.
Choosing two as the oversampling factor of two is done for computational reasons, trading-off between
computational cost and batch quality. We did not see performance improvements for larger multipliers.

When evaluating the i-th sample to include in S, the minimization in Equation (5) is effi-
ciently computed using a trace rotation and the Woodbury identity for low-rank inverse updates:

Figure 1: A comparison between for-
ward and forward-backward greedy ap-
proaches for BAIT. Here we show a sim-
ple active learning experiment using an
MLP and MNIST data [35], and samples
are acquired in batches of size 10 for 50
rounds. See Section 6 for more details.

argmin
x

tr

((
Mi + VxV

>
x

)−1

I(θLt)

)
= argmin

x
tr
((
M−1

i −M−1
i VxA

−1V >M−1
i

)
I(θLt)

)
= argmin

x
tr
(
M−1

i I(θLt)
)
− tr

(
M−1

i VxA
−1V >x M−1

i I(θLt)
)

= argmin
x

tr
(
M−1

i I(θt)
)
− tr

(
V >x M−1

i I(θLt)M
−1
i VxA

−1
)

= argmax
x

tr
(
V >x M−1

i I(θLt)M
−1
i VxA

−1
)
,

where A = I + V >x M
−1
i Vx is an easily invertible k × k

matrix. Here Vx is a dk×k matrix of gradients, where each
column is scaled by the square root of the corresponding
prediction: VxV >x = I(x, θL). This formulation keeps us
from having to compute and store all candidate I(x; θL),
drastically decreasing the algorithm’s memory footprint.
The trace rotation step, placing Vx as the leading term
instead of M−1

i is essential, as it avoids computing a new

5

Figure 2: Linear classification on differ-
ent representations of MNIST data. Left:
Learned features, similar those from a
neural network. Right: A random, un-
informed projection, simulating the raw
features a convex model may have to use.

Figure 3: Bayesian linear regression simulations com-
paring BAIT and determinantal maximization. In both
cases the data have poorly conditioned covariance matri-
ces with quadratic spectral decay. Determinantal maxi-
mization exploits this in the Gaussian case, but not the
orthonormal case. BAIT performs well in both settings.

kd× kd matrix for each x. As a practical matter, on all datasets we consider in Section 6, this allows
us to compute the trace contribution of all candidate samples simultaneously on a modern GPU.

After the minimizer x is found, updating M−1
i is done simply via the same Woodbury identity,

M−1
i+1 = M−1

i −M−1
i VxA

−1V >x M
−1
i , and the algorithm proceeds to identify the next sample.

Regression. In the regression setting we are able to further reduce the amount of required computation.
Let xL denote the penultimate layer representation induced by f(x; θ). For linear models xL = x.
In Appendix Section A.3, we show that a k-output regression model trained to minimize squared
error has pointwise Fisher I(x; θL) = (xL)(xL)> ⊗ Σ̂−1, where Σ̂ is the noise covariance of the
estimator. Using this fact, the regression version of the Fisher objective is

tr

((∑
x∈S

I(x; θL)

)−1

IU (θ
L)

)
= k tr

((∑
x∈S

xL(xL)>
)−1(∑

x∈U

xL(xL)>
))

. (6)

The full derivation can be found in Appendix A.3.1. This observation greatly simplifies the mini-
mization in Equation (5), allowing us to use only rank one matrices xL(xL)> in place of the rank k
matrices in the classification setting. The procedure is written explicitly in Appendix A.4.

5.1 BADGE comparison
By comparison, BADGE, a recently proposed, state-of-the-art active learning classification algorithm,
aims to select a batch of samples that are likely to induce large and diverse changes to the model [6].
This is done by representing each candidate sample x ∈ U as gx = ∇`(x, y = ŷ; θL), the d-
dimensional last-layer gradient that would be obtained if the most likely label according to the model,
ŷ, were observed. BADGE selects a batch of samples that have large Gram determinant in this space.

The intuition behind BADGE is that sampling proportionally to the Gram determinant of these
hallucinated gradients trades-off between uncertainty and diversity; a batch of gradient embeddings
that produce a large Gram determinant will need to be both high magnitude (corresponding to model
uncertainty) and linearly independent (corresponding to batch diversity). It is worth noting that while
BADGE sampling is motivated by determinantal point process (DPP) sampling, the actual BADGE
algorithm only uses a rough approximation to this procedure.

Still, from the perspective of BAIT, the “gradient embedding” used in BADGE is a single column of
the dk×k matrix Vx, but not scaled by

√
pi. These embeddings can correspondingly be thought of as

rank-one approximations for I(x; θ). BAIT trades BADGE’s determinantal sampling for a trace min-
imization (A-optimality). This substitution is essential because the determinantal approach is unable
to accommodate for I(θ), as argmaxx det(I(x; θ)−1I(θ)) = argmaxx det(I(x; θ)−1) for any I(θ).

Thus, BAIT offers two main advantages over BADGE. First, it considers the entire rank-k pointwise
Fisher, catching potentially useful information that’s ignored by BADGE. Second, BAIT incorporates
the Fisher over all samples I(θ), a term we show to be essential for minimizing risk and bounding
MLE error. Crucially, because BADGE identifies this vector as corresponding to the most likely label
according to the model, and this only makes sense in classification settings, it is unable to handle
regression problems, a regime to which BAIT naturally extends.

