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Abstract

Training automated agents to perform complex behaviors in interactive environ-
ments is challenging: reinforcement learning requires careful hand-engineering
of reward functions, imitation learning requires specialized infrastructure and
access to a human expert, and learning from intermediate forms of supervision
(like binary preferences) is time-consuming and provides minimal information per
human intervention. Can we overcome these challenges by building agents that
learn from rich, interactive feedback? We propose a new supervision paradigm for
interactive learning based on “teachable” decision-making systems, which learn
from structured advice provided by an external teacher. We begin by introducing
a class of human-in-the-loop decision making problems in which different forms
of human provided advice signals are available to the agent to guide learning. We
then describe a simple policy learning algorithm that first learns to interpret advice,
then learns from advice to target tasks in the absence of human supervision. In
puzzle-solving, navigation, and locomotion domains, we show that agents that
learn from advice can acquire new skills with significantly less human supervision
required than standard reinforcement or imitation learning systems.

1 Introduction

Reinforcement learning (RL) provides a promising paradigm for building agents that can learn
complex behaviors from autonomous interaction and minimal human effort. In practice, however,
significant human effort is required to design and compute the reward functions that enable successful
RL [48]: the reward functions underlying some of RL’s most prominent success stories involve
significant domain expertise and elaborate instrumentation of the agent and environment [36, 37,
43, 27, 15]. Even with this complexity, a reward is ultimately no more than a scalar indicator of
how good a particular state is relative to others. Rewards provide limited information about how to
perform tasks, and reward-driven RL agents must perform significant exploration and experimentation
within an environment to learn effectively. A number of alternative paradigms for interactively
learning policies have emerged as alternatives, such as imitation learning [39, 20, 49], dataset
aggregation [42], preference learning [10, 6]. But these existing methods are either impractically low
bandwidth (encoding little information in each human intervention) [25, 29, 10] or require costly data
collection [43, 23]. It has proven challenging to develop training methods that are simultaneously
expressive and efficient enough to rapidly train agents to acquire novel skills.

Human learners, by contrast, leverage numerous, rich forms of supervision: joint attention [33],
physical corrections [5] and natural language instruction [9]. For human teachers, this kind of
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Figure 1:Three phases of teachable reinforcement learning. During thegrounding phase (a), we train an advice-
conditional policyq(ajs; �; c 1) that can interpret a simple form of advicec1 . During theimprovement phase
(b), an external coach uses this policy to bootstrap advice-conditional policies for more complex advice forms,
and ultimately an advice-independent policy� (ajs; � ). During theevaluationphase, the advice-independent
policy � (ajs; � ) is executed to accomplish a task without the need for additional human feedback.

coaching is often no more costly to provide than scalar measures of success, but signi�cantly more
informative for learners. In this way, human learners use high-bandwidth, low-effort communication
as a means to �exibly acquire new concepts or skills [45, 32]. Importantly, the interpretation of some
of these feedback signals (like language), is itself learned, but can bebootstrappedfrom other forms
of communication: for example, the function of gesture and attention can be learned from intrinsic
rewards [38]; these in turn play a key role in language learning [30].

This paper proposes a framework for training automated agents using similarly rich interactive
supervision. For instance, given an agent learning a policy to navigate and manipulate objects in a
simulated multi-room object manipulation problem (in our case, BabyAI framework [8], Fig 3 left),
we enable training the agent interactively using not just reward signals but advice about what actions
to take (“move left”), what waypoints to move towards (“move towards(1; 2)"), and what sub-goals
to accomplish (“pick up the yellow ball"). In doing so, we are able to ground rich channels for human
supervisors to be able to direct and modify agent behavior. To actually accomplish this, we formalize
a novel problem setting and supervision paradigm for interactive learning, Coaching Augmented
Markov Decision Processes (CAMDPs), in which auxiliary human provided advice signals are
available to the agent to guide learning. We then describe an algorithmic framework for learning
in CAMDPs via alternating advicegroundingand advicedistillation. During the grounding phase,
agents learn association between teacher-provided advice and high-value actions in the environment;
during distillation, agents collect trajectories with grounded models and interactive advice, then
transfer information from these trajectories to fully autonomous policies that operate without coaching.
This formulation allows supervisors to guide agent behavior interactively, while enabling agents to
internalize this guidance to continue performing tasks autonomously once the supervisor is no longer
present. Moreover, this procedure can be extended to enablebootstrappingof grounded models that
use increasingly sparse and abstract advice types, leveraging some types of feedback to ground others.
In our experimental evaluation, we show that this procedure can allow for grounding of various
different forms of advice, and this can then be used to guide the learning of new tasks up to 18x more
ef�ciently and with less human effort needed than naïve methods for RL across puzzle-solving [8],
navigation [14], and locomotion domains [8].

