
Diffusion Models Beat GANs on Image Synthesis

Prafulla Dhariwal⇤
OpenAI

prafulla@openai.com

Alex Nichol⇤
OpenAI

alex@openai.com

Abstract

We show that diffusion models can achieve image sample quality superior to the
current state-of-the-art generative models. We achieve this on unconditional image
synthesis by finding a better architecture through a series of ablations. For condi-
tional image synthesis, we further improve sample quality with classifier guidance:
a simple, compute-efficient method for trading off diversity for fidelity using gradi-
ents from a classifier. We achieve an FID of 2.97 on ImageNet 128⇥128, 4.59 on
ImageNet 256⇥256, and 7.72 on ImageNet 512⇥512, and we match BigGAN-deep
even with as few as 25 forward passes per sample, all while maintaining better
coverage of the distribution. Finally, we find that classifier guidance combines well
with upsampling diffusion models, further improving FID to 3.94 on ImageNet
256⇥256 and 3.85 on ImageNet 512⇥512.

1 Introduction

Figure 1: Selected samples from our best ImageNet 512⇥512 model (FID 3.85)

Over the past few years, generative models have gained the ability to generate human-like natural
language [9], high-quality synthetic images [8, 34, 57] and highly diverse human speech and music
[70, 17]. These models can be used in a variety of ways, such as generating images from text prompts
[78, 56] or learning useful feature representations [18, 10]. While these models are already capable
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of producing realistic images and sound, there is still much room for improvement beyond the current
state-of-the-art, and better generative models could have wide-ranging impacts on graphic design,
games, music production, and countless other fields.

GANs [25] currently hold the state-of-the-art on most image generation tasks [8, 74, 34] as measured
by sample quality metrics such as FID [29], Inception Score [61] and Precision [38]. However, some
of these metrics do not fully capture diversity, and it has been shown that GANs capture less diversity
than state-of-the-art likelihood-based models [57, 49, 48]. Furthermore, GANs are often difficult to
train, collapsing without carefully selected hyperparameters and regularizers [8, 47, 7]. While GANs
hold the state-of-the-art, their drawbacks make them difficult to scale and apply to new domains.
As a result, much work has been done to achieve GAN-like sample quality with likelihood-based
models [22, 57, 31, 48, 12]. While these models capture more diversity and are typically easier to
scale and train than GANs, they still fall short in terms of visual fidelity. Furthermore, except for
VAEs, sampling from these models is slower than GANs in terms of wall-clock time.

Diffusion models are a class of likelihood-based models which have recently been shown to produce
high-quality images [63, 66, 31, 49] while offering desirable properties such as distribution coverage,
a stationary training objective, and easy scalability. These models generate samples by gradually
removing noise from a signal, and their training objective can be expressed as a reweighted variational
lower-bound [31]. This class of models already holds the state-of-the-art [67] on CIFAR-10 [37], but
still lags behind GANs on difficult generation datasets like LSUN and ImageNet. We hypothesize
that this gap exists for at least two reasons: first, that the model architectures used by recent GAN
literature have been heavily explored and refined; second, that GANs are able to trade off diversity
for fidelity, producing high quality samples but not covering the whole distribution. We aim to bring
these benefits to diffusion models, first by improving model architecture and then by devising a
scheme for trading off diversity for fidelity.

The rest of the paper is organized as follows. In Section 2, we give a brief background of diffusion
models based on Ho et al. [31] and the improvements from Nichol and Dhariwal [49] and Song
et al. [64], and we describe our evaluation setup. In Section 3, we introduce simple architecture
improvements that give a substantial boost to FID. In Section 4, we describe a method for using
gradients from a classifier to guide a diffusion model during sampling. Finally, in Section 5 we show
that models with our improved architecture achieve state-of-the-art on unconditional image synthesis
tasks, and with classifier guidance achieve state-of-the-art on conditional image synthesis.