Comparing objectives. These observations make it clear that BAIT is more general than BADGE,
but it is not obvious which of the aforementioned algorithmic extensions is most important for

6

Figure 4: The same plots as Figure 2,
but comparing BAIT to baseline ac-
tive learning algorithms. We include
BAIT without I(θL) for a clearer
comparison. BAIT most drastically
outperforms baselines on the unin-
formed representation, where high-
norm directions are not necessarily
most discriminative.

boosting performance. Figure 2 directly compares those objectives for batch sample selection.
Specifically, we run three variations: greedily maximizing the determinant of the rank-one BADGE
gradient embeddings, greedily maximizing the determinant of the full-rank Fisher, and the BAIT
approach, taking into consideration both the full-rank pointwise Fisher matrices and I(θL). The
two determinantal algorithms are written formally in the Appendix as Algorithm 2 and Algorithm 3,
and can be made efficient by taking advantage of Woodbury identities. Here BAIT uses only forward
greedy optimization, rather than both forward and backward, to ensure a fair comparison.

We study two simple projections of the MNIST dataset. In one, we fit a two-layer MLP on 50% of the
training data, and embed the remaining 50% using the first layer. We perform active learning in this
128-dimensional space on the unseen 50% of examples, selecting 50 batches of size 10 in sequence.

We then conduct a similar experiment, but instead of using a learned representation, we use a random
(Gaussian with mean zero and unit variance) matrix to project samples into 128 dimensions, a setting
in which, unlike in the learned representation, the largest directions are not necessarily the most
discriminative. Note that this representation allows us to control feature dimensionality but mimics
the typical convex learning paradigm, where features are fixed, not conditioned on labels, and not
controllable by the learner.

In both plots, the BAIT objective outperforms determinantal objectives. This effect is more drastic
for the uninformed embedding, where the plot suggests that the full-rank pointwise Fisher is more
useful than its low-rank counterpart for late-stage performance, and that I(θL), as used in BAIT, is
especially beneficial for early stage performance.

Synthetic experiment. We conduct a small synthetic experiment to demonstrate the value of
incorporating the Fisher information matrix into the acquisition strategy. In Figure 3 we plot the
exact Bayes Risk (3) in the Bayesian linear regression setup described in Section 4 as a function
of the batch size B for both BAIT and the greedy determinant maximization strategy. Here we
consider two distributions in d = 100 dimensions. In the left plot data are generated from a Gaussian
distribution with diagonal covariance with quadratic spectral decay Σii ∝ 1/i2. On the right, the
distribution is supported only on the standard basis, with probabilities that decay quadratically
pi := P[x = ei] ∝ 1/i2. Note that both distributions have identical and poorly conditioned
covariance Σ (recall (3)). This allows us to highlight the value of the Fisher matrix and how it leads
to robust performance across data distributions. Indeed, we see that in the Gaussian case, both the
BAIT strategy (called “Trace+Fisher” in the figure) and the determinental maximization strategy
(“Log-det”) perform almost identically. However, BAIT significantly outperforms the alternative in
the orthonormal case. This occurs because the latter does not exploit the occurrence probabilities pi
and in fact simply selects the coordinates in a cyclic fashion. On the other hand, the optimal strategy
focuses effort on the high-probability coordinates, which is exactly captured in the Fisher matrix.1

6 Experiments
In this section we detail extensive experiments that highlight the generality and performance of BAIT.
We consider three settings: linear classification, deep classification, and regression. Throughout
these sections, we compare BAIT to several recently proposed and classic active learning approaches.

Among these, we consider BADGE, CORESET, CONFIDENCE, and RANDOM sampling. BADGE, as
mentioned earlier, is a state-of-the-art approach that trades off between diversity and uncertainty by

1Note that in the orthonormal case, both greedy optimization algorithms are in fact optimal for their respective
combinatorial problems.

7

Figure 6: Three deep active learning experiments with different model architectures, datasets, and
batch sizes. Left: An MNIST experiment, using a batch size of 100 and an MLP. Center: Active
learning on the SVHN dataset with an 18-layer ResNet and a batch size of 10, smoothed for clarity
(unsmoothed plot in the Appendix). Right: Active learning on the OpenML dataset 155 using an
MLP and a batch size of 100. Here we zoom in on disriminative regions of learning curves.

approximately sampling a batch of points that have high Gram determinant when represented as a
gradient. CORESET represents items using the model’s penultimate layer representation, then samples
a batch that describes the space well. CONFIDENCE sampling selects the n points for which the
model is least confident, measured by max f(x; θ). RANDOM draws n points uniformly at random.

6.1 Linear Classification
Like BADGE and CORESET, BAIT caters to efficiency in part by only considering the last layer of the
network to select a new batch. Despite this linear assumption, both CORESET and BAIT are unable to
perform well outside of the neural regime.