In summary, this paper describes: (1) a general framework (CAMDPs) for human-in-the-loop RL with
rich interactive advice; (2) an algorithm for learning in CAMDPs with a single form of advice; (3) an
extension of this algorithm that enables bootstrapped learning of multiple advice types; and �nally
(4) a set of empirical evaluations on discrete and continuous control problems in the BabyAI [8] and
D4RL [14] environments demonstrating that when training on a new task, our method allows agents
to converge to a higher average performance with 18x less supervision than standard RL. In doing
so, we hope to introduce a new framework for human in the loop reinforcement learning that allows
supervisors to use rich forms of communication to guide agent behavior acquisition.

2 Related Work

The learning problem studied in this paper belongs to a more general class of human-in-the-loop RL
problems [1, 25, 29, 46, 12]. Existing frameworks like TAMER [25, 44] and COACH [29, 4] also
use interactive feedback to train policies, but are restricted to scalar or binary rewards. In contrast,
our work formalizes the problem of learning from arbitrarily complex feedback signals. A distinct
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line of work looks to learn how to perform tasks from binary feedback with human preferences,
indicating which of two trajectory snippets a human might prefer [10, 21, 46]. These techniques are
only receiving a single bit of information with every human interaction, which can make the human
supervision process time-consuming and tedious. In contrast, the learning algorithm we describe uses
higher-bandwidth feedback signals like language subgoals or directional nudges, provided sparsely,
to reduce the required effort from a supervisor.

Learning from feedback, especially provided in the form of natural language, is closely related to
the instruction following in natural language processing [7, 3, 31, 40]. In instruction following
problems, the goal is to produce aninstruction-conditionalpolicy that can generalize to new natural
language speci�cations of behavior (at the level of either goals or action sequences [24] and held-out
environments. Here, our goal is to produce anunconditionalpolicy that achieves good task success
autonomously—we use instruction following models to interpret interactive feedback and scaffold
the learning of these autonomous policies. Moreover, the advice provided is not limited to simply
providing instructions on the entire task being completed, but instead allows for more local guidance
of behavior intertwined with agent execution. This provides signi�cantly greater �exibility in altering
agent behavior.

The use of language at training time to scaffold learning has been studied in several more speci�c
settings [28]: Co-Reyes et al.[11] describe a procedure for learning to execute �xed target trajectories
via interactive corrections, Andreas et al.[2] use language to produce policyrepresentationsuseful
for reinforcement learning, while Jiang et al.[22] and Hu et al.[18] use language to guide the learning
of hierarchical policies. Eisenstein et al.[13] and Narasimhan et al.[34] use side information from
language to communicate information about environment dynamics rather than high-value action
sequences. As opposed to these settings, we aim to use interactive human in the loop advice to
learn policies that can autonomously perform novel tasks in complex scenarios, even when a human
supervisor is no longer present. We show how different forms of advice can be grounded interactively
and can furthermore be used to ground more complex feedback forms through additional interaction.

3 Coaching Augmented Markov Decision Processes

To concretize our discussion of how to leverage rich forms of interactive human-in-the-loop supervi-
sion to modify agent behavior, we start by introducing a novel coaching-augmented MDP framework,
which formalizes our approach to human-in-the-loop reinforcement learning with coaching based
advice. CAMDPs build on the framework of multi-task RL and Markov decision processes (MDP),
augmenting them with advice provided by a teacher in the loop through an (arbitrary) channel of
communication. To situate this problem more intuitively, consider the BabyAI navigation and object
repositioning environment depicted in Fig 3 left [8]. Tasks in this environment specify particular
speci�c desired goal states; e.g. “place the yellow ball in the green box and the blue key in the green
box" or “open all doors in the blue room". In multi-task RL, a learner's objective is produce a policy
� (at jst ; � ) that maximizes reward in expectation over tasks� .