2 Background

In this section, we provide a brief overview of diffusion models. For a more detailed mathematical
description, we refer the reader to Appendix C. On a high level, diffusion models sample from a
distribution by reversing a gradual noising process. In particular, sampling starts with noise xT

and produces gradually less-noisy samples xT�1, xT�2, ... until reaching a final sample x0. In
particular, a diffusion model learns to produce a slightly more “denoised” xt�1 from xt. Ho et al.
[31] parameterize this model using a function ✏✓(xt, t) which predicts the noise component of a noisy
sample xt. To train this function, each sample in a minibatch is produced by randomly drawing a
data sample x0, a timestep t, and noise ✏, which together give rise to a noised sample xt (Equation 3,
Appendix C). The training objective is then ||✏✓(xt, t)� ✏||2, i.e. a simple mean-squared error loss
between the true noise and the predicted noise (Equation 12, Appendix C).

Ho et al. [31] show that, under reasonable assumptions, we can then model the denoising distribution
p✓(xt�1|xt) of xt�1 given xt as a diagonal Gaussian N (xt�1;µ✓(xt, t),⌃✓(xt, t)), where the mean
µ✓(xt, t) can be calculated as a function of ✏✓(xt, t) (Equation 13, Appendix C). Ho et al. [31]
observe that the simple mean-squared error objective, Lsimple, works better in practice than the actual
variational lower bound Lvlb that can be derived from interpreting the denoising diffusion model
as a VAE. They also note that training with this objective and using their corresponding sampling
procedure is equivalent to the denoising score matching model from Song and Ermon [65], who use
Langevin dynamics to sample from a denoising model trained with multiple noise levels to produce
high quality image samples. We often use “diffusion models” as shorthand to refer to both classes of
models.

Following the breakthrough work of Song and Ermon [65] and Ho et al. [31], several recent
papers have proposed improvements to diffusion models. Nichol and Dhariwal [49] find that fixing
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the variance ⌃✓(xt, t) to a constant as done in Ho et al. [31] is sub-optimal for sampling with
fewer diffusion steps, and propose to parameterize ⌃✓(xt, t) as a neural network whose output v is
interpolated as ⌃✓(xt, t) = exp(v log �t + (1� v) log �̃t). Here, �t and �̃t (Equation 5, Appendix
C) are the variances in Ho et al. [31] corresponding to upper and lower bounds for the reverse
process variances. Additionally, Nichol and Dhariwal [49] propose a hybrid objective for training
both ✏✓(xt, t) and ⌃✓(xt, t) using the weighted sum Lsimple + �Lvlb. Learning the reverse process
variances with their hybrid objective allows sampling with fewer steps without much drop in sample
quality. We adopt this objective and parameterization, and use it throughout our experiments.

Song et al. [64] propose DDIM, which formulates an alternative non-Markovian noising process
that has the same forward marginals as DDPM, but allows producing different reverse samplers by
changing the variance of the reverse noise. By setting this noise to 0, they provide a way to turn any
model ✏✓(xt, t) into a deterministic mapping from latents to images, and find that this provides an
alternative way to sample with fewer steps. We adopt this sampling approach when using fewer than
50 sampling steps, since Nichol and Dhariwal [49] found it to be beneficial in this regime.

Sample Quality Metrics: For comparing sample quality across models, we perform quantitative
evaluations using the following metrics. While these metrics are often used in practice and correspond
well with human judgement, they are not a perfect proxy, and finding better metrics for sample quality
evaluation is still an open problem.

We use FID [29] as our default metric for overall sample quality comparisons as it captures both
fidelity and diversity and has been the de facto standard metric for state-of-the-art generative models
[33, 34, 8, 31]. We use Precision and Recall [38] as proxies for separately measuring fidelity and
diversity, respectively. We include sFID [48] as a metric that better captures spatial relationships than
FID, and also include Inception Score (IS) [61] as another proxy for fidelity. When comparing against
other methods, we re-compute these metrics using public samples or models whenever possible. This
is for two reasons: first, some papers [33, 34, 31] compare against arbitrary subsets of the training set
which are not readily available; and second, subtle implementation differences can affect the resulting
FID values [51]. For consistent comparisons, we use the full training set as the reference batch [29,
8], and evaluate metrics for all models using the same codebase.