This subsection revisits the simplified setting described in Section 5.1 and Figure 2, involving both
informed and uniformed representations of MNIST. In the learned representation, performance
differences between algorithms is relatively subdued, with BAIT, BADGE, and CONFIDENCE among
the highest-performing agents. However, in the unstructured, random representation, the are stark
differences in accuracy. While controlling for dimensionality, this representation mimics the convex
case, where the model is not able to control how data are represented. Here, BAIT outperforms
baseline approaches by a large margin (Figure 4).

Among these comparisons, we include a simplified version of BAIT, which omits the Fisher term
I(θ), resulting in an objective that has been explored by [36]. This approach performs on par with
other baselines, suggesting that it is the inclusion of I(θ) that allows BAIT to succeed even in difficult,
poorly structured feature spaces. This experiment further highlights a potential cause of the success
of these baselines, as the penultimate-layer representation will behave more like what’s described
here as a learned representation than a random representation. Still, the following subsection shows
BAIT outperforming baselines in deep classification.

6.2 Deep Classification

Figure 5: A pairwise comparison plot.
Element i j roughly corresponds to the
number of times algorithm i outperforms
algorithm j by a statistically significant
degree. Columwise averages are given at
the bottom, where a lower number corre-
sponds to a higher-performing algorithm.

We now turn to our main experiments, active learning
for classification with neural networks. This subsection
provides extensive results for the above algorithms across
a wide array of settings.

We consider three datasets. Using an MLP, we perform
active learning on both MNIST data and OpenML dataset
155. We also use the SVHN dataset [37] of color digit
images with both an MLP and an 18-layer ResNet. Last we
explore the CIFAR-10 object dataset [38] with a ResNet.
All dataset-architecture pairs are experimented with at
three batch sizes—10, 100, and 1000. MLPs include a
single hidden ReLU layer of 128 dimensions.

All ResNets are trained with a learning rate of 0.01, and all
other models (including linear models shown earlier) are
trained with a learning rate of 0.0001. We fit parameters
using the Adam variant of SGD, and use standard data
augmentation for all CIFAR-10 experiments. Like other

8

Figure 7: Two regression experiments with varying architectures. Left: Active regression using
an 18-layer ResNet, predicting the year in which American yearbook photos were taken. Right:
A linear model used to predict rainfall from meteorological features.

Figure 8: Three regression experiments with varying architectures. Left: Active regression using an
MLP, MNIST data, and a batch size of 10. Center: Active regression using SVHN data and a batch
size of 100. Right: the same as the leftmost plot, but using a linear model instead of an MLP.

deep active learning work, we avoid warm-starting and retrain model parameters from a random
initialization after each query round [5]. Each learner is initialized with 100 randomly sampled
labeled points, and each experiment is repeated five times with different random seeds. Shadowed
regions in plots denote standard error. More empirical details can be found in Appendix Section C.

Figure 6 zooms in on the discriminative regions of learning curves corresponding to three different
settings. While the relative performance of baseline algorithms varies somewhat across scenarios,
BAIT is consistently as good or better than the highest-performing approach. Full learning curves are
presented in Appendix Section C.1.

Due to the volume of settings investigated, we present aggregate results using the analysis approach
of [6]. For each experiment, we note the round r of active learning for which random selection first
obtains accuracy within 1% of its final accuracy. We then checkpoint each algorithm at exponential
intervals up to r, that is, we log each labeling budget L for which Lk = M0 + 2kB ≤ r, for batch
size B and number of seed samples M0. At each L in a given experiment, we compute the t-score,
t =

√
Nµ̂
σ̂ , where N is the number of samples, between each pair of algorithms i 6= j as

µ̂ =
1

N

N∑
l=1

(eli − elj), σ̂ =

√√√√ 1

N − 1

N∑
l=1

(eli − elj − µ̂)2,

where eli and elj denote the l-th accuracy respectively corresponding to algorithms i and j at labeling
budget Lk. We then perform a two-sided t test, where algorithm i is said to outperform algorithm j if
t > 2.776, and vice versa if t < −2.776, marking a significant difference (p < 0.05).

This formulation allows us to construct a pairwise penalty matrix over all conducted experiments.
The matrix has as many rows and columns as there are considered algorithms (five); if algorithm i
outperforms algorithm j for some experiment at some labeling budget, the corresponding element i j
of the matrix is incremented by 1/z, where z is the total number of labeling budgets considered for
that experiment.

The resulting plot is given in Figure 5, which aggregates results over all conducted experiments, and
which suggests BAIT significantly outperforms baseline approaches. We also include columwise
averages, which give a holistic perspective on algorithm performance.

9

Figure 9: In the regression setting, the
rank-one reduction of greedy selection in
BAIT makes the approach only slightly
slower than Coreset.

We show more pairwise plots of this type in Appendix
Section C.2, breaking up results by batch size and and
architecture type. These figures all suggest BAIT is higher-
performing than baseline approaches across environments.

6.3 L2 Regression

Although deep learning is most commonly discussed
within a classification framework, recent work has success-
fully applied deep learning in regression settings as well,
with important scientific applications including areas like
physical, biological, and chemical modeling [39, 40]. It is
therefore important to develop active learning algorithms
that are flexible enough to be applied in these domains.

