
LEADS: Learning Dynamical
Systems that Generalize Across Environments

Supplemental Material

Yuan Yin1, Ibrahim Ayed1,2, Emmanuel de Bézenac1, Nicolas Baskiotis1, Patrick Gallinari1,3

1Sorbonne Université, Paris, France
2ThereSIS Lab, Thales, Paris, France 3Criteo AI Lab, Paris, France

{yuan.yin,ibrahim.ayed,emmanuel.de-bezenac,
nicolas.baskiotis,patrick.gallinari}@sorbonne-universite.fr

A Proof of Proposition 1

Proposition 1 (Existence and Uniqueness). Assume Ω is convex, then the existence of a minimal
decomposition f?, {g?e}e∈E ∈ F of Eq. 3 is guaranteed. Furthermore, if Ω is strictly convex, this
decomposition is unique.

Proof. The optimization problem is:

min
f,ge∈F

∑
e∈E

Ω(ge) subject to ∀xe,i ∈ T̂,∀t, dxe,it
dt

= (f + ge)(x
e,i
t) (3)

The idea is to first reconstruct the full functional from the trajectories of T̂. By definition, Ae is the
set of points reached by trajectories in T̂ from environment e so that:

Ae = {x ∈ Rd | ∃xe· ∈ T̂,∃t, xet = x}
Then let us define a function fdata

e in the following way, ∀e ∈ E, take a ∈ Ae, we can find xe· ∈ T̂

and t0 such that xet0 = a. Differentiating xe· at t0, which is possible by definition of T̂, we take:

fdata
e (a) =

dxet
dt

∣∣∣∣
t=t0

For any (f, ge) satisfying the constraint in Eq. 3, we then have (f + ge)(a) = dxt

dt

∣∣
t0

= fdata
e (a) for

all a ∈ Ae. Conversely, any pair such that (f, ge) ∈ F×F and f + ge = fdata
e , verifies the constraint.

Thus we have the equivalence between Eq. 3 and the following objective:

min
f∈F

∑
e

Ω(fdata
e − f) (S1)

The result directly follows from the fact that the objective is a sum of (strictly) convex functions in f
and is thus (strictly) convex in f .

B Further details on the generalization with LEADS

In this section, we will give more details on the link between our framework and its generalization
performance. After introducing the necessary definitions in Sec. B.1, we show the proofs of the results
for the general case in Sec. 3. Then in Sec. B.3 we provide the instantiation for linear approximators.
Finally, we show how we derived our heuristic instantiation for neural networks in Eq. 8 in Sec. 3.3
from the existing capacity bound for neural networks.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Table S1: Capacity definitions of different sets by covering number with associated metric or pseudo-
metric.

Capacity Metric or pseudo-metric Mentioned in

C(ε,Hm) :=
supP N(ε,Hm, dP)

dP((f + g1, . . . , f + gm), (f ′ + g′1, . . . , f
′ + g′m)) =∫

(A×TA)m
1
m |
∑
e∈E‖(f + ge)(x

e) − ye‖2−
∑
e∈E‖(f ′ +

g′e)(x
e)− ye‖2|dP(x,y)

Theorem S1; Prop. S1

C
Ĝ

(ε, F̂) :=

supP N(ε, F̂, d[P,Ĝ])

d[P,Ĝ](f, f
′) =

∫
A×TA

supg∈Ĝ|‖(f + g)(x) − y‖2−‖(f ′ +

g)(x)− y‖2|dP(x, y)
Prop. 2, S1, S3; Cor. S1

C
F̂

(ε, Ĝ) :=

supP N(ε, Ĝ, d[P,F̂])

d[P,F̂](g, g
′) =

∫
A×TA

supf∈F̂|‖(f + g)(x) − y‖2−‖(f +

g′)(x)− y‖2|dP(x, y)
Prop. 2, S1, S2

C(ε, f + Ĝ) :=

supP N(ε, f + Ĝ, dP)

dP(f +g, f +g′) =
∫
A×TA

|‖(f +g)(x)−y‖2−‖(f +g′)(x)−
y‖2|dP(x, y)

Prop. 3

C(ε, Ĝ, L1) :=

supP N(ε, Ĝ, dL1(P))
dL1(P)(g, g

′) =
∫
Rd‖(g − g′)(x)‖1dP(x) Prop. S2; Theorem S3

C(ε, Ĝ, L2) :=

supP N(ε, Ĝ, dL2(P))
dL2(P)(g, g

′) =
√∫

Rd‖(g − g′)(x)‖22dP(x) Prop. 4; Lemma S1

B.1 Preliminaries

Table S1 gives the definition of the different capacity instances considered in the paper for each
hypothesis space, and the associated distances. We say that a space H is ε-covered by a set H , with
respect to a metric or pseudo-metric d(·, ·), if for all h ∈ H there exists h′ ∈ H with d(h, h′) ≤ ε. We
define by N(ε,H, d) the cardinality of the smallest H that ε-covers H, also called covering number
[S7]. The capacity of each hypothesis space is then defined by the maximum covering number over
all distributions. Note that the loss function is involved in every metric in Table S1. For simplicity,
we therefore omit the notation of loss function for the hypothesis spaces.