3 Architecture Improvements

Ho et al. [31] adopted the UNet architecture [58] for diffusion models, which Jolicoeur-Martineau
et al. [32] found to substantially improve sample quality over the previous architectures [65, 39] used
for denoising score matching. The UNet model uses a stack of residual layers and downsampling
convolutions, followed by a stack of residual layers with upsampling convolutions, with skip con-
nections connecting the layers with the same spatial size. In addition, they use a global attention
layer at the 16⇥16 resolution with a single head, and add a projection of the timestep embedding into
each residual block. Song et al. [67] found that further changes to the UNet architecture improved
performance on the CIFAR-10 [37] and CelebA-64 [40] datasets. We show the same result on
ImageNet 128⇥128, finding that architecture can indeed give a substantial boost to sample quality on
a much larger and more diverse datasets at a higher resolution.

We explore the following architectural changes: increasing depth versus width, holding model size
relatively constant; increasing the number of attention heads; using attention at 32⇥32, 16⇥16, and
8⇥8 resolutions rather than only at 16⇥16; using the BigGAN [8] residual block for upsampling and
downsampling the activations, following [67]; and finally; rescaling residual connections with 1p
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following [67, 33, 34].

We train models with the above architecture changes on ImageNet 128⇥128 and compare them
on FID, evaluated at two different points of training, in Table 1. Aside from rescaling residual
connections, all of the other modifications improve performance and have a positive compounding
effect. On wall-clock (Figure 5, Appendix A.1) we find that increased depth hurts training time most,
so we opt not to use this change in further experiments. We also study other attention configurations
that better match the Transformer architecture [72]. We try two configurations: constant attention
heads, or constant channels per head. Table 2 shows our results, indicating that more heads or fewer
channels per head improves FID. On wall-clock (Figure 5, Appendix A.1), we see that 64 channels is
best so we opt to use 64 channels per head as our default. We note that this choice also better matches
modern transformer architectures, and is on par with our other configurations in terms of final FID.
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Table 1: Ablation of various architecture changes, evaluated at 700K and 1200K iterations

Channels Depth Heads Attention BigGAN Rescale FID FID
resolutions up/downsample resblock 700K 1200K

160 2 1 16 7 7 15.33 13.21

128 4 -0.21 -0.48
4 -0.54 -0.82

32,16,8 -0.72 -0.66
3 -1.20 -1.21

3 0.16 0.25
160 2 4 32,16,8 3 7 -3.14 -3.00

Table 2: Ablation of attention heads. More heads or lower channels per heads both improve FID. The
base model was a smaller version of the best model from Table 1.

Number of heads Channels per head FID

1 14.08

2 -0.50
4 -0.97
8 -1.17

32 -1.36
64 -1.03
128 -1.08

We also experiment with a layer [49] that we refer to as adaptive group normalization (AdaGN), which
incorporates the timestep and class embedding into each residual block after a group normalization
operation [75], similar to adaptive instance norm [33] and FiLM [54]. We define this layer as
AdaGN(h, y) = ys GroupNorm(h)+yb, where h is the intermediate activations of the residual block
following the first convolution, and y = [ys, yb] is obtained from a linear projection of the timestep
and class embedding. We had already seen AdaGN improve our earliest diffusion models, and so had
included it by default in all our runs. We explicitly ablate this choice (Table 6, Appendix A.1), and
find that FID becomes worse by 2.02 when we remove the adaptive group normalization layer.