Figure 7 presents active learning results using two different model architectures, two different batch
sizes, and two different datasets. In the first, we train an 18-layer ResNet to predict the year in which
photos from an American yearbook were taken [41]. To do this successfully, the model must learn to
correlate trends in photography and fashion with a time period. Here labels were Z-scored, so error is
not measured in terms of year. In the second, we use meteorological features and a linear model to
predict the amount of rainfall in Austin, Texas [42].

Figure 8 shows several active learning experiments in the regression setting. Because standard deep
learning datasets are principally designed for classification, we treat SVHN and MNIST data as
having k continuous outputs, regressing onto one-hot encodings of their labels. Likewise, there
are few active learning algorithms made with regression in mind—the CONFIDENCE and BADGE
algorithms are omitted here, as they rely on a notion of uncertainty that requires a classification
environment.

Similar to the classification case, the relative performance of baseline approaches shuffles between
environments. Batch active learning in regression is challenging, with simple random sampling being
surprisingly effective. Still, regardless of which baseline is highest performing, BAIT consistently
performs as well or better on both linear and non-linear regression tasks. Further, because BAIT
can be reduced to rank-one calculations (Equation (6)), it is relatively efficient, and takes about as
long to run as CORESET (Figure 9).

7 Discussion

This article studies neural active learning from the theoretical perspective of maximum likelihood
estimators, a viewpoint that sheds new light on the performance of previous approaches. We proposed
BAIT, a generalized, high-performing, and efficient approach to neural active learning that makes use
of this perspective, showing that a more classical approach is tractable and effective with modern
neural architectures. We demonstrated that BAIT is successful in both convex and non-convex
scenarios, and for both classification and regression settings.

It is worth noting that, while tractable, the classification version of BAIT is more computationally inten-
sive than BADGE—roughly k times slower to select a sample to include in a batch (in seconds, though
total run times are largely dominated by retraining models after each batch acquisition [5]). This added
computation is well justified in active scenarios for which the cost of label acquisition is high relative
to the cost of computation. To trade-off between computation requirements and performance, one
could estimate the Fisher using only the lowest-norm r < k columns of Vx, catching the more descrip-
tive components of the Fisher. We leave the analysis of such an approach as an avenue for future work.

8 Acknowledgements

Sham Kakade acknowledges funding from the National Science Foundation under award CCF-
1703574.

10

References
[1] Samuel Budd, Emma C Robinson, and Bernhard Kainz. A survey on active learning and

human-in-the-loop deep learning for medical image analysis. Medical Image Analysis, 2021.

[2] Asim Smailagic, Hae Young Noh, Pedro Costa, Devesh Walawalkar, Kartik Khandelwal,
Mostafa Mirshekari, Jonathon Fagert, Adrián Galdrán, and Susu Xu. Medal: Deep active
learning sampling method for medical image analysis. In International Conference on Machine
Learning and Applications, 2018.

[3] Fabian Stark, Caner Hazırbas, Rudolph Triebel, and Daniel Cremers. Captcha recognition with
active deep learning. In Workshop on New Challenges in Neural Computation, 2015.

[4] Kamalika Chaudhuri, Sham Kakade, Praneeth Netrapalli, and Sujay Sanghavi. Convergence
rates of active learning for maximum likelihood estimation. In Advances in Neural Information
Processing Systems, 2015.

[5] Jordan T Ash and Ryan P Adams. On warm-starting neural network training. Advances in
Neural Information Processing Systems, 2020.

[6] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agar-
wal. Deep batch active learning by diverse, uncertain gradient lower bounds. International
Conference on Learning Representations, 2020.

[7] Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 2010.

[8] Sanjoy Dasgupta. Two faces of active learning. Theoretical computer science, 2011.

[9] Steve Hanneke. Theory of disagreement-based active learning. Foundations and Trends in
Machine Learning, 2014.

[10] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

[11] Yonatan Geifman and Ran El-Yaniv. Deep active learning over the long tail. arXiv:1711.00941,
2017.

[12] Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning. arXiv:1907.06347,
2019.

[13] Yuhong Guo and Dale Schuurmans. Discriminative batch mode active learning. In Neural
Information Processing Systems, 2008.

[14] Zheng Wang and Jieping Ye. Querying discriminative and representative samples for batch
mode active learning. Transactions on Knowledge Discovery from Data, 2015.

[15] Yuxin Chen and Andreas Krause. Near-optimal batch mode active learning and adaptive
submodular optimization. In International Conference on Machine Learning, 2013.

[16] Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active
learning. In International Conference on Machine Learning, 2015.

[17] Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. In Advances in Neural Information Processing
Systems, 2019.

[18] Simon Tong and Daphne Koller. Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research, 2001.

[19] Greg Schohn and David Cohn. Less is more: Active learning with support vector machines. In
International Conference on Machine Learning, 2000.

[20] Gokhan Tur, Dilek Hakkani-Tür, and Robert E Schapire. Combining active and semi-supervised
learning for spoken language understanding. Speech Communication, 2005.

[21] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In
International Conference on Machine Learning, 2006.