More formally, amulti-task MDP is de�ned by a 7-tupleM � (S; A ; T ; R ; � (s0); ; p (� )) . Here,
S denotes the state space,A denotes the action space,p : S � A � S 7! R� 0 denotes the transition
dynamics,r : S � A � � 7! R denotes the reward function,� : S 7! R� 0 denotes the initial state
distribution, 2 [0; 1] denotes the discount factor andp(� ) denotes the distribution over tasks. The
objective in a multi-task MDP is to learn a policy� � that maximizes the expected sum of discounted
returns in expectation over tasks:max� JE (� � ; p(� )) = Ea t � � � ( �j st ;� )

� � p( � )
[
P 1

t =0  t r (st ; at ; � )].

Why might additional supervision beyond the reward signal be useful for solving this optimization
problem? Suppose the BabyAI agent in Fig 3 is in the (low-value) state shown in the �gure, but
could reach a high-value state by going “right and up" towards the blue key. This fact is dif�cult to
communicate through a scalar reward, which cannot convey information about alternative actions. A
side channel for providing this type of rich information at training-time would be greatly bene�cial.

We formalize this as follows: in addition to the standard multi-task MDP formulation, in acoaching-
augmented MDP (CAMDP), training-time information, which we refer to asadvice(or alternatively
coaching), is provided by a teacher in the loop. We denote a teacher byC = fC1; C2; � � � ; Ci g, where
C j are different coaching functions each generating a different form of advice that a teacher could
provide, and a teacher is simply a collection of all these coaching functions. In our empirical
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evaluation we started by using a scripted, programmatic teacher for ease of evaluation but also
considered an evaluation with real human supervisors as well. In every states, the teacher chooses
which coaching functions (if any) to apply, then provides advicecj � C j (s; a) to the agent.1 As
shown in Figure 3, advice can take many forms, for instance action advice (c0), waypoints (c1),
language sub-goals (c2), or any other local information relevant to task completion. Intuitively, the
only real requirement for advice in this framework is that it must be prescriptive on what actions
are high value to perform to make forward progress towards the high level task. Advice may be
provided densely (in every state) or only infrequently.2 Coaching in a CAMDP provides an agent
local guidance on how to proceed towards solving a complex task, which may be hard to infer from a
high level task description only.

As in standard reinforcement learning in an multi-task MDP, the goal in a CAMDP is to learn a policy
� � (� j st ; � ) that chooses an action based on Markovian statest and high level task information�
without interacting withcj . However, we allowlearning algorithmsto use the coaching signalcj to
learn this policy more ef�ciently at training time (although this is unavailable during deployment).
For instance, the BabyAI agent in Fig 3 can leverage hints “go left" or “move towards the blue key"
to guide its exploration process but it eventually must learn how to perform the taskwithout any
coaching required.

Given this framework, the question becomes —how do we actually go about acquiring the coaching
independent, multi-task policy� � (� j st ; � ) by leveraging the human coaching signalcj effectively at
training time. We will attempt to answer these questions in the following section, followed by an
experimental evaluation in Section 5

4 Leveraging Advice via Distillation

We start by formalizing the training setup we use to learn policies in CAMDPs, and then we describe
an algorithm that can ground rich forms of advice and leverage this for solving new tasks.

4.1 Training Setup for Learning in CAMDPs

The challenge of learning in a CAMDP is two fold —�rstly the agent must be able to interpret human
in the loop advice provided via rich communication channels and use this to modify it's own behavior.
This modi�ed behavior must then be retained to perform tasks autonomously even in the absence of
any human supervision. To accomplish this in the framework CAMDPs, we divide the training and
evaluation process of an agent into three different phases: (1) agroundingphase, (2) animprovement
phase and (3) anevaluationphase.

In the grounding phase, agents learnhowto interpret advice. The result of the grounding phase is a
surrogate policyq(at j st ; �; c) that can effectively condition on advice when it is provided in the
training loop. As we will discuss in Section 4.2, this phase can also make use of abootstrapping
process in which more complex forms of feedback are learned using signals from simpler ones. This
learned surrogate policyq(at j st ; �; c) can then be used to interpret rich forms of human in the loop
advice to modify agent behavior, as we will discuss next in the improvement phase.

During the improvement phase, agents use the ability to interpret advice to learn new skills. Speci�-
cally, in an instance of the improvement phase, the learner is presented with a novel task� test that
was not provided during the grounding phase, and must learn to perform this task using only a small
amount of interaction in which advicec is provided by a human supervisor who is present in the
loop. This advice, combined with the learned surrogate policyq(at jst ; �; c), can be used to ef�ciently
acquire an advice-independentpolicy � (at jst ; � ), which can perform tasks without requiring any
coaching.