In the rest of the paper, we use this final improved model architecture as our default: variable width
with 2 residual blocks per resolution, multiple heads with 64 channels per head, attention at 32, 16 and
8 resolutions, BigGAN residual blocks for up and downsampling, and adaptive group normalization
for injecting timestep and class embeddings into residual blocks.

4 Classifier Guidance

In addition to employing well designed architectures, GANs for conditional image synthesis [45, 8]
make heavy use of class labels. This often takes the form of class-conditional normalization statistics
[20, 14] as well as discriminators with heads explicitly designed to behave like classifiers p(y|x) [46].
As further evidence that class information is crucial to the success of these models, Lucic et al. [42]
find that it is helpful to generate synthetic labels when working in a label-limited regime. Given this
observation for GANs, it makes sense to explore different ways to condition diffusion models on class
labels. We already incorporate class information into adaptive group normalization layers (Section 3).
Here, we explore a different approach: exploiting a classifier p(y|x) to improve a diffusion generator.
Sohl-Dickstein et al. [63] and Song et al. [67] show one way to achieve this, wherein a pre-trained
diffusion model can be conditioned using the gradients of a classifier. In particular, we can train
a classifier p�(y|xt, t) on noisy images xt, and then use gradients rxt log p�(y|xt, t) to guide the
diffusion sampling process towards an arbitrary class label y.

For class conditional diffusion sampling, we reproduce the derivation from Sohl-Dickstein et al. [63]
in Appendix D.2. For DDIM, we perform a score-based derivation in Appendix D.3 inspired by
Song et al. [67]. The resulting sampling algorithms we use for guidance are Algorithms 1 and 2
respectively. Both algorithms incorporate class information by adding the gradients of a classifier
to each sampling step with an appropriate step size. In these algorithms, we choose the notation
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Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (µ✓(xt),⌃✓(xt)), classi-
fier p�(y|xt), and gradient scale s.

Input: class label y, gradient scale s
xT  sample from N (0, I)
for all t from T to 1 do
µ,⌃ µ✓(xt),⌃✓(xt)
xt�1  sample from N (µ+ s⌃rxt log p�(y|xt),⌃)

end for
return x0

Algorithm 2 Classifier guided DDIM sampling, given a diffusion model ✏✓(xt), classifier p�(y|xt),
and gradient scale s.

Input: class label y, gradient scale s
xT  sample from N (0, I)
for all t from T to 1 do
✏̂ ✏✓(xt)�

p
1� ↵̄trxt log p�(y|xt)

xt�1  
p
↵̄t�1

⇣
xt�

p
1�↵̄t ✏̂p
↵̄t

⌘
+
p
1� ↵̄t�1✏̂

end for
return x0

Figure 2: Samples from an unconditional diffusion model with classifier guidance to condition
on the class "Pembroke Welsh corgi". Using classifier scale 1.0 (left; FID: 33.0) does not produce
convincing samples in this class, whereas classifier scale 10.0 (right; FID: 12.0) produces much more
class-consistent images.

p�(y|xt, t) = p�(y|xt) and ✏✓(xt, t) = ✏✓(xt) for brevity, noting that they refer to separate functions
for each timestep t and at training time the models must be conditioned on the input t.

To apply classifier guidance to a large scale generative task, we train classification models on
ImageNet. Our classifier architecture is simply the downsampling trunk of the UNet model with
an attention pool [55] at the 8x8 layer to produce the final output. We train these classifiers on the
same noising distribution as the corresponding diffusion model, and also add random crops to reduce
overfitting.