11

[22] Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. In Advances in
Neural Information Processing Systems, 2008.

[23] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image
data. In International Conference on Machine Learning, 2017.

[24] Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
based approach. arXiv:1802.09841, 2018.

[25] William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. The power of
ensembles for active learning in image classification. In IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

[26] Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou. Active learning by querying informative and
representative examples. In Neural Information Processing Systems, 2010.

[27] Yoram Baram, Ran El Yaniv, and Kobi Luz. Online choice of active learning algorithms. Journal
of Machine Learning Research, 2004.

[28] Wei-Ning Hsu and Hsuan-Tien Lin. Active learning by learning. In AAAI Conference on
Artificial Intelligence, 2015.

[29] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000.

[30] E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer, 1998.

[31] Jamshid Sourati, Murat Akcakaya, Todd K Leen, Deniz Erdogmus, and Jennifer G Dy. Asymp-
totic analysis of objectives based on Fisher information in active learning. The Journal of
Machine Learning Research, 2017.

[32] Tong Zhang and F Oles. The value of unlabeled data for classification problems. In International
Conference on Machine Learning, 2000.

[33] Steven CH Hoi, Rong Jin, Jianke Zhu, and Michael R Lyu. Batch mode active learning and its
application to medical image classification. In International Conference on Machine Learning,
2006.

[34] Quanquan Gu, Tong Zhang, and Jiawei Han. Batch-mode active learning via error bound
minimization. In Uncertainty and Artificial Intelligence, 2014.

[35] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning
applied to document recognition. IEEE, 1998.

[36] Jamshid Sourati, Ali Gholipour, Jennifer G Dy, Sila Kurugol, and Simon K Warfield. Active
deep learning with fisher information for patch-wise semantic segmentation. In Deep Learning
in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pages
83–91. Springer, 2018.

[37] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[38] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

[39] Mohammed AlQuraishi. Alphafold at casp13. Bioinformatics, 2019.

[40] Alex Beatson, Jordan Ash, Geoffrey Roeder, Tianju Xue, and Ryan P Adams. Learning com-
posable energy surrogates for pde order reduction. Advances in Neural Information Processing
Systems, 2020.

[41] Shiry Ginosar, Kate Rakelly, Sarah Sachs, Brian Yin, and Alexei A Efros. A century of portraits:
A visual historical record of american high school yearbooks. In Proceedings of the IEEE
International Conference on Computer Vision Workshops, pages 1–7, 2015.

[42] Kaggle. Historical temperature, precipitation, humidity, and windspeed for austin, texas.
https://www.kaggle.com/grubenm/austin-weather,.

12

https://www.kaggle.com/grubenm/austin-weather

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] hyperparameters can be found in the experiments section and the
appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In appendix

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In readme.txt
(b) Did you mention the license of the assets? [N/A] None is provided.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

A Theoretical Details

A.1 Bayesian Linear Regression

Recall the Bayesian Linear Regression setup from Section 4. We have a d-dimensional linear
regression problem where we assume the parameter vector θ? has prior distribution N (0, λ−1I) and
the conditional distribution DY|X (x) = p(· | x, θ?) = N (〈θ?, x〉, σ2) is Gaussian. For completeness
we present the proof for the exact expression of the Bayes risk.

Lemma 1. For a given set of points S ⊂ U from the unlabeled dataset,

BayesRisk(S) = σ2 tr(Λ−1
S Σ)

where ΛS =
∑
x∈S xx

> + λσ2I .

Proof. For any set of labeled data {xj , yj}mj=1, we often use matrix notation where we letX ∈ Rm×d
collect the feature vectors as rows and Y ∈ Rm collect the responses. The posterior distribution of
θ? given (X,Y) is,

ρ(θ?|Y,X) ∝ p(θ?) · p(Y |X, θ?)

∝ exp

(
−λ

2
‖θ?‖2

)
· exp

(
− 1

2σ2
(Y −Xθ?)>(Y −Xθ?)

)
∝ exp

(
− 1

2σ2
(Y −Xθ?)>(Y −Xθ?)− λ

2
‖θ?‖2

)
.

The MAP estimate is therefore,

θ̂ = argmax
θ

exp

(
− 1

2σ2
(Y −Xθ)>(Y −Xθ)− λ

2
‖θ‖2

)
= argmin

θ
(Y −Xθ)>(Y −Xθ) +

λσ2

2
‖θ‖2

= (X>X + λσ2I)−1X>y.

The last identity verifies that MAP estimate is precisely the ridge regression solution, with ridge
regularizer λσ2.

Let us now define Λ = X>X + λσ2I and Λ̄ = X>X . Notice that Λ = Λ̄ + λσ2I which we will
use repeatedly. Let Σ denote the covariance matrix of the unlabeled data. The risk is given by,

Risk(θ̂;X, θ?) = Ey[‖θ̂ − θ?‖2Σ]

= E
[
y>XΛ−1ΣΛ−1X>y

]
− 2E

[
y>X

n
Λ−1Σθ?

]
+ θ?>Σθ?

= θ?>Λ̄Λ−1ΣΛ−1Λ̄θ? + Eε>XΛ−1ΣΛ−1X>ε− 2θ?>Λ̄Λ−1Σθ? + θ?>Σθ?