Finally, in the evaluation phase, agent performance is evaluated on the task� test by executing the
advice-independent, multi-task policy� (at jst ; � test)in the environment.

1When only a single form of advice is available to the agent, we omit the superscript for clarity.
2While design of optimal coaching strategies and explicit modeling of coaches are important research topics

[16], this paper assumes that the coach is �xed and not explicitly modeled.
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4.2 Grounding Phase: Grounding Advice

The goal of the grounding phase is to learn a mapping from advice to contextually appropriate actions,
so that advice can be used for quickly learning new tasks. In this phase, learning algorithms leverage
interaction with the environment using reinforcement learning, using access to a ground truth reward
function r (s; a; � ), as well as the advicec(s; a) to learn a surrogate policyq(ajs; �; c). Note that
the grounding process uses privileged access to the true reward functionr (s; a; � ) to learn policies
q(ajs; �; c) that can interpret advicec(s; a) andr is not available in the improvement phase. The
reward functionr provides signal on how to interpret the advicec(s; a) appropriately.

Grounding can be formulated as an ordinary multitask RL problem over a distribution of training
tasksp(� ), with communicationc provided as context. In order to actually perform the grounding, we
can simply run standard reinforcement learning but using an advice-conditioned policyq� (ajs; �; c)
which has access to the advice signalc(s; a) provided in the loop as context, trained to maximize the
reward functionr (s; a; � ). In the BabyAI environment from Fig 3, this means running RL with a
policy which has access to advice forms like action advice, waypoints, or language sub-goals, and
using the reward feedback to learn how to interpret these forms of advice. During this grounding
process, the agent optimizes the following objective to learn how to interpret advice:

max
�

J (� ) = E � � p( � )
a t � q� (a t j st ;�; c)

"
X

t

r (st ; at ; � )

#

; (1)

The process of grounding is no different than standard multi-task RL, but including the advicec(s; a)
as contextual input. This formulation is simple but powerful since it makes minimal assumptions
about the form of the communication and can be done with any arbitrary form of advicec. Note that
since the purpose of these training environments is purely to ground communication, the tasks the
agent is given during training can be much simpler than those which the agent will see at test time.

While this framework should learn to interpret advice in principle, there are a number of practical
considerations that are important in training the algorithm to generalize appropriately - appropriately
chosen advice representations, regularization with dropout and mutual information based regulariza-
tion. We leave a thorough discussion of these to the supplementary material, instead focusing our
discussion here on the conceptual framework.

Figure 2:Illustration of the procedure of advice distillation in the on-policy and off-policy settings. During
on-policy advice distillation, the advice-conditional surrogate modelq(ajs; �; c ) is coached by the teacher to get
optimal trajectories. These trajectories are then distilled into anunconditionalmodel� (ajs; � ) using supervised
learning. During off-policy distillation, trajectories are collected by the unconditional policy and trajectories
are relabeled with advice after the fact. This same processed can be used to learn to use another advice form
q(ajs; �; c i ) rather than learning an advice-free policy.

Bootstrapping Multi-Level Advice Up until now, our formalism has largely assumed the coach
only provides a single form of advicec. In practice, a coach might �nd it useful to use multiple
forms of advice - for instance high-level language sub-goals for easy stages of the task and low-level
action advice for more challenging parts of the task. While high level advice can be very informative
for guiding the learning of new tasks in the improvement phase, it can often be quite dif�cult to
ground advice forms like language sub-goals by purely doing exploration with RL. Instead of simply
relying on RL to perform grounding directly from rewardsr to advicecj , we can instead bootstrap
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the process of grounding one form of advicech from a policyq(ajs; �; c l ) that is able to interpret a
different form of advicecl . We can use a surrogate policy which already understands (by using the
grounding scheme described above) low-level adviceq(ajs; �; c l ) to bootstrap training of a surrogate
policy which understands higher-level adviceq(ajs; �; ch ) by leveraging a knowledge distillation
process we refer to as “bootstrap distillation". For instance, in the BabyAI domain, the agent can use
its understanding of action advice to then bootstrap its understanding of language sub-goals.