In initial experiments with unconditional ImageNet models, we found it necessary to scale the
classifier gradients by a constant factor larger than 1. When using a scale of 1, we observed that
the classifier assigned reasonable probabilities (around 50%) to the desired classes for the final
samples, but these samples did not match the intended classes upon visual inspection. Scaling up the
classifier gradients remedied this problem, and the class probabilities from the classifier increased to
nearly 100%. Figure 2 shows an example of this effect. To understand the effect of scaling classifier
gradients, note that s · rx log p(y|x) = rx log

1
Z p(y|x)s, where Z is an arbitrary constant. As a

result, the conditioning process is still theoretically grounded in a re-normalized classifier distribution
proportional to p(y|x)s. When s > 1, this distribution becomes sharper than p(y|x), since larger
values are amplified by the exponent. In other words, using a larger gradient scale focuses more
on the modes of the classifier, which is potentially desirable for producing higher quality (but less
diverse) samples.

In the above derivations, we assumed that the underlying diffusion model was unconditional, modeling
p(x). It is also possible to train conditional diffusion models, p(x|y), and use classifier guidance in
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Table 3: Effect of classifier guidance on sample quality. Both conditional and unconditional models
were trained for 2M iterations on ImageNet 256⇥256 with batch size 256.

Conditional Guidance Scale FID sFID IS Precision Recall

7 7 26.21 6.35 39.70 0.61 0.63
7 3 1.0 33.03 6.99 32.92 0.56 0.65
7 3 10.0 12.00 10.40 95.41 0.76 0.44
3 7 10.94 6.02 100.98 0.69 0.63
3 3 1.0 4.59 5.25 186.70 0.82 0.52
3 3 10.0 9.11 10.93 283.92 0.88 0.32
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Figure 3: Change in sample quality as we vary scale of the classifier gradients for a class-conditional
ImageNet 128⇥128 model.

the exact same way. Table 3 shows that the sample quality of both unconditional and conditional
models can be greatly improved by classifier guidance. We see that, with a high enough scale, the
guided unconditional model can get quite close to the FID of an unguided conditional model, although
training directly with the class labels still helps. Guiding a conditional model further improves FID.

Table 3 also shows that classifier guidance improves precision at the cost of recall, thus introducing a
trade-off in sample fidelity versus diversity. We explicitly evaluate how this trade-off varies with the
gradient scale in Figure 3. We see that scaling the gradients beyond 1.0 smoothly trades off recall (a
measure of diversity) for higher precision and IS (measures of fidelity). Since FID and sFID depend
on both diversity and fidelity, their best values are obtained at an intermediate point. We also compare
our guidance with the truncation trick from BigGAN (Figure 6, Appendix A.2). We find that classifier
guidance is strictly better than BigGAN-deep when trading off FID for Inception Score. Less clear
cut is the precision/recall trade-off, which shows that classifier guidance is only a better choice up
until a certain precision threshold, after which point it cannot achieve better precision.

5 Results

To evaluate our improved model architecture on unconditional image generation, we train separate
diffusion models on three LSUN [77] classes: bedroom, horse, and cat. To evaluate classifier
guidance, we train conditional diffusion models on the ImageNet [59] dataset at 128⇥128, 256⇥256,
and 512⇥512 resolution.

Table 4 summarizes our results. ADM refers to our ablated diffusion model, and ADM-G additionally
uses classifier guidance. Our diffusion models can obtain the best FID on each task, and the best
sFID on all but one task. With the improved architecture, we already obtain state-of-the-art image
generation on LSUN and ImageNet 64⇥64. For higher resolution ImageNet, we observe that
classifier guidance allows our models to substantially outperform the best GANs. These models
obtain perceptual quality similar to GANs, while maintaining a higher coverage of the distribution
as measured by recall, and can even do so using only 25 sampling steps. We also evaluate the
computational requirements for training our models (Table 10, Appendix B), and find that we can
obtain competitive sample quality while using the same or less compute than the corresponding
BigGAN-deep or StyleGAN2 model.