= θ?>Λ̄Λ−1ΣΛ−1Λ̄θ? + σ2 tr
(
Λ−1ΣΛ−1Λ̄

)
− 2θ?>Λ̄Λ−1Σθ? + θ?>Σθ?

Now write θ?>Σθ? = θ?>ΛΛ−1Σθ? = θ?>Λ̄Λ−1Σθ? + λσ2 · θ?>Λ−1Σθ?, and observe that the
first term here cancels with one of the negative terms above. This gives

Risk(θ̂;X, θ?) = θ?>Λ̄Λ−1ΣΛ−1Λ̄θ? + σ2 tr
(
Λ−1ΣΛ−1Λ̄

)
− θ?>Λ̄Λ−1Σθ? + λσ2θ?>Λ−1Σθ?

(7)

Now we do the same thing on the first term: θ?>Λ̄Λ−1ΣΛ−1Λ̄θ = θ?>Λ̄Λ−1Σ −
λσ2θ?>Λ̄Λ−1ΣΛ−1θ?. Plugging this in cancels out the other negative term, yielding

Risk(θ̂;X, θ?) = σ2 tr(Λ−1ΣΛ−1Λ̄) + λσ2
(
θ?>Λ−1Σθ? − θ?>Λ̄Λ−1ΣΛ−1θ?

)
= σ2 tr(Λ−1ΣΛ−1Λ̄) + λ2σ4θ?>Λ−1ΣΛ−1θ?

14

The Bayes risk is an expectation of this quantity taking into account the randomness in θ?. Taking
this expectation gives

BayesRisk(X) = σ2 tr
(
Λ−1ΣΛ−1Λ̄

)
+ λ2σ4 tr

(
Λ−1ΣΛ−1 I

λ

)
= σ2 tr(Λ−1Σ)− λσ4 tr(Λ−1ΣΛ−1) + λσ4 tr(Λ−1ΣΛ−1)

= σ2 tr(Λ−1Σ).

Since the Bayes risk does not depend on the labels Y , setting X to be S (with the obvious mapping
from matrices to subsets of features) gives us the desired result.

A.2 Fisher Information for Multi-class Logistic Regression

Consider the k-class logistic regression model,

Pr[y|x] =
exp

(
wTy x

)∑k
i=1 exp

(
wTi x

)
where wi is the ith row of W . We have the log-likelihood for the model,

`(W ;x, y) = −wTy x+ log

(
k∑
i=1

exp
(
wTi x

))
.

Let us compute the partial derivatives,

∂`(W ;x, y)

∂wp
= −1[y = p]x+

exp
(
wTp x

)
x∑k

i=1 exp
(
wTi x

)
∂2`(W ;x, y)

∂w2
p

=
exp

(
wTp x

)
xxT∑k

i=1 exp
(
wTi x

) − exp
(
2wTp x

)
xxT(∑k

i=1 exp
(
wTi x

))2

∂2`(W ;x, y)

∂wp∂wq
= −

exp
(
wTp x

)
exp

(
wTq x

)
xxT(∑k

i=1 exp
(
wTi x

))2 .

Let π be the vector of probabilities such that πp =
exp(wT

p x)∑k
i=1 exp(wT

i x)
. Then we have,

∇2`(W ;x, y) = xxT ⊗ (diag(π)− ππT).

Implying the Fisher information is

I(x;W) = xxT ⊗ (diag(π)− ππT).

A.3 Fisher Information for Multi-output Regression

Consider the k-output regression model y = Wx+N (0,Σ). We have,

Pr[y|x] =
exp

(
− 1

2 (y −Wx)TΣ−1(y −Wx)
)√

(2π)k det(Σ)
.

We have the log-likelihood for the model,

`(W ;x, y) = −1

2
(y −Wx)TΣ−1(y −Wx)− 1

2
log
(
(2π)k det(Σ)

)
Note that the Fisher Information is equivalent to the negative of the hessian of ` with respect to W .
Let us calculate the Fisher Information I(x;W),

∇`(W ;x, y) = Σ−1(y −Wx)xT

=⇒ ∇2`(W ;x, y) = −xxT ⊗ Σ−1

=⇒ I(x;W) = −Ey
[
∇2`(W ;x, y)

]
= xxT ⊗ Σ−1

The above follows from standard matrix differentiation properties.

15

A.3.1 The Fisher Objective For Regression

Recall from Equation 4 the batch selection objective argminS⊂U,|S|≤B tr
((∑

x∈S I(x; θ)
)−1

IU (θ)
)

.
Given the above calculation, this can be computed using properties of the Kronecker product as

tr

(∑
x∈S

I(x; θ)

)−1

IU (θ)

= tr

((∑
x∈S

xx>

)
⊗ Σ−1

)−1(∑
x∈U

xx>

)
⊗ Σ−1

= tr

(∑
x∈S

xx>

)−1

⊗ Σ

(∑
x∈U

xx>

)
⊗ Σ−1

= tr

(∑
x∈S

xx>

)−1(∑
x∈U

xx>

)⊗ ΣΣ−1

= tr

(∑
x∈S

xx>

)−1(∑
x∈U

xx>

)⊗ I

= k tr

(∑
x∈S

xx>

)−1(∑
x∈U

xx>

) .