Intuitively, the key idea we leverage is to use a supervisor in the loop to guide an advice-conditional
policy that can interpret a low level form of adviceq� 1 (ajs; �; c l ) to perform a training task, obtain-
ing optimal trajectoriesD = f (s0; a0; cl

0; ch
0 ); (s1; a1; cl

1; ch
1 ) � � � ; (sH ; aH ; cl

H ; ch
H )gN

j =1 and then
distilling this optimal behavior via supervised learning into a policyq� 2 (ajs; �; ch ) that can interpret
higher level advice to perform this new taskwithout requiring the low level advice any longer. More
speci�cally, we make use of an input remapping solution, as seen in Levine et al.[27], where the
policy conditioned on advicecl is used to generate optimal action labels, which are then remapped
to observations with a different form of advicech as input. To bootstrap the understanding of an
abstract form of advicech from a more low level onecl , the agent optimizes the following objective
to bootstrap the agent's understanding of one advice type from another:

D = f (s0; a0; cl
0; ch

0 ); (s1; a1; cl
1; ch

1 ); � � � ; (sH ; aH ; cl
H ; ch

H )gN
j =1

s0 � p(s0); at � q� 1 (at jst ; �; c l ); st +1 � p(st +1 jst ; at )

max
� 2

E(st ;a t ;ch
t ;� ) �D

�
logq� 2 (at jst ; �; c h

t )
�

4.3 Improvement Phase: Learning New Tasks Ef�ciently with Advice

At the end of the grounding phase, we have a well-trained advice-following agentq� (ajs; �; c) that can
interpret various forms of advice. During the improvement phase, the coach introduces the agent to a
new test task� test and provides advice to coach it through solving the new task. Ultimately, we want
to use this advice to train a policy� (ajs; � ) which is able to succeed at performing the new test task
� test, withoutrequiring advice at evaluation time. To achieve this, we can make use of a very similar
idea to the one described above for bootstrap distillation. In the improvement phase, we can leverage
a supervisor in the loop to guide an advice-conditional surrogate policyq� (ajs; �; c) to perform the
new task� test, obtaining optimal trajectoriesD = f s0; a0; c0; s1; a1; c1; � � � ; sH ; aH ; cH gN

j =1 and
then distilling this optimal behavior into an advice-independent policy� � (ajs; � ) via supervised
learning to perform this new taskwithout requiring teacher in the loop advice. In doing this, we are
able to learn a policy that can perform the task autonomously, but has leveraged the human advice
during training as laid out in Section 3. In the BabyAI domain (shown in Fig 3 left), this improvement
process would involve a teacher in the loop providing action advice or language sub-goals to the
agent during learning to coach it towards successfully accomplishing a task, and then distilling this
knowledge into a policy that can operate without seeing action advice or sub-goals at execution time.
More formally, during the improvement phase, the agent is optimizing the following objective:

D = f s0; a0; c0; s1; a1; c1; � � � ; sH ; aH ; cH gN
j =1

s0 � p(s0); at � q� (at jst ; �; c t ); st +1 � p(st +1 jst ; at )
max

�
E(st ;a t ;i ) �D [log � � (at jst ; � )]

This improvement process, that we call advice distillation, can easily be understand in Fig 2. This
distillation process is preferable over directly providing demonstrations because the advice provided
can be more convenient than providing an entire demonstration (for instance, compare the dif�culty
of producing a demo by navigating an agent through an entire maze to providing a few waypoints).
Interestingly, even if the new tasks being solved� test are quite different from the training distribution
of tasksp(� ), since advicec (for instance waypoints) is provided locally and is largely invariant to
this distribution shift, the agent's understanding of advice generalizes well.

4.4 Evaluation Phase: Executing tasks Without a Supervisor

In the evaluation phase, the agent simply needs to be able to perform the test tasks� test without
actually requiring a supervisor in the loop. The agent's performance can be evaluated via expected
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return obtained by the advice-independent agent learned in the improvement phase,� (ajs; � ) on the
test task� test according toJE (� � ; p(� )) = E � � p( � )

a t � � ( �j st ;� )
[
P 1

t =0  t r (st ; at ; � )]

5 Experimental Evaluation

We aim to answer the following questions through our experimental evaluation (1) Can advice
be grounded through interaction with the environment via supervisor in the loop RL? (2) Can
grounded advice allow agents to learn new tasks more ef�ciently than standard RL? (3) Can agents
bootstrap the grounding of one form of advice from another? Further details can be found at
https://sites.google.com/view/bootstrappedcoach/home

Figure 3:Evaluation Domains. (Left) BabyAI (Middle) Point Maze Navigation (Right) Ant Navigation. Each
domain can have multiple different tasks to train and evaluate on. The associated task instructions are shown, as
well as the types of advice available.

