Appendix

The content of appendix is organized as follows:

- Appendix A provides more details about the generation process of filter bank.
- Appendix B shows the Pytorch-style code of our proposed ARM.
- Appendix C conducts evaluations on downstream tasks including object detection and semantic segmentation. We also include more details about the robustness towards corruptions.

A Details about the generation process of filter bank

In this section, we provide more details about how we generate the filter bank. The filter bank consists of Gaussian and Difference of Gaussians (DoG) filters. As mentioned, the Gaussian filters are designed for its widely-adopted ability in anti-aliasing [1, 2] and image enhancement [3], while Difference of Gaussians can boost the power of edge-aware operations [4].

In generating filters, the weights of each $k \times k$ kernel inside the filter bank are defined according to the function below:

$$k(x - x_0; \Sigma) = \frac{1}{2\pi|\Sigma|^{1/2}} e^{-\frac{1}{2}(x-x_0)^T\Sigma^{-1}(x-x_0)^T}$$

In particular, the weights are generated based on the covariance matrix Σ which can be decomposed into the equation:

$$\Sigma = \gamma^2 U_{\theta} \Lambda U_{\theta}^T,$$

where the rotation, scaling, and elongation (ellipticalness) parameters are represented by $\theta, \gamma, \sigma_1, \sigma_2$, respectively. During each run, we sample these parameters in intervals stochastically. After generating the covariance matrix Σ for each Gaussian filters, we also sample groups of i, j to generate the weights of DoG filters by subtracting the derived Gaussian kernels i and j.

During our implementations, we find that the results are robust towards different parameters. One major reason is that the filter bank is redundant and contains enough representation power. When sampled with different random seeds, the estimator is capable of generating abundant kernels. However, we also observe the oscillations of accuracy (about 0.5% Top-1 accuracy variance in 10 runs) when the small portion of DoG filters are removed. Consequently, we conjecture that these edge-preserving DoG kernels also stabilize the optimization process.

B Pytorch-style Pesudocode of Aliasing Reduction Module

```
Algorithm 1 Pytorch-style Pesudocode of ARM for ViT/DeiT

# Inside the transformer block:
# B: batch size, N: token sizes , C: channel number.
# H' and W': the original spatial sizes of flattened attention maps.
# self.ARM: the proposed Aliasing Reduction Module.
# Fold the attention back to spatial

attention = self.attn(self.norm1(x)) # B, N, C
attention = attention.permute(0,2,1).view(B,C,H',W') # B, C, H', W'
attention = self.ARM(attention)
x = x + self.drop_path(attention.permute(0,2,3,1).view(B, N, C))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
```
To better illustrate our simple yet effective design, we also pseudo-codes in Pytorch-style. We provide both examples for two popular vision transformer structures: ViT[5] (DeiT [6]) and Swin Transformer [7]2, in Algorithm 1 and Algorithm 2.

The proposed ARM is versatile with most vision transformer families, by directly anti-aliasing the self-attention representations in the transformer blocks. As discussed in Section 3.2, the ARM operator can be chosen flexibly among a traditional low-pass filter, e.g. Gaussian filter, a learnable convolutional filter, or a pre-defined filter bank. Any mentioned choice could consistently bring some improvements to the switchable baselines.

Algorithm 2 Pytorch-style Pesudo-code of ARM for Swin Transformer

```python
# Inside the Swin Transformer Block:
# B: batch size, nW: number of windows, C: channel number, H, W: the original size.
# window_size, window_reverse: the size of each window, and the function to reverse windows back.
# self.ARM: the proposed Aliasing Reduction Module.

#### Compute window attention and merge the windows
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)

#### Perform anti-aliasing
shifted_x = self.ARM(window_reverse(attn_windows, self.window_size, H, W)) # B H W C

#### Reverse cyclic shift (Omitted in pseudo-code)
x = roll(shifted_x)
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
```

C Downstream Task Evaluations

To better demonstrate the effectiveness of the proposed method, we further conduct evaluations on downstream tasks including object detection and semantic segmentation. We choose a strong architecture Swin Transformer [7] as our baseline.

Object Detection. We perform object detection experiments on COCO 2017 [8] dataset, which contains 118K images for training, 5K images for validation, and 20K images for test-dev. We consider two widely-adopted object detection frameworks including Mask R-CNN [9] and Cascade Mask R-CNN [10] in mmdetecion [11]. Following [7], we keep the consistent settings including multi-scale training, AdamW optimizer (with an initial learning rate of 0.0001, weight decay of 0.05, and batch size of 16). We adopt both 1x (12 epochs) and 3x (36 epochs) schedule and similar hyperparameter settings from the open-source implementation3.

<table>
<thead>
<tr>
<th>Method</th>
<th>Backbone</th>
<th>Pre-trained</th>
<th>LR Schedule</th>
<th>Box mAP</th>
<th>Mask mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mask R-CNN [9]</td>
<td>Swin-T</td>
<td>ImageNet-1k</td>
<td>1x</td>
<td>43.7</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>Swin-T w ARM</td>
<td>ImageNet-1k</td>
<td>1x</td>
<td>44.8</td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td>Swin-T</td>
<td>ImageNet-1k</td>
<td>3x</td>
<td>46.0</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td>Swin-T w ARM</td>
<td>ImageNet-1k</td>
<td>3x</td>
<td>46.7</td>
<td>42.1</td>
</tr>
<tr>
<td>Cascade Mask R-CNN [10]</td>
<td>Swin-T</td>
<td>ImageNet-1k</td>
<td>1x</td>
<td>48.1</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td>Swin-T w ARM</td>
<td>ImageNet-1k</td>
<td>1x</td>
<td>48.9</td>
<td>42.3</td>
</tr>
</tbody>
</table>

Table 1: Results on COCO object detection and instance segmentation. The baseline architecture follows Swin-T. The models integrated with our proposed ARM are shown in bold font.