A.4 Finding the Minimizing Sample in Regression

In the regression setting, we find Equation (5) in a similar way to the classification setting. If we
define F := 1

|U |
∑
x∈U (xL)(xL)>, computing the contribution of a single point in Algorithm 1 can

be reduced to

argmin
x

tr

(
k
(
M̂i + xL(xL)>

)−1

F

)
= argmin

x
tr
((
M̂−1
i − M̂−1

i xa−1x>M−1
i

)
F
)

= argmin
x

tr
(
M̂−1
i F

)
− tr

(
(xL)>M−1

i FM̂−1
i xLa−1

)
= argmax

x
tr
(
V >x M̂

−1
i FM̂−1

i Vxa
−1
)
,

A.5 Optimality of Greedy

We verify the optimality of the forward greedy algorithm in a simple setting, where the distribution is
supported on the standard basis elements e1, . . . , ed ∈ Rd with probabilities p1, . . . , pd. To fix ideas,
we focus on the trace optimization problem, essentially optimizing (3), in the “infinite unlabeled data”
setting. Formally, with a batch size B and regularizer λ > 0, we define

Opt = min
n∈Nd:

∑d
i=1 ni≤B

Val(n), Val(n) =

d∑
i=1

pi
ni + λ

. (8)

Observe that this is equivalent to the right hand side of (3) since the second moment of the features
Σ =

∑d
i=1 pieie

>
i and if we select ni copies of ei in the batch then Λ =

∑d
i=1 nieie

>
i + λI . Since

both matrices are simultaneously diagonalizable, we can simplify the trace expression as in (8).

16

Greedy algorithm. The greedy algorithm starts with n(0)
i = 0 for all i. At time t we have a partial

solution n(t) satisfying
∑d
i=1 n

(t)
i = t. We compute the index it+1 as

it+1 ← argmin
i∈[d]

{
pi

n
(t)
i + 1 + λ

− pi

n
(t)
i + λ

}
. (9)

(Note that the terms in the minimization are all negative.) We set n(t+1) = n(t) + eit+1
and we stop

with nGrd = n(B). We break ties arbitrarily.
Proposition 2. For any distribution p and any batch size B, we have Val(nGrd) = Opt.

Note that essentially the same proof can be used to establish that the greedy algorithm for maximizing
the log det(·) objective is also optimal, for that objective. However the log det(·) objective is quite
different from (8) even in this special case.

Proof. The proof is inductive in nature, where the base case is that n(0) is optimal with a batch size
of B = 0, which is obvious. Now, assume that n(τ) is the optimal solution with batch size τ , for all
τ ≤ t and we proceed to show that n(t+1) is also optimal for batch size t+ 1. To do so consider any
other solution s ∈ Nd with

∑
i si ≤ t+ 1 and s 6= n(t+1).

Case 1. The easier case is when
∑
i si = τ < t+ 1. In this case, we know that Val(n(τ)) ≤ Val(s)

due to the optimality of n(τ). Additionally, we have the following monotonicity property:

Val(n(t+1)) =

d∑
i=1

pi

n
(t+1)
i + λ

≤
d∑
i=1

pi

n
(τ)
i + λ

= Val(n(τ)).

Case 2. In case two, observe that

Val(s) =

d∑
i=1

pi
si + λ

≥ max
j:sj>0

 pj
sj + λ

− pj
sj − 1 + λ

+
∑
i6=j

pi
si + λ

+
pj

sj − 1 + λ

= max
j:sj>0

{
pj

sj + λ
− pj
sj − 1 + λ

+ Val(s− ej)
}

≥ max
j:sj>0

{
pj

sj + λ
− pj
sj − 1 + λ

}
+ Val(n(t)).

Here we use the notation s−ej to be candidate solution of size t that is identical to s on all coordinates
and one less on coordinate j. The inequality is by the inductive hypothesis.

Next we relate n(t) to n(t+1). To avoid nested subscripts, we use the notation p? to denote pit+1 with
analogous definitions for n(t+1)

? .

Val(n(t)) = Val(n(t+1)) +
p?

n
(t+1)
? − 1 + λ

− p?

n
(t+1)
? + λ

So we need to show

max
j:sj>0

{
pj

sj + λ
− pj
sj − 1 + λ

}
+

p?

n
(t+1)
? − 1 + λ

− p?

n
(t+1)
? + λ

≥ 0.

To do this, we we will relate the terms in the first expression involving s to terms involving n(t+1),
via the following diminishing returns property

∀x, y > 0 : y ≤ x⇔ 1

x+ λ
− 1

x− 1 + λ
≥ 1

y + λ
− 1

y − 1 + λ

Now, since both s and n(t+1) sum to t+ 1 and they are not equal, there must exist some coordinate j
for which sj > n

(t+1)
j . Using this coordinate j in the max and the applying the diminishing returns

property and finally the optimality property for index it+1 establishes the induction:

max
j:sj>0

{
pj

sj + λ
− pj
sj − 1 + λ

}
≥ pj
sj + λ

− pj
sj − 1 + λ

≥ pj

n
(t+1)
j + λ

− pj

n
(t+1)
j − 1 + λ

≥ pj

n
(t+1)
? + λ

− pj

n
(t+1)
? − 1 + λ

.