Evaluation Domains We evaluate on three different domains.

BabyAI: In the open-source BabyAI Chevalier-Boisvert et al. [8] gridworld environment, an agent
is given tasks involving navigation, pick and place, door-opening and multi-step manipulation. We
provide three types of advice:

1. Action Advice: the coach tells the agent the next action to take
2. OffsetWaypoint Advice: the coach gives the agent a tuple (x, y, b), where (x, y) is a

coordinate it should visit, represented as an offset from the agent's current position, and b is
a boolean telling the agent whether to interact with an object there.

3. Subgoal Advice:The coach gives semantic subgoals, such as “Open the blue door."

2-D Maze Navigation (PM): In the 2D navigation environment, the goal is to reach a randomly
positioned target within a procedurally generated maze. We provide the agent different types of
advice:

1. Direction Advice: The vector direction the agent should head in.
2. Cardinal Advice: Which of the cardinal directions (N, S, E, W) the agent should head in.
3. Waypoint Advice: The (x,y) position of a coordinate along the agent's route.
4. OffsetWaypoint Advice: The (x,y) difference between a waypoint along the agent's route

and the agent's current position.

Ant-Maze Navigation (Ant): The open-source ant-maze navigation domain [14] replaces the simple
point mass agent with a quadrupedal “ant” robot. The forms of advice are the same as the ones
described above for the point navigation domain.

While this feedback could be provided by a human in all of these domains, in most of our experiments
we use a scripted teacher in order to run experiments more ef�ciently.
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5.1 Experimental Setup

For the environments listed above, we evaluate the ability of the agent to perform grounding ef�ciently
on a set of training tasks, to learn new test tasks quickly via advice distillation and to leverage one
form of advice to bootstrap another. The details of the exact set of training and testing tasks, as well
as architecture and algorithmic details, are provided in the Appendix.

We evaluate all the environments in terms of the metric ofadvice ef�ciency rather than sample
ef�ciency. By advice ef�ciency, we are evaluating the number of instances of teacher in the loop
feedback that are needed in order to learn a task. In real-world learning tasks, this teacher is typically
a human, and the cost of training largely comes from the provision of supervision (rather than time the
agent spends interacting with the environment). This metric more accurately re�ects the true quantity
we would like to measure: the amount of human time and effort needed to provide a particular course
of coaching. For simplicity, we consider every time a supervisor provides any supervision, such as a
piece of advice or a scalar reward, to constitute oneadvice unit and we measure ef�ciency in terms
of how many advice units are needed to learn a task. This simpli�cation is de�nitely not true for
all forms of advice, but it is challenging to design a metric which accurately captures human effort
without requiring human effort each time. To validate that this advice metric seems reasonable, we
perform some experiments with real humans in Section 5.5 and observe similar results. We also
include plots indicating traditional sample ef�ciency in Appendix D.

We compare our proposed framework to an RL baseline that is provided with a task instruction but
no advice. In the improvement phase, we also compare with behavioral cloning from an expert for
environments where it is feasible to construct an oracle. In Appendix J we compare against alternate
baseline approaches for incorporating advice.

5.2 Grounding Prescriptive Advice during Training

Figure 4:Performance of grounding phase as described in Section 4.2 across three domains - (left) Point Mass
(PM) navigation (center) ant navigation (right two) BabyAI. All curves are trained with RL using a shaped reward
on a procedurally generated set of environments. We compare the performance of an agent which conditions
on high-level hints (runs in shades of blue) to one with access to low-level advice (red) to an advice-free RL
baseline (gray). In most cases, providing advice speeds up learning. However, there are a few abstract advice
types where RL training is slow or converges to a sub-optimal policy without bootstrapping (shown in Figure 5).

Fig 4 shows the results of the Grounding Phase, where the agent grounds advice by training an
advice-conditional policy through RL. We observe the the agent learns the task more quickly when
provided with advice, indicating that the agent is learning to interpret advice to complete tasks.
However, we also see that the agent fails to improve much when conditioning on some more abstract
forms of advice, such as Waypoint Advice in the ant environment. This indicates that the coaching
form has not been grounded properly through RL. In cases like this, we instead must instead ground
these advice forms through bootstrapping, as discussed in Section 4.2.