As in [S2], covering numbers are based on pseudo-metrics. We can verify that all distances in Table S1
are pseudo-metrics:

Proof. This is trivially verified. For example, for the distance dP(f + g, f + g′) given in Table S1,
which is the distance between f + g, f + g′ ∈ f + Ĝ, it is easy to check that the following properties
do hold:

• dP(f + g, f + g′) = 0 (subtraction of same functions evaluated on same x and y)

• dP(f + g, f + g′) = dP(f + g′, f + g) (evenness of absolute value)

• dP(f + g, f + g′) ≤ dP(f + g, f + g′′) + dP(f + g′′, f + g′) (triangular inequality of
absolute value)

Other distances in Table S1 can be proven to be pseudo-metrics in the same way.

B.2 General Case

B.2.1 Proof of Proposition 2

Proposition 2. Givenm environments, let ε1, ε2, δ > 0, ε = ε1 +ε2. Assume the number of examples
n per environment satisfies

n ≥ max

{
64

ε2

(
1

m

(
log

4

δ
+ log C

Ĝ

(ε1

16
, F̂
))

+ log C
F̂

(ε2

16
, Ĝ
))

,
16

ε2

}
(5)

Then with probability at least 1−δ (over the choice of training sets {P̂e}), any learner (f+g1, . . . , f+
gm) will satisfy 1

m

∑
e∈E erPe

(f + ge) ≤ 1
m

∑
e∈E êr

P̂e
(f + ge) + ε.

2

Proof. We introduce some extra definitions that are necessary for proving the proposition. Let
H = f+Ĝ defined for each f ∈ F̂, and let us define the product space Hm = {(f+g1, . . . , f+gm) :
f + ge ∈ H}. Functions in this hypothesis space all have the same f , but not necessarily the same
ge. Let H be the collection of all hypothesis spaces H = f + Ĝ,∀f ∈ F̂. The hypothesis space
associated to multiple environments is then defined as Hm :=

⋃
H∈H Hm.

Our proof makes use of two intermediary results addressed in Theorem S1 and Prop. S1.
Theorem S1 ([S2], Theorem 4, adapted to our setting). Assuming H is a permissible hypothesis space
family. For all ε > 0, if the number of examples n of each environment satisfies:

n ≥ max

{
64

mε2
log

4C(ε16 ,H
m)

δ
,

16

ε2

}
Then with probability at least 1− δ (over the choice of {P̂e}), any (f + g1, . . . , f + gm) will satisfy

1

m

∑
e∈E

erPe(f + ge) ≤
1

m

∑
e∈E

êr
P̂e

(f + ge) + ε

Note that permissibility (as defined in [S2]) is a weak measure-theoretic condition satisfied by many
real world hypothesis space families [S2]. We will now express the capacity of Hm in terms of the
capacities of its two constituent component-spaces F̂ and Ĝ, thus leading to the main result.
Proposition S1. For all ε, ε1, ε2 > 0 such that ε = ε1 + ε2,

logC(ε,Hm) ≤ logC
Ĝ

(ε1, F̂) +m logC
F̂

(ε2, Ĝ) (S2)

Proof of Proposition S1. To prove the proposition it is sufficient to show the property of covering
sets for any joint distribution defined on all environments P on the space (A× TA)m. Let us then
fix such a distribution P. and let P̄ = 1

m

∑
e∈E Pe be the average distribution.

Suppose that F is an ε1-cover of (F̂, d[P̄,Ĝ]) and {Ge}e∈E are ε2-covers of (Ĝ, d[Pe,F̂]). Let H =

{(x1, . . . , xm) 7→ ((f + g1)(x1), . . . , (f + gm)(xm)), f ∈ F, ge ∈ Ge}, be a set built from the
covering sets aforementioned. Note that by definition |H| = |F |·

∏
e∈E |Ge| ≤ C

Ĝ
(ε1, F̂)C

F̂
(ε2, Ĝ)m

as we take some distribution instances.

For each learner (f + g1, . . . , f + gm) ∈ Hm in the hypothesis space, we take any f ′ ∈ F
such that d[P̄,Ĝ](f, f

′) ≤ ε1 and g′e ∈ Ge for all e such that d[Pe,F̂](ge, g
′
e) ≤ ε2, and we build

(f ′ + g′1, . . . , f
′ + g′m). The distance is then:

dP((f + g1, . . . , f + gm), (f ′ + g′1, . . . , f
′ + g′m))

≤ dP((f + g1, . . . , f + gm), (f ′ + g1, . . . , f
′ + gm))

+ dP((f ′ + g1, . . . , f
′ + gm), (f ′ + g′1, . . . , f

′ + g′m))
(triangular inequality of pseudo-metric)

≤ 1

m

[∑
e∈E

dPe
(f + ge, f

′ + ge) +
∑
e∈E

dPe
(f ′ + ge, f

′ + g′e)

]
(triangular inequality of absolute value)

≤ 1

m

∑
e∈E

d[Pe,Ĝ](f, f
′) +

1

m

∑
e∈E

d[Pe,F̂](ge, g
′
e) (by definition of d[Pe,Ĝ] and d[Pe,F̂])

= d[P̄,Ĝ](f, f
′) +

1

m

∑
e∈E

d[Pe,F̂](ge, g
′
e) ≤ ε1 + ε2

(mean of the distance on different Pe is the distance on P̄)

To conclude, for any distribution P, when F is an ε1-cover of F̂ and {Ge} are ε2-covers of Ĝ, the set
H built upon them is an (ε1 + ε2)-cover of Hm. Then if we take the maximum over all distributions
we conclude that C(ε1 + ε2,Hm) ≤ C

Ĝ
(ε1, F̂)C

F̂
(ε2, Ĝ)m and we have Eq. S2. �

3

We can now use the bound developed in Prop. S1 and use it together with Theorem S1, therefore
concluding the proof of Prop. 2.