From Table 1, the proposed ARM enhances both baselines consistently in 1x and 3x schedule without bells and whistles. The results verify the effectiveness of ARM on downstream tasks.

Semantic Segmentation. We also evaluate our method on semantic segmentation, utilizing the widely-used ADE20K [12] dataset. ADE20K covers 150 semantic classes, with 20K images for training, 2K images for testing, and 3K for testing. Following [7], UperNet [13] structure in mmsegmentation [14] is used. For training, the AdamW optimizer with an initial learning rate of 6 × 10⁻⁵ and a weight decay of 0.01 is employed. The models are trained for 160K iterations on 8 Tesla V100 GPUs. We also adopt the consistent data augmentations in mmsegmentation.

1https://github.com/facebookresearch/deit
2https://github.com/microsoft/Swin-Transformer
3https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
implementation. During inference, a multi-scale testing strategy exploits \([0.5, 0.75, 1.0, 1.25, 1.5, 1.75]\) resolutions are exploited. We report mIoU on the validation set in Table 2.

<table>
<thead>
<tr>
<th>Method</th>
<th>Backbone</th>
<th>Crop Size</th>
<th>LR Schedule</th>
<th>mIoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>UperNet</td>
<td>DeiT-S</td>
<td>512</td>
<td>160K</td>
<td>44.0</td>
</tr>
<tr>
<td>UperNet</td>
<td>Swin-T</td>
<td>512</td>
<td>160K</td>
<td>45.8</td>
</tr>
<tr>
<td></td>
<td>Swin-T w ARM</td>
<td>512</td>
<td>160K</td>
<td>46.9</td>
</tr>
</tbody>
</table>

Table 2: Results of semantic segmentation on ADE20K dataset. The models integrated with our proposed ARM are shown in bold font.

Generalization towards Common Corruptions. We provide detailed error rates towards different types of common corruptions on ImageNet-C. As mentioned above, transformers have demonstrated dominance against corruptions compared to CNNs. Likes anti-aliasing the CNNs in [1], anti-aliasing in vision transformers also upgrades the feature robustness. Moreover, we can find that while Swin-T has a overall lower error rate compared to anti-aliased ResNet-50, it acts poorly when dealing with certain corruptions such as JPEG-compression and pixelate. When integrated with our aliasing reduction module, the model gains a clear boost in robustness, particularly towards those corruptions that are not handled well by the original transformer architecture.

<table>
<thead>
<tr>
<th>Noise</th>
<th>Blur</th>
<th>Weather</th>
<th>Digital</th>
<th>norm</th>
<th>mCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gauss</td>
<td>66.25</td>
<td>53.58</td>
<td>64.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Shot</td>
<td>63.86</td>
<td>54.03</td>
<td>63.86</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Inpulse</td>
<td>68.31</td>
<td>54.12</td>
<td>65.07</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>DeFocus</td>
<td>69.15</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Glass</td>
<td>58.36</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Motion</td>
<td>60.29</td>
<td>54.03</td>
<td>65.07</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Zoom</td>
<td>54.40</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Frost</td>
<td>31.48</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Snow</td>
<td>55.26</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Fog</td>
<td>53.89</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Bright</td>
<td>43.62</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Contrast</td>
<td>73.73</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Elastic</td>
<td>61.52</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Pixel</td>
<td>59.8</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
<tr>
<td>Jpeg</td>
<td>77.12</td>
<td>53.58</td>
<td>66.25</td>
<td>45.15</td>
<td>70.44</td>
</tr>
</tbody>
</table>

Table 3: Generalization towards corruptions. The error rates (lower is better) on ImageNet-C. In the first row we provide ResNet-50 with anti-aliasing in [1]. The next two rows respectively show the Swin-T’s performance, and the Swin-T with our ARM module.

D License of Dataset

Datasets. We use four datasets including ImageNet, ImageNet-C, MS COCO, and ADE 20K.

ImageNet 4: BSD 3-Clause License.

ImageNet-C 5: Apache-2.0 License

MS COCO 6: Creative Commons Attribution 4.0 License

ADE20K 7: Creative Commons BSD-3 License

References

4https://www.image-net.org/
5https://github.com/hendrycks/robustness
6https://cocodataset.org/
7https://groups.csail.mit.edu/vision/datasets/ADE20K/

Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes]
 (c) Did you discuss any potential negative societal impacts of your work? [Yes] Beyond the issue of interpretability in Section ??, another negative societal impact might arise if our method is applied to transformer-based image generation, potentially introducing more concerns about deepfakes.
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [N/A]
 (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] See Section ??, ?? and ??.
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [No] Most of our experiments are on large-scale datasets like ImageNet, which we found are not sensitive towards random seeds. It’s also computational infeasible to run multiple times of the large experiments.
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See Section ??

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes]
 (b) Did you mention the license of the assets? [Yes] See Appendix
 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes] See Appendix
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [Yes]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]