5.3 Bootstrapping Multi-Level Feedback

Once we successfully grounded the easiest form of advice, in each environment, we ef�ciently
grounded the other forms using the bootstrapping procedure from Section 4.2. As we see in Fig 5,
bootstrap distillation is able to ground new forms of advice signi�cantly more ef�ciently than if we
start grounding things from scratch with naïve RL. It performs exceptionally well even for advice
forms where naïve RL does not succeed at all, while providing additional speed up for environments
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Figure 5:Performance of bootstrapping distillation procedure described in Section 4.2. Bootstrapping is able to
quickly and effectively use existing grounded forms of advice (OffsetWaypoint for point navigation and Ant
envs, ActionAdvice for BabyAI) to ground additional forms of advice which are harder to learn. We see that
learning a new advice form through distillation is more ef�cient.

where it does. This suggests that advice is not just a tool to solve new tasks, but also a tool for
grounding more complex forms of communication for the agent.

5.4 Learning New Tasks with Grounded Prescriptive Advice

Figure 6: Learning new tasks through distillation. The agent uses an already-grounded advice channel to
perform the distillation process from Section 4.3 to train an advice-free agent. Plots show the success rate of the
advice-free new agent. We show that training through distillation is more advice ef�cient than training with RL,
and comparably or more ef�cient than training with behavioral cloning. In general, more abstract advice forms
(in blue) are more advice-ef�cient than than lower-level advice (in red), with occasional exceptions (far right).
In the third panel note that the red ActionAdvice curve is directly below the black BC curve.

Finally, we evaluate whether we can use our grounded advice forms to guide the agent through new
tasks. As we can see in Fig 6, agents which are trained through distillation from an abstract teacher
on average train with less supervision than RL agents while simultaneously achieving an higher
asymptotic performance. Providing high-level advice can even sometimes outperform providing
demonstrations, as the high-level advice allows the human to coach the agent through a successful
demostration without needing to provide an action at each timestep.

Advice grounding on the new tasks is not always perfect, however. In the rightmost panel in Figure 6,
occasional errors in the advice-conditional policy's interpretation of high-advice result in it actually
being more ef�cient to provide low-level advice than high-level advice (though both are more ef�cient
than RL). While our scripted teacher cannot address this, a real human could dynamically switch
between advice forms, as we see in our real human experiments in Section 5.5.

It's important to note here that in domains like the Ant, where standard RL fails on harder tasks (seen
in Fig 4.3), and demonstrations can be dif�cult to provide, grounded advice provides a practical
means of teaching the agent complex tasks. Interestingly, we see that as the feedback forms get more
abstract, the ef�ciency of the agents' learning process gets better. This suggests that higher bandwidth,
lower effort communication (like subgoals/waypoints) can often be extremely effective. Furthermore,

9



the same advice-conditional policies can be used to distill a policy in each new environment, so the
up-front cost of grounding advice gets amortized over a large set of downstream tasks.

One limitation of the improvement phase as described is that the human teacher has to be continuously
present as the agent is training to provide advice on every trajectory. In Appendix K we relax this by
allowing the teacher to provide off-policy advice.

5.5 Real Human Experiments

To see whether our “advice unit” metric is a good proxy for human effort, we recruited people
to coach agents. Advice-conditional surrogate policies were pre-trained to follow advice using a
scripted teacher. Humans (authors and lab-mates) then coached these agents through solving new,
more complex test environments. Afterwards, we distilled an advice-free policy from the successful
trajectories. Humans provided advice through a click- and type-interface. (For instance, they could
click on the screen to provide a waypoint or press a key telling the agent to drop an object.) See Fig 7.

In the BabyAI environment, we compared against a behavioral cloning baseline where the human
provided per-timestep demonstrations using arrow keys. In both conditions, humans were limited to
20 mins of supervision time. Results in both conditions were high-variance, but our method shows
moderate improvements. Teachers were allowed to use multiple advice forms (higher-level clicked
subgoals or lower-level per-timestep actions). Anecdotally, we observed that teachers were surprised
and confused when the agent failed to follow advice correctly, but they rapidly identi�ed situations
where an agent's understanding of high-level advice was imperfect and temporarily switched to
providing better-grounded low-level advice in those states.

In the Ant environment, demonstrations aren't possible, and the agent does not explore well enough
to learn from sparse rewards. We compare against the performance of an agent coached by a scripted
teacher providing dense, shaped rewards. We see that the agent trained with 30 minutes of coaching
by humans outperforms an RL agent trained with 2500 times more advice units.

6 Discussion

Figure 7: Top: the agent's task is to open a locked
door, which involves �rst picking up a matching key.
The agent has never seen a locked door during training.
Bottom: this maze is larger than those seen in training.