B.2.2 Proof of Proposition 3

Proposition 3. For all ε, δ with 0 < ε, δ < 1 if the number of samples n′ satisfies

n′ ≥ max

{
64

ε2
log

4C(ε16 , f + Ĝ)

δ
,

16

ε2

}
, (6)

then with probability at least 1− δ (over the choice of novel training set P̂e′), any learner f + ge′ ∈
f + Ĝ will satisfy erPe′ (f + ge′) ≤ êr

P̂e′
(f + ge′) + ε.

Proof. The proof is derived from the following theorem which can be easily adapted to our context:
Theorem S2 ([S2], Theorem 3). Let H a permissible hypothesis space. For all 0 < ε, δ < 1, if the
number of examples n of each environment satisfies:

n ≥ max

{
64

mε2
log

4C(ε16 ,H)

δ
,

16

ε2

}
Then with probability at least 1− δ (over the choice of dataset P̂ sampled from P), any h ∈ H will
satisfy

erP(h) ≤ êr
P̂

(h) + ε

Given that P̂e′ is sampled from the same environment distribution Q, then by fixing the pre-trained f ,
we fix the space of hypothesis to f + Ĝ, and we apply the Theorem S2 to obtain the proposition.

B.3 Linear case

We provide here the proofs of theoretical bounds given in Sec. 3.2. See the description in Sup. D for
the detailed information on the example linear ODE dataset and the training with varying number of
environments.

B.3.1 Proof of Proposition 4

Proposition 4. If for all linear maps LGe ∈ Ĝ, ‖G‖2F≤r, if the input space is bounded s.t. ‖x‖2≤b,
and the MSE loss function is bounded by c, then

logC
F̂

(ε, Ĝ) ≤ drcd(2b)
2/ε2e log 2d2 =: ω(r, ε)

Proof. Let us take G an ε
2
√
c
-cover of Ĝ with L2-distance: dL2(P) (see definition in Table S1).

Therefore, for each LG ∈ Ĝ take g′ ∈ G such that dL2(LG,LG′) ≤ ε
2
√
c
, then

d[P,F̂](LG,LG′)

=

∫
A×A′

sup
LF∈F̂

|‖(F + G)x− y‖22−‖(F + G′)x− y‖22|dP(x, y)

≤
∫

A×TA

sup
LF∈F̂

‖(G−G′)x‖2(‖(F + G)x− y‖2+‖(F + G′)(x)− y‖2)dP(x, y)

≤

√√√√∫
A

‖(G−G′)x‖2dP(x)

√√√√ ∫
A×TA

sup
LF∈F̂

(‖(F + G)x− y‖2+‖(F + G′)x− y‖2)2dP(x, y)

≤2
√
c

√∫
Rd

‖(G−G′)x‖2dP(x) ≤ ε

We have the CF(ε, Ĝ) ≤ C(ε
2
√
c
, Ĝ, L2). According to the following lemma:

Lemma S1 ([S1], Lemma 3.2, Adapted). Given positive reals (a, b, ε) and positive integer d. Let
vector x ∈ Rd be given with ‖x‖p ≤ b, Ĝ = {LG : G ∈ Rd×d, ‖G‖2F ≤ r} where ‖·‖F is the

4

Frobenius norm. Then

logC(ε, Ĝ, L2) ≤
⌈
rdb2

ε2

⌉
log 2d2

And we obtain that

logC
F̂

(ε, Ĝ) ≤
⌈
rcd(2b)2

ε2

⌉
log 2d2 =: ω(r, ε)

where ω(r, ε) is a strictly increasing function w.r.t. r.

B.3.2 Proof of Proposition 5

Proposition 5. If for linear maps LF ∈ F̂, ‖F ‖2F≤r′, LG ∈ Ĝ, ‖G‖2F≤r, ‖x‖2≤b, and if the MSE
loss function is bounded by c, given m environments and n samples per environment, with the
probability 1 − δ, the generalization error upper bound is ε = max {

√
(p+

√
p2 + 4q)/2,

√
16/n}

where p = 64
mn log 4

δ and q = 64
n d(

r′

mz2 + r
(1−z)2)cd(32b)2e log 2d2 for any 0 < z < 1.

Proof. This can be derived from Prop. 2 with the help of Prop. 4 for linear maps. If we take the lower
bounds of two capacities logC

F̂
(ε116 , Ĝ) and logC

Ĝ
(ε216 , F̂) for the linear maps hypothesis spaces F̂, Ĝ,

then the number of required samples per environment n now can be expressed as follows:

n = max

{
64

ε2

(
1

m
log

4

δ
+

1

m

⌈
r′cd(32b)2

ε2
1

⌉
log 2d2 +

⌈
rcd(32b)2

ε2
2

⌉
log 2d2

)
,

16

ε2

}
To simplify the resolution of the equation above, we take ε1 = zε for any 0 < z < 1, then
ε2 = ε − ε1 = (1 − z)ε. Then by resolving the equation, the generalization margin is then upper
bounded by ε with:

ε = max

√
p+

√
p2 + 4q

2
,

√
16

n

where p = 64

mn log 4
δ and q = 64

n

⌈(
r

mz2 + r′

(1−z)2

)
cd(32b)2

⌉
log 2d2.