Figure 4 compares random samples from the best BigGAN-deep model to our guided diffusion model.
While the samples are of similar perceptual quality, the diffusion model contains more modes than the
GAN, such as zoomed ostrich heads, single flamingos, different orientations of cheeseburgers, and a
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Table 4: Sample quality comparison with state-of-the-art generative models for each task. LSUN
diffusion models are sampled using 1000 steps (see Appendix L). ImageNet diffusion models are
sampled using 250 steps, except when we use the DDIM sampler with 25 steps. *No BigGAN-deep
model was available at this resolution, so we trained our own. †Values are taken from a previous
paper, due to lack of public models or samples. ‡Results use two-resolution stacks. §Results use
compute-intensive classifier rejection sampling.

Model FID sFID Prec Rec

LSUN Bedrooms 256⇥256
DCTransformer† [48] 6.40 6.66 0.44 0.56
DDPM [31] 4.89 9.07 0.60 0.45
IDDPM [49] 4.24 8.21 0.62 0.46
StyleGAN [33] 2.35 6.62 0.59 0.48
ADM (dropout) 1.90 5.59 0.66 0.51

LSUN Horses 256⇥256
StyleGAN2 [34] 3.84 6.46 0.63 0.48
ADM 2.95 5.94 0.69 0.55
ADM (dropout) 2.57 6.81 0.71 0.55

LSUN Cats 256⇥256
DDPM [31] 17.1 12.4 0.53 0.48
StyleGAN2 [34] 7.25 6.33 0.58 0.43
ADM (dropout) 5.57 6.69 0.63 0.52

ImageNet 64⇥64
BigGAN-deep* [8] 4.06 3.96 0.79 0.48
IDDPM [49] 2.92 3.79 0.74 0.62
ADM 2.61 3.77 0.73 0.63
ADM (dropout) 2.07 4.29 0.74 0.63

Model FID sFID Prec Rec

ImageNet 128⇥128
BigGAN-deep [8] 6.02 7.18 0.86 0.35
LOGAN† [74] 3.36
ADM 5.91 5.09 0.70 0.65
ADM-G (25 steps) 5.98 7.04 0.78 0.51
ADM-G 2.97 5.09 0.78 0.59

ImageNet 256⇥256
DCTransformer† [48] 36.51 8.24 0.36 0.67
VQ-VAE-2†‡ [57] 31.11 17.38 0.36 0.57
VQ-VAE-2 (RS)†‡§ [57] ⇠ 10
VQ-GAN‡ [21] 15.97 19.05 0.63 0.58
VQ-GAN (RS)‡§ [21] 5.06 7.34 0.79 0.48
IDDPM‡ [49] 12.26 5.42 0.70 0.62
SR3†‡ [60] 11.30
BigGAN-deep [8] 6.95 7.36 0.87 0.28
ADM 10.94 6.02 0.69 0.63
ADM-G (25 steps) 5.44 5.32 0.81 0.49
ADM-G 4.59 5.25 0.82 0.52

ImageNet 512⇥512
BigGAN-deep [8] 8.43 8.13 0.88 0.29
ADM 23.24 10.19 0.73 0.60
ADM-G (25 steps) 8.41 9.67 0.83 0.47
ADM-G 7.72 6.57 0.87 0.42

tinca fish with no human holding it. We also check our generated samples for nearest neighbors in
the Inception-V3 feature space in Appendix E, and we show additional samples in Appendices M-O.

We also compare guidance to using a two-stage upsampling stack. Nichol and Dhariwal [49] and
Saharia et al. [60] train two-stage diffusion models by combining a low-resolution diffusion model
with a corresponding upsampling diffusion model. In this approach, the upsampling model is
trained to upsample images from the training set, and conditions on low-resolution images that are
concatenated channel-wise to the model input using a simple interpolation (e.g. bilinear). During
sampling, the low-resolution model produces a sample, and then the upsampling model is conditioned
on this sample. This greatly improves FID on ImageNet 256⇥256, but does not reach the same
performance as state-of-the-art models like BigGAN-deep [49, 60], as seen in Table 4.