Summary: In this work, we introduced a new
paradigm for teacher in the loop RL, which we
refer to as coaching augmented MDPs. We show
that CAMPDs cover a wide range of realistic sce-
narios and introduce a novel framework to learn
how to interpret and utilize advice in CAMDPs.
We show that doing so has the dual bene�ts of
being able to learn new tasks more ef�ciently in
terms of human effortand being able to boot-
strap one form of advice off of another for more
ef�cient grounding.

Limitations: One limitation of our method is
that it relies on accurate grounding of advice,
which does not always happen in the presence
of other correlated environment features (e.g. the advice to “open the door,” and the presence of a
door in front of the agent). The approaches to address this discussed in Appendix B mitigate but do
not fully solve this problem. Another option for addressing this problem is to mix and match advice
forms, like we did in our human experiments.

Societal impacts: As human in the loop systems such as the one described here are scaled up
to real homes, privacy becomes a major concern. If we have learning systems operating around
humans, sharing data and incorporating human feedback into their learning processes, they need to be
careful about not divulging private information. Moreover, human in the loop systems are constantly
operating around humans and need to be especially safe.

Acknowledgments:Thanks to experiment volunteers Yuqing Du, Kimin Lee, Anika Ramachandran,
Philippe Hansen-Estruch, Alejandro Escontrela, and Michael Chang. Funding by NSF GRFP and
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately re�ect the paper's
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6

13



(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] This work does not actually use human subjects, and is largely done in
simulation. But we have included a discussion in Section 6

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] Math is used
as a theory/formalism, but we don't make any provable claims about it.

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Appendix
A for link to URL and run instructions in the README in the github repo.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix A.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All plots were created with 3 random seeds with std error
bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Envs we used are
cited in section 5

(b) Did you mention the license of the assets? [Yes] This is in Appendix B
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We published the code and included all environments and assets as a part of this
(d) Did you discuss whether and how consent was obtained from people whose data you're

using/curating? [Yes] We used three open source domains and collected our own data
on these domains.

(e) Did you discuss whether the data you are using/curating contains personally identi�able
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Environments

In all environments, at each timestep the agent receives the last unit of advice which the coach
provided.

A.1 D4RL PointMass

This environment is a modi�ed version of the environment found in the D4rl benchmark [14]. The
agent 's state space consists of its own position and velocity, the target position, and a representation
of the maze con�guration.

The scripted coach is derived from the waypoint controller provided with the D4rl codebase. The
waypoint controller �nds a sequence of waypoints tracing the shortest path to the goal and computes
the optimal direction the agent should head next, taking into account the next waypoint and the
agent's current velocity. From this waypoint controller, we compute four advice types:

1. Direction - Optimal x-y direction to head in according to the waypoint controller.
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2. Cardinal - One-hot encoding of whichever cardinal direction (N, S, E, W) has the greatest
vector dot product with the optimal direction.

3. Waypoint - X-Y position of the next waypoint according to the waypoint controller.

4. OffsetWaypoint - Difference between the x-y position of the next waypoint according to the
waypoint controller and the agent's current position.

Modi�cations from the original environment include:

1. Each reset, randomize the position of the agent's position and the goal. During training (but
not test time) we also randomize maze wall con�gurations.

2. Modify the observation space to consist of the agent's position and velocity, the goal position,
and a symbolic representation of the agent's grid. The grid is �attened and concatenated
with the rest of the observation.

3. Custom semi-sparse reward provided to the agent every time it achieves an additional
waypoint on the optimal path to goal.

4. Frame skip of 2.

Figure 8:Example of advice offered during a trajectory in the PointMass domain with OffsetWaypoint hints.

Figure 9:Left: The PointMass grounding environment consists of randomized grids of this size. Right: test
environments used in the improvement phase. Results for the 2nd improvement env are reported in Figure 6, and
all other improvement envs are reported in Figure 20. Tasks involve navigating to a particular position in the
maze.

A.2 Ant

This environment is a modi�ed version of the environment found in the D4rl benchmark [14]. The
agent 's state space consists of the position and velocity of each of its joints, the target position,
and a representation of the maze con�guration. The advice forms used are identical to those in the
PointMass environment. Modi�cations include:

1. Change the gear ratio of the ant's legs to 30.

2. Modify the observation space to consist of the agent's position, goal position, the positions
and velocities of each joint, and a symbolic representation of the agent's grid.
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