B.4 Nonlinear case: instantiation for neural networks

We show in this section how we design a concrete model for nonlinear dynamics following the general
guidelines given in Sec. 3.1. This is mainly composed of the following two parts: (a) choosing an
appropriate approximation space and (b) choosing a penalization function Ω for this space. It is
important to note that, even if the bounds given in the following sections may be loose in general, it
could provide useful intuitions on the design of the algorithms which can be validated by experiments
in our case.

B.4.1 Choosing approximation space F̂

We choose the space of feed-forward neural networks with a fixed architecture. Given the universal ap-
proximation properties of neural networks [S5], and the existence of efficient optimization algorithms
[S3], this is a reasonable choice, but other families of approximating functions could be used as well.

We then consider the function space of neural networks with D-layers with inputs and outputs in
Rd: F̂NN = {ν : x 7→ σD(WD · · ·σ1(W1x))) : x, ν(x) ∈ Rd}, D is the depth of the network, σj is
a Lipschitz activation function at layer j, and Wj weight matrix from layer j − 1 to j. The number of
adjustable parameters is fixed to W for the architecture. This definition covers fully connected NNs
and convolutional NNs. Note that the Fourier Neural Operator [S6] used in the experiments for NS
can be also covered by the definition above, as it performs alternatively the convolution in the Fourier
space.

B.4.2 Choosing penalization Ω

Now we choose an Ω for the space above. Let us first introduce a practical way to bound the capacity
of Ĝ ∈ F̂NN. Proposition S2 tells us that for a fixed NN architecture (implying constant parameter

5

number W and depth D), we can control the capacity through the maximum output norm R and
Lipschitz norm L defined in the proposition.

Proposition S2. If for all neural network g ∈ Ĝ, ‖g‖∞ = ess sup|g| ≤ R and ‖g‖Lip ≤ L, with
‖·‖Lip the Lipschitz semi-norm, then:

logC
F̂

(ε, Ĝ) ≤ ω(R,L, ε) (S3)

where ω(R,L, ε) = c1 log RL
ε + c2 for c1 = 2W and c2 = 2W log 8e

√
cD, with c the bound of

MSE loss. ω(R,L, ε) is a strictly increasing function w.r.t. R and L.

Proof. To link the capacity to some quantity that can be optimized for neural networks, we need to
apply the following theorem:

Theorem S3 ([S4], Theorem 11, Adapted). With the neural network function space F̂NN, let W be the
total number of adjustable parameters, D the depth of the architecture. Let Ĝ ⊆ F̂NN be all functions
into [−R,R]d representable on the architecture, and all these functions are at most L-Lipschitz. Then
for all 0 < ε < 2R,

C(ε, Ĝ, L1) ≤
(

2e · 2R ·DL
ε

)2W

Here, we need to prove firstly that the F̂-dependent capacity of Ĝ is bounded by a scaled independent
capacity on L1 of itself. We suppose that the MSE loss function (used in the definitions in Table S1) is
bounded by some constant c. This is a reasonable assumption given that the input and output of neural
networks are bounded in a compact set. Let us take G an ε

2
√
c
-cover of Ĝ with L1-distance: dL1(P)

(see definition in Table S1). Therefore, for each g ∈ Ĝ take g′ ∈ G such that dL1(g, g′) ≤ ε
2
√
c
, then

d[P,F̂](g, g
′) =

∫
A×A′

sup
f∈F̂
|‖(f + g)(x)− y‖22−‖(f + g′)(x)− y‖22|dP(x, y)

≤
∫

A×TA

sup
f∈F̂
‖(g − g′)(x)‖2(‖(f + g)(x)− y‖2+‖(f + g′)(x)− y‖2)dP(x, y)

≤2
√
c

∫
Rd

‖(g − g′)(x)‖1dP(x) ≤ ε

Then we have the first inequality CF(ε, Ĝ) ≤ C(ε2c , Ĝ, L
1). As we suppose that ‖g‖∞≤ R for all

g ∈ Ĝ, then for all g ∈ Ĝ, we have g(x) ∈ [−R,R]d. We now apply the Theorem S3 on Ĝ, we then
have the following inequality

logC

(
ε

2
√
c
, Ĝ, L1

)
≤ 2W log

8e
√
cDRL

ε
(S4)

where e is the base of the natural logarithm, W is the number of parameters of the architecture, D is
the depth of the architecture. Then if we consider W, c,D as constants, the bound becomes:

logC

(
ε

2
√
c
, Ĝ, L1

)
≤ c1 log

RL

ε
+ c2 = ω(R,L, ε) (S5)

for c1 = 2W and c2 = 2W log 8e
√
cD.

This leads us to choose for Ω a strictly increasing function that bounds ω(R,L, ε). Given the
inequality (Eq. S3), this choice for Ω will allow us to bound practically the capacity of Ĝ.