In Table 5, we show that guidance and upsampling improve sample quality along different axes. We
use the upsampling stack from Nichol and Dhariwal [49] combined with our architecture improve-
ments, which we refer to as ADM-U. While upsampling improves precision while keeping a high
recall, guidance provides a knob to trade off diversity for much higher precision. We achieve the best
FIDs by using guidance at a lower resolution before upsampling to a higher resolution, indicating
that these approaches complement one another.

6 Related Work

Score based generative models were introduced by Song and Ermon [66] as a way of modeling a
data distribution using its gradients, and then sampling using Langevin dynamics [73]. Ho et al. [31]
found a connection between this method and diffusion models [63], and achieved excellent sample
quality by leveraging this connection. After this breakthrough work, many works followed up with
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Figure 4: Samples from BigGAN-deep with truncation 1.0 (FID 6.95, left) vs samples from our
diffusion model with guidance (FID 4.59, middle) and samples from the training set (right).

Table 5: Comparing our single, upsampling and classifier guided models. The upsamplers are
64!256 and 128!512. When combining guidance with upsampling, we only guide the lower
resolution model. All models are sampled using 250 sampling steps.

Model FID sFID IS Prec Rec

ImageNet 256⇥256
ADM 10.94 6.02 100.98 0.69 0.63
ADM, ADM-U 7.49 5.13 127.49 0.72 0.63
ADM-G 4.59 5.25 186.70 0.82 0.52
ADM-G, ADM-U 3.94 6.14 215.84 0.83 0.53

Model FID sFID IS Prec Rec

ImageNet 512⇥512
ADM 23.24 10.19 58.06 0.73 0.60
ADM, ADM-U 9.96 5.62 121.78 0.75 0.64
ADM-G 7.72 6.57 172.71 0.87 0.42
ADM-G, ADM-U 3.85 5.86 221.72 0.84 0.53

more promising results: Kong et al. [36] and Chen et al. [11] demonstrated that diffusion models
work well for audio; Jolicoeur-Martineau et al. [32] found that a GAN-like setup could improve
samples from these models; Song et al. [67] explored ways to leverage techniques from stochastic
differential equations to improve the sample quality obtained by score-based models; Song et al. [64]
and Nichol and Dhariwal [49] proposed methods to improve sampling speed; Nichol and Dhariwal
[49] and Saharia et al. [60] demonstrated promising results on the difficult ImageNet generation task
using upsampling diffusion models. Also related to diffusion models, and following the work of
Sohl-Dickstein et al. [63], Goyal et al. [27] described a technique for learning a model with learned
iterative generation steps, and found that it could achieve good image samples when trained with a
likelihood objective.

One missing element from previous work on diffusion models is a way to trade off diversity for fidelity.
Other generative techniques provide natural levers for this trade-off. Brock et al. [8] introduced the
truncation trick for GANs, wherein the latent vector is sampled from a truncated normal distribution.
They found that increasing truncation naturally led to a decrease in diversity but an increase in fidelity.
More recently, Razavi et al. [57] proposed to use classifier rejection sampling to filter out bad samples
from an autoregressive likelihood-based model, and found that this technique improved FID. DeVries
et al. [16] found that filtering out low-density regions of the training set improves GAN training
performance. Most likelihood-based models also allow for low-temperature sampling [1], which
provides a natural way to emphasize modes of the data distribution (see Appendix I).
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Other likelihood-based models have been shown to produce high-fidelity image samples. VQ-VAE
[71] and VQ-VAE-2 [57] are autoregressive models trained on top of quantized latent codes, greatly
reducing the computational resources required to train these models on large images. These models
produce diverse and high quality images, but still fall short of GANs without expensive rejection
sampling and special metrics to compensate for blurriness. DCTransformer [48] is a related method
which relies on a more intelligent compression scheme. VAEs are another promising class of
likelihood-based models, and recent methods such as NVAE [69] and VDVAE [12] have successfully
been applied to difficult image generation domains. Energy-based models are another class of
likelihood-based models with a rich history [1, 13, 30]. Sampling from the EBM distribution is
challenging, and Xie et al. [76] demonstrate that Langevin dynamics can be used to sample coherent
images from these models. Du and Mordatch [19] further improve upon this approach, obtaining
high quality images. More recently, Gao et al. [24] incorporate diffusion steps into an energy-based
model, and find that doing so improves image samples from these models.