17

B Determinantal Algorithms

This section describes the determinantal sampling algorithms used in Section 5.1. Recall that gx
refers to the gradient embedding used by BADGE, a dk-dimensional vector corresponding to the
gradient that would be obtained in the last layer if the model’s most likely prediction were correct,
gx = ∇`(x, y = ŷ; θL), ŷ = argmax f(x; θ).

Further recall that Vx is the kd × k matrix of gradients scaled by output probabilities, such that
I(x; θL) = VxV

>
x . As we mention in Section 5.1, gx is effectively one column of the Vx matrix, but

not scaled by the corresponding class probability.

For Algorithm 3, the maximization in line 6 can be efficiently computed via the generalized matrix-
determinant lemma,

det(Mi + VxV
>
x) = det(Mi) det(I + V >x M

−1
i Vx).

For Algorithm 2, this simplifies to

det(Mi + gxg
>
x) = det(Mi) det(1 + g>xM

−1
i gx).

In either case, once an x is selected, the inverse of Mi+1 is efficiently updated using the same
Woodbury identity mentioned in Section 5.

Algorithm 2 Rank-1 Determinantal Sampling
Require: Neural network f(x; θ), unlabeled

pool of examples U , initial number of ex-
amples B0, number of iterations T , number
of examples in a batch B.

1: Initialize S by randomly drawingB0 labeled
examples from U

2: Train model on S:

θ1 = argmin
θ

ES [`(x, y; θ)]

3: for t = 1, 2, . . . , T : do
4: Initialize M0 = λI + 1

|S|
∑
x∈S gxg

>
x

5: for i = 1, 2, . . . , B: do
6: x̃ = argmaxx∈U det(Mi + gxg

>
x)

7: Mi+1 ←Mi + gx̃g
>
x̃

8: S ← x̃
9: end for

10: Train model on S:

θt = argmin
θ

ES [`(x, y; θ)]

11: end for
Ensure: Final model θT+1.

Algorithm 3 Determinantal Sampling
Require: Neural network f(x; θ), unlabeled

pool of examples U , initial number of ex-
amples B0, number of iterations T , number
of examples in a batch B.

1: Initialize S by randomly drawingB0 labeled
examples from U

2: Train model on S:

θ1 = argmin
θ

ES [`(x, y; θ)]

3: for t = 1, 2, . . . , T : do
4: Initialize M0 = λI + 1

|S|
∑
x∈S I(x; θLt)

5: for i = 1, 2, . . . , B: do
6: x̃ = argmaxx∈U det(Mi + I(x; θLt))
7: Mi+1 ←Mi + I(x; θLt)
8: S ← x̃
9: end for

10: Train model on S:

θt = argmin
θ

ES [`(x, y; θ)]

11: end for
Ensure: Final model θT+1.

C Additional Experimental Results (Classification)

This section shows full learning curves for the deep classification setting described in Section 6.2.
In aggregate, these plots are used to create the pariwise comparison in Figure 5. All experiments
were run until either the entire dataset had been labeled or program runtime exceeded 14 days. All
experiments were executed five times with different random seeds on an NVIDIA Tesla P100 GPU.
For CIFAR-10 experiments, BAIT was initialized with λ = 0.01. In all other experiments, BAIT
was initialized with λ = 1. Models were trained with Adam, using a learning rate of 0.01 for ResNet
architectures and of 0.0001 for all other architectures. Standard training data augmentation was
done for CIFAR-10 data. At each round, models were trained until achieving at least 99% training
accuracy. We use the standard train / test data split provided with each dataset.

18

C.1 Learning curves

Figure 10: Learning curves across different batch sizes for CIFAR-10 data using an 18-layer ResNet
and data augmentation.

Figure 11: Learning curves across different batch sizes for SVHN data using an 18-layer ResNet.

Figure 12: Larning curves across different batch sizes for SVHN data using a multilayer perceptron.

Figure 13: Learning curves across different batch sizes for MNIST data using a multilayer perceptron.

19

Figure 14: Learning curves across different batch sizes for OML155 data using a multilayer
perceptron.

C.2 Pairwise comparisons

Figure 15: Pairwise distance matrices, considering only deep classification experiments of the
indicated architecture or batch size.

20

	Introduction
	Related work
	Notation and Setup
	Probabilistic Perspective
	Bait
	Badge comparison

	Experiments
	Linear Classification
	Deep Classification
	L2 Regression

	Discussion
	Acknowledgements
	Theoretical Details
	Bayesian Linear Regression
	Fisher Information for Multi-class Logistic Regression
	Fisher Information for Multi-output Regression
	The Fisher Objective For Regression

	Finding the Minimizing Sample in Regression
	Optimality of Greedy

	Determinantal Algorithms
	Additional Experimental Results (Classification)
	Learning curves
	Pairwise comparisons