Minimizing Ω will then reduce the effective capacity of the parametric set used to learn ge. Concretely,
we choose for Ω:

Ω(ge) = ‖ge‖2∞+α‖ge‖2Lip (7)

where α > 0 is a hyper-parameter. This function is strictly convex and attains its unique minimum at
the null function.

With this choice, let us instantiate Prop. 2 for our familly of NNs. Let r = supg∈Ĝ Ω(g), and
ω(r, ε) = c1 log r

ε
√
α

+ c2 (strictly increasing w.r.t. the r) for given parameters c1, c2 > 0. We have:

6

Table S2: Details for the results of evaluation error in test on linear systems in Fig. 1 .
Samples/env. Method m = 1 m = 2 m = 4 m = 8

n = 2 ·K LEADS no min. 8.13±5.56 e-2 6.81±4.44 e-2 4.92±4.26 e-2 4.50±3.10 e-2
LEADS (Ours) 5.11±3.20 e-2 3.93±2.88 e-2 2.10±0.96 e-2

n = 4 ·K LEADS no min. 4.08±2.57 e-2 3.96±2.56 e-2 3.10±2.08 e-2 2.23±1.44 e-2
LEADS (Ours) 2.74±1.96 e-2 1.61±1.24 e-2 1.02±0.74 e-2

Proposition S3. If r = supg∈Ĝ Ω(g) is finite, the number of samples n in Eq. 5, required to satisfy
the error bound in Proposition 2 with the same δ, ε, ε1 and ε2 becomes:

n ≥ max

{
64

ε2

(
1

m
log

4C
Ĝ

(ε116 , F̂)

δ
+ ω

(
r,
ε2

16

))
,

16

ε2

}
(S6)

Proof. If Ω(ge) ≤ r, we have 2 logR ≤ log r and 2 logL+ logα ≤ log r, then

logRL ≤ log
r√
α

We can therefore bound ω(R,L, ε) by

ω(R,L, ε) = c1 log
RL

ε
+ c2 ≤ c1 log

r

ε
√
α

+ c2 = ω(r, ε)

The result follows from Proposition S2.

This means that the number of required samples will decrease with the size the largest possible
Ω(g) = r. The optimization process will reduce Ω(ge) until a minimum is reached. The maximum
size of the effective hypothesis space is then bounded and decreases throughout training. In particular,
the following result follows:
Corollary S1. Optimizing Eq. 4 for a given λ, we have that the number of samples n in Eq. 5 required
to satisfy the error bound in Proposition 2 with the same δ, ε, ε1 and ε2 is:

n ≥max

{
64

ε2

(
1

m
log

4C
Ĝ

(ε116 , F̂)

δ
+ ω

(
λκ,

ε2

16

))
,

16

ε2

}
(S7)

where κ =
∑
e∈E

∑l
i=1

∫ T
0

∥∥∥dxe,i
s

dt

∥∥∥2

ds.

Proof. Denote Lλ(f, {ge}) the loss function defining Eq. 4. Consider a minimizer (f?, {g?e}) of Lλ.
Then:

Lλ(f?, {g?e}) ≤ Lλ(0, {0}) = κ

which gives:
∀e, Ω(g?e) ≤

∑
e

Ω(g?e) ≤ λκ

Defining Ĝ = {g ∈ F̂ | Ω(g) ≤ λκ}, we then have that Eq. 4 is equivalent to:

min
f∈F̂,{ge}e∈E∈Ĝ

∑
e∈E

(
Ω(ge)

λ
+

l∑
i=1

∫ T

0

∥∥∥∥dxe,is
dt
− (f + ge)(x

e,i
s)

∥∥∥∥2

ds

)
(S8)

and the result follows from Proposition S3.

We can then decrease the sample complexity in the chosen NN family by: (a) increasing the number
of training environments engaged in the framework, and (b) decreasing Ω(ge) for all ge, with Ω(ge)
instantiated as in Sec. 3.1. Ω provides a bound based on the largest output norm and the Lipschitz
constant for a family of NNs. The experiments (Sec. 4) confirm that this is indeed an effective way to
control the capacity of the approximating function family. Note that in our experiments, the number
of samples needed in practice is much smaller than suggested by the theoretical bound.

7

Table S3: Detailed results of evaluation error in test on LV systems for Fig. 4. For the case of m = 1,
all baselines except FT-RNN are equivalent to One-Per-Env.. The arrows indicate that the table cells
share the same value.