Other works have controlled generative models with a pre-trained classifier. For example, an emerging
body of work [23, 53, 2] aims to optimize GAN latent spaces for text prompts using pre-trained CLIP
[55] models. More similar to our work, Song et al. [67] uses a classifier to generate class-conditional
CIFAR-10 images with a diffusion model. In some cases, classifiers can act as stand-alone generative
models. For example, Santurkar et al. [62] demonstrate that a robust image classifier can be used as a
stand-alone generative model, and Grathwohl et al. [28] train a model which is jointly a classifier and
an energy-based model.

7 Limitations and Future Work

While we believe diffusion models are an extremely promising direction for generative modeling, they
are still slower than GANs at sampling time due to the use of multiple denoising steps (and therefore
forward passes). Since our diffusion models are also larger than the competing GAN generators,
each forward pass takes anywhere from 5-20 times longer too. A promising direction to reduce this
latency gap is Luhman and Luhman [43], who explore a way to distill the DDIM sampling process
into a single step model. The samples from the single step model are not yet competitive with GANs,
but are much better than previous single-step likelihood-based models. Future work in this direction
might be able to completely close the sampling speed gap between diffusion models and GANs
without sacrificing image quality.

Unlike GANs, Flows, and VAEs, diffusion models do not learn an explicit latent representation. While
DDIM provides a way to encode images into an implicit latent space, it is unclear how semantically
meaningful this latent representation is compared to those of other model classes. This could make it
difficult to use diffusion models for representation learning or image editing applications.

The effectiveness of classifier guidance demonstrates that we can obtain powerful generative models
from the gradients of a classification function. This could be used to condition an image generator
with a text caption using a noisy version of CLIP [55], similar to recent methods that guide GANs
using text prompts [23, 53, 2]. Our proposed classifier guidance technique is currently limited to
labeled datasets. In the future, our method could be extended to unlabeled data by clustering samples
to produce synthetic labels [42] or by training discriminative models to use for guidance. This also
suggests that large unlabeled datasets could be leveraged in the future to pre-train powerful diffusion
models that can later be improved by using a classifier with desirable properties.

8 Societal Impact

Our proposed technique makes generative models more accessible in terms of compute costs, es-
pecially because new classifiers can be trained and used on top of existing high-quality diffusion
models. While we believe this is generally a benefit of these models, it could also have negative
societal implications. For example, cheaper generative models could enable bad actors to generate
fake news, propaganda images, or doctored photos. Additionally, the wide-spread deployment of
these models could displace jobs in art, graphic design, animation, and photography. One could
imagine, however, that democratizing generative models could also have positive impacts in the long
run, creating new types of jobs such as generative photo editing. Intentionally deceitful generated
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images are a more direct concern, and detecting and mitigating propaganda and fake news based on
generative models is an ongoing area of research [4, 3, 5].

9 Conclusion

We have shown that diffusion models, a class of likelihood-based models with a stationary training
objective, can obtain better sample quality than state-of-the-art GANs. Our improved architecture
is sufficient to achieve this on unconditional image generation tasks, and our classifier guidance
technique allows us to do so on class-conditional tasks. In the latter case, we find that the scale
of the classifier gradients can be adjusted to trade off diversity for fidelity. These guided diffusion
models can reduce the sampling time gap between GANs and diffusion models, although diffusion
models still require multiple forward passes during sampling. Finally, by combining guidance with
upsampling, we can further improve sample quality on high-resolution conditional image synthesis.
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