Samples/env. Method m = 1 m = 2 m = 4 m = 8

n = 1 ·K

One-For-All 7.87±7.54 e-3 0.22±0.06 0.33±0.06 0.47±0.04
One-Per-Env. 7.87±7.54 e-3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 4.02±3.17 e-2 1.62±1.14 e-2 1.62±1.40 e-2 1.08±1.03 e-2
FT-NODE 7.87±7.54 e-3 7.63±5.84 e-3 4.18±3.77 e-3 4.92±4.19 e-3
GBML-like 7.87±7.54 e-3 6.32±5.72 e-2 1.44±0.66 e-1 9.85±8.84 e-3
LEADS (Ours) 7.87±7.54 e-3 3.65±2.99 e-3 2.39±1.83 e-3 1.37±1.14 e-3

n = 2 ·K

One-For-All 1.38±1.61 e-3 0.22±0.04 0.36±0.07 0.60±0.11
One-Per-Env. 1.38±1.61 e-3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 7.20±7.12 e-2 2.72±4.00 e-2 1.69±1.57 e-2 1.38±1.25 e-2
FT-NODE 1.38±1.61 e-3 9.02±8.81 e-3 1.11±1.05 e-3 1.00±0.95 e-3
GBML-like 1.38±1.61 e-3 9.26±8.27 e-3 1.17±1.09 e-2 1.96±1.95 e-2
LEADS (Ours) 1.38±1.61 e-3 8.65±9.61 e-4 8.40±9.76 e-4 6.02±6.12 e-4

n = 4 ·K

One-For-All 1.36±1.25 e-4 0.19±0.02 0.31±0.04 0.50±0.04
One-Per-Env. 1.36±1.25 e-4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 8.69±8.36 e-4 3.39±3.38 e-4 3.02±1.50 e-4 2.26±1.45 e-4
FT-NODE 1.36±1.25 e-4 1.74±1.65 e-4 1.78±1.71 e-4 1.39±1.20 e-4
GBML-like 1.36±1.25 e-4 2.57±7.18 e-3 2.65±3.26 e-3 2.36±3.58 e-3
LEADS (Ours) 1.36±1.25 e-4 1.10±0.92 e-4 1.03±0.98 e-4 9.66±9.79 e-5

n = 8 ·K

One-For-All 5.98±5.13 e-5 0.16±0.03 0.35±0.06 0.52±0.06
One-Per-Env. 5.98±5.13 e-5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
FT-RNN 2.09±1.73 e-4 1.18±1.16 e-4 1.13±1.13 e-4 9.13±8.31 e-5
FT-NODE 5.98±5.13 e-5 6.91±4.46 e-5 7.82±6.95 e-5 6.88±6.39 e-5
GBML-like 5.98±5.13 e-5 1.02±1.68 e-4 1.41±2.68 e-4 0.99±1.53 e-4
LEADS (Ours) 5.98±5.13 e-5 5.47±4.63 e-5 4.52±3.98 e-5 3.94±3.49 e-5

Table S4: Test MSE of experiments on LV (m = 4, n = 1 ·K) with different empirical norms.
Empirical Norm p = 1 p = 2 p = 3 p = 10 p =∞

Test MSE 2.30e-3 2.36e-3 2.34e-3 3.41e-3 6.12e-3

C Optimizing Ω in practice

In Sec. 3.3, we developed an instantiation of the LEADS framework for neural networks. We proposed
to control the capacity of the ges components through a penalization function Ω defined as Ω(ge) =
‖ge‖2∞+α‖ge‖2Lip. This definition ensures the properties required to control the sample complexity.

However, in practice, both terms in Ω(ge) are difficult to compute as they do not yield an analytical
form for neural networks. For a fixed activation function, the Lipschitz-norm of a trained model only
depends on the model parameters and, for our class of neural networks, can be bounded by the spectral
norms of the weight matrices, as described in Sec. 4.4. This allows for a practical implementation.

The infinity norm on its side depends on the domain definition of the function and practical imple-
mentations require an empirical estimate. Since there is no trivial estimator for the infinity norm
of a function, we performed tests with different proxies such as the empirical Lp and L∞ norms,

respectively defined as ‖ge‖Lp(P̂e)=
(

1
n

∑
x∈P̂e
|ge(x)|p

)1/p

for 1 ≤ p < ∞ and ‖ge‖L∞(P̂e)=

maxx∈P̂e
|ge(x)|. Here |·| is an `2 vector norm. Note that on a finite set of points, these norms reduce

to vector norms ‖(|ge(x1)|, . . . , |ge(xn)|)>‖p. They are then all equivalent on the space defined by
the training set. Table S4 shows the results of experiments performed on LV equation with different
1 ≤ p ≤ ∞. Overall we found that Lp for small values of p worked better and chose in our experi-
ments set p = 2.

8

Moreover, using both minimized quantities ‖ge‖2L2(P̂e)
and the spectral norm of the product of weight

matrices, denoted L(ge) and Π(ge) respectively, we can give a bound on Ω(ge). First, for any x in
the compact support of Pe, we have that, fixing some x0 ∈ P̂e:

|ge(x)| ≤ |ge(x)− ge(x0)|+ |ge(x0)|
For the first term:

|ge(x)− ge(x0)| ≤ ‖ge‖Lip|x− x0| ≤ Π(ge)|x− x0|

and the support of Pe being compact by hypothesis, denoting by δ its diameter:
|ge(x)− ge(x0)| ≤ δΠ(ge)

Moreover, for the second term:
|ge(x0)| =

√
|ge(x0)|2 ≤

√
L(ge)

and summing both contributions gives us the bound:

‖ge‖∞ ≤ δΠ(ge) +
√
L(ge)

so that:
Ω(ge) ≤ (δ + α)Π(ge) +

√
L(ge)

Note that this estimation is a crude one and improvements can be made by considering the closest x0

from x and taking δ to be the maximal distance between points not from the support of Pe and P̂e.

Finally, we noticed that minimizing ‖ geid ‖
2
L2(P̂e)

in domains bounded away from zero gave better
results as normalizing by the norm of the output allowed to adaptively rescale the computed norm.
Formally, minimizing this quantity does not fundamentally change the optimization as we have that:

∀x, 1

M2
|ge(x)|2≤

∣∣∣∣ge(x)

x

∣∣∣∣2 ≤ 1

m2
|ge(x)|2

meaning that:
1

M2
L(ge) ≤

∥∥∥ge
id

∥∥∥2

L2(P̂e)
≤ 1

m2
L(ge)

wherem,M are the lower and upper bound of |x| on the support of Pe withm > 0 by hypothesis (the
quantity we minimize is still higher than L(ge) even if this is not the case).

D Additional experimental details

D.1 Details on the environment dynamics

Lotka-Volterra (LV). The model dynamics follow the ODE:
du

dt
= αu− βuv, dv/dt = δuv − γv

with u, v the number of prey and predator, α, β, γ, δ>0 defining how the two species interact. The
initial conditions ui0, v

i
0 are sampled from a uniform distribution P0 = Unif([1, 2]2). We characterize

the dynamics by θ = (α/β, γ/δ) ∈ Θ = {0.5, 1, 1.44, 1.5, 1.86, 2}2. An environment e is then defined
by parameters θe sampled from a uniform distribution over the parameter set Θ.

Gray-Scott (GS). The governing PDE is:
∂u

∂t
= Du∆u− uv2 + F (1− u), ∂v/∂t = Dv∆v + uv2 − (F + k)v

where the u, v represent the concentrations of two chemical components in the spatial domain S with
periodic boundary conditions. Du, Dv denote the diffusion coefficients respectively for u, v, and are
held constant to Du = 0.2097, Dv = 0.105, and F, k are the reaction parameters depending on the
environment. As for the initial conditions (u0, v0) ∼ P0, we place 3 2-by-2 squares at uniformly
sampled positions in S to trigger the reactions. The values of (u0, v0) are fixed to (0, 1) outside the
squares and to (1 − ε, ε) with a small ε> 0 inside. An environment e is defined by its parameters
θe = (Fe, ke) ∈ Θ = {(0.037, 0.060), (0.030, 0.062), (0.039, 0.058)}. We consider a set of θe
parameters uniformly sampled from the environment distribution Q on Θ.

9

Navier-Stokes (NS). We consider the Navier-Stokes PDE for incompressible flows:
∂w

∂t
= −v · ∇w + ν∆w + ξ ∇ · v = 0

where v is the velocity field, w = ∇ × v is the vorticity, both v, w lie in a spatial domain S with
periodic boundary conditions, ν is the viscosity and ξ is the constant forcing term in the domain S.
We fix ν = 10−3 across the environments. We sample the initial conditions we0 ∼ P0 as in [S6]. An
environment e is defined by its forcing term ξe ∈ Θξ = {ξ1, ξ2, ξ3, ξ4} with

ξ1(x, y) = 0.1(sin(2π(x+ y)) + cos(2π(x+ y)))

ξ2(x, y) = 0.1(sin(2π(x+ y)) + cos(2π(x+ 2y)))

ξ3(x, y) = 0.1(sin(2π(x+ y)) + cos(2π(2x+ y)))

ξ4(x, y) = 0.1(sin(2π(2x+ y)) + cos(2π(2x+ y)))

where (x, y) ∈ S is the position in the domain S. We uniformly sampled a set of forcing terms from
Q on Θξ.

Linear ODE. We take an example of linear ODE expressed by the following formula:
dut
dt

= LQΛQ>(ut) = QΛQ>ut

where ut ∈ R8 is the system state, Q ∈M8,8(R) is an orthogonal matrix such that QQ> = 1, and
Λ ∈M8,8(R) is a diagonal matrix containing eigenvalues. We sample Λe from a uniform distribution
on ΘΛ = {Λ1, . . . ,Λ8}, defined for each Λi by:

[Λi]jj =

{
0, if i = j for i, j ∈ {1, . . . , 8},
−0.5, otherwise.

which means that the i-th eigenvalue is set to 0, while others are set to a common value −0.5.

D.2 Choosing hyperparameters

As usual, the hyperparameters need to be tuned for each considered set of systems. We therefore chose
the hyperparameters using standard cross-validation techniques. We did not conduct a systematic
sensitivity analysis. In practice, we found that: (a) if the regularization term is too large w.r.t. the
trajectory loss, the model cannot fit the trajectories, and (b) if the regularization term is too small, the
performance is similar to LEADS no min. The candidate hyperparameters are defined on a very sparse
grid, for example, for neural nets, (103, 104, 105, 106) for λ and (10−2, 10−3, 10−4, 10−5) for α.

D.3 Details on the experiments with a varying number of environments

We conducted large-scale experiments respectively for linear ODEs (Sec. 3.2, Fig. 1) and LV (Sec. 4,
Fig. 4) to compare the tendency of LEADS w.r.t. the theoretical bound and the baselines by varying
the number of environments available for the instantiated model.

To guarantee the comparability of the test-time results, we need to use the same test set when varying
the number of environments. We therefore propose to firstly generate a global set of environments,
separate it into subgroups for training, then we test these separately trained models on the global test
set.

We performed the experiments as follows:

• In the training phase, we consider M = 8 environments in total in the environment set
Etotal. We denote here the cardinality of an environment setE by card(E), the environments
are then arranged into b = 1, 2, 4 or 8 disjoint groups of the same size, i.e. {E1, . . . , Eb}
such that

⋃b
i=1Ei = Etotal, card(E1) = · · · = card(Eb) = bM/bc =: m, where m is

the number of environments per group, and Ei ∩ Ej = ∅ whenever i 6= j. For example,
for m = 1, all the original environments are gathered into one global environment, when
for m = 8 we keep all the original environments. The methods are then instantiated
respectively for each Ei. For example, for LEADS with b environment groups, we instantiate
LEADS1, . . . ,LEADSb respectively on E1, . . . , Eb. Other frameworks are applied in the
same way.

10

Table S5: Results on 2 novel environments for LV, GS, and NS at different traning steps with n data
points per env. The arrows indicate that the table cells share the same value.

Dataset Training Schema Test MSE at training step

50 2500 10000

LV (n = 1 ·K)
Pre-trained-f -Only 0.36 −−−−−−−−−−−→
One-Per-Env. from scratch 0.23 8.85e-3 3.05e-3
Pre-trained-f -Plus-Trained-ge 0.73 1.36e-3 1.11e-3

GS (n = 1 ·K)
Pre-trained-f -Only 5.44e-3 −−−−−−−−−−−→
One-Per-Env. from scratch 4.20e-2 5.53e-3 3.05e-3
Pre-trained-f -Plus-Trained-ge 2.29e-3 1.45e-3 1.27e-3

NS (n = 8 ·K)
Pre-trained-f -Only 1.75e-1 −−−−−−−−−−−→
One-Per-Env. from scratch 6.76e-2 1.70e-2 1.18e-2
Pre-trained-f -Plus-Trained-ge 1.37e-2 8.07e-3 7.14e-3

Note that when m = 1, having b = 8 environment groups of one single environment,
One-For-All, One-Per-Env. and LEADS are reduced to One-Per-Env. applied on all M
environments. We can see in Fig. 4 that each group of plots starts from the same point.

• In the test phase, the performance of the model trained with the group Ei is tested with the
test samples of the corresponding group. Then we take the mean error over all b groups to
obtain the results on all M environments. Note that the result at each point in figures 1 and 4
is calculated on the same total test set, which guarantees the comparability between results.

D.4 Additional experimental results

Experiments with a varying number of environments We show in tables S2 and S3 the detailed
results used for the plots in figures 1 and 4, compared to baseline methods.

Learning in novel environments We conducted same experiments as in Sec. 4.3 to learn in unseen
environments for GS and NS datasets. The test MSE at different training steps is shown in Table S5.

Full-length trajectories We provide in figures S1-S4 the full-length sample trajectories for GS
and NS of Fig. 2.

11

(a) One-Per-Env.

(b) FT-NODE

(c) LEADS

(d) Ground truth

Figure S1: Full-length prediction comparison of Fig. 2 for GS. In each figure, from top to bottom, the
trajectory snapshots are output respectively from 3 training environments. The temporal resolution of
each sequence is ∆t = 40.

12

(a) Difference between One-Per-Env. and Ground truth

(b) Difference between FT-NODE and Ground truth

(c) Difference between LEADS and Ground truth

Figure S2: Full-length error maps of Fig. 2 for GS. In each figure, from top to bottom, the trajectory
snapshots correspond to 3 training environments, one per row. The temporal resolution of each
sequence is ∆t = 40.

13

(a) One-Per-Env.

(b) FT-NODE

(c) LEADS

(d) Ground truth

Figure S3: Full-length prediction comparison of Fig. 2 for NS. In each figure, from top to bottom, the
trajectory snapshots correspond to 3 training environments. The temporal resolution of each sequence
is ∆t = 1.

14

(a) Difference between One-Per-Env. and Ground truth

(b) Difference between FT-NODE and Ground truth

(c) Difference between LEADS and Ground truth

Figure S4: Full-length error maps of Fig. 2 for NS. In each figure, from top to bottom, the trajectory
snapshots correspond to from 3 training environments. The temporal resolution of each sequence is
∆t = 1.

15

References
[S1] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural

networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30, pages
6240–6249. Curran Associates, Inc., 2017.

[S2] J. Baxter. A model of inductive bias learning. J. Artif. Int. Res., 12(1):149–198, Mar. 2000.

[S3] L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31, pages 3036–3046. Curran Associates, Inc., 2018.

[S4] D. Haussler. Decision theoretic generalizations of the pac model for neural net and other
learning applications. Information and Computation, 100(1):78 – 150, 1992.

[S5] P. Kidger and T. Lyons. Universal Approximation with Deep Narrow Networks. In J. Abernethy
and S. Agarwal, editors, Proceedings of Thirty Third Conference on Learning Theory, volume
125 of Proceedings of Machine Learning Research, pages 2306–2327. PMLR, 09–12 Jul 2020.

[S6] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Fourier neural operator for parametric partial differential equations. In International
Conference on Learning Representations, 2021.

[S7] S. Shalev-Shwartz and S. Ben-David. Covering Numbers, page 337–340. Cambridge Univer-
sity Press, 2014.

16

