Supplementary to “Instance-dependent Label-noise Learning under a Structural Causal Model”

Yu Yao1 Tongliang Liu1† Mingming Gong2 Bo Han3 Gang Niu4 Kun Zhang5
1TML Lab, University of Sydney; 2University of Melbourne; 3Hong Kong Baptist University; 4RIKEN AIP; 5Carnegie Mellon University

Appendix

Appendix A: Derivation Details of evidence lower-bound (ELBO)

In this section, we show the derivation details of ELBO\((x, \hat{y})\).

Recall that the causal decomposition of the instance-dependent label noise is

\[
\]

Our encoders model following distributions

\[
q_\phi(Z, Y|X) = q_{\phi_2}(Z|Y, X)q_{\phi_1}(Y|X),
\]

and decoders model the following distributions

\[
p_\theta(X, \hat{Y}|Y, Z) = p_{\theta_1}(X|Y, Z)p_{\theta_2}(\hat{Y}|Y, X).
\]

Now, we start with maximizing the log-likelihood \(p_\theta(x, \hat{y})\) of each datapoint \((x, \hat{y})\).

\[
\log p_\theta(x, \hat{y}) = \log \int_z \int_y p_\theta(x, \hat{y}, z, y) dy dz
\]

\[
= \log \int_z \int_y p_\theta(x, \hat{y}, z, y) \frac{q_\phi(z, y|x)}{q_\phi(z, y|x)} dy dz
\]

\[
= \log \mathbb{E}_{(z, y) \sim q_\phi(Z, Y|x)} \left[\frac{p_\theta(x, \hat{y}, z, y)}{q_\phi(z, y|x)} \right]
\]

\[
\geq \mathbb{E}_{(z, y) \sim q_\phi(Z, Y|x)} \left[\log \frac{p_\theta(x, \hat{y}, z, y)}{q_\phi(z, y|x)} \right]:= \text{ELBO}(x, \hat{y})
\]

\[
= \mathbb{E}_{(z, y) \sim q_\phi(Z, Y|x)} \left[\log \frac{p(z)p(y)p_{\theta_1}(x|y,z)p_{\theta_2}(\hat{y}|y,x)}{q_\phi(z, y|x)} \right]
\]

\[
= \mathbb{E}_{(z, y) \sim q_\phi(Z, Y|x)} \left[\log \frac{p(z)p(y)}{q_{\phi_2}(z|y,x)q_{\phi_1}(y|x)} \right] + \mathbb{E}_{(z, y) \sim q_\phi(Z, Y|x)} \left[\log (p_{\theta_2}(\hat{y}|y,x)) \right]
\]

\[
\geq \mathbb{E}_{(z, y) \sim q_\phi(Z, Y|x)} \left[\log \left(\frac{p(z)p(y)}{q_{\phi_2}(z|y,x)q_{\phi_1}(y|x)} \right) \right]
\]

The ELBO\((x, \hat{y})\) above can be further simplified. Specifically,

\[
\mathbb{E}_{(z, y) \sim q_\phi(Z, Y|x)} \left[\log (p_{\theta_2}(\hat{y}|y,x)) \right] = \mathbb{E}_{y \sim q_{\phi_2}(Y|\hat{y})} \mathbb{E}_{z \sim q_{\phi_2}(Z|y,x)} \left[\log (p_{\theta_2}(\hat{y}|y,x)) \right]
\]

\[
= \mathbb{E}_{y \sim q_{\phi_2}(Y|\hat{y})} \left[\log (p_{\theta_2}(\hat{y}|y,x)) \right], \quad (2)
\]

†Correspondence to Tongliang Liu (tongliang.liu@sydney.edu.au).

and similarly,
\[
\mathbb{E}_{(z,y) \sim q_\phi(Z,Y|x)} \left[\log \left(\frac{p(z)p(y)}{q_{\phi_2}(z|y,x)q_{\phi_1}(y|x)} \right) \right] \\
= \mathbb{E}_{y \sim q_{\phi_1}(Y|x)} \mathbb{E}_{z \sim q_{\phi_2}(Z|y,x)} \left[\log \left(\frac{p(z)p(y)}{q_{\phi_2}(z|y,x)q_{\phi_1}(y|x)} \right) \right] \\
= \mathbb{E}_{y \sim q_{\phi_1}(Y|x)} \mathbb{E}_{z \sim q_{\phi_2}(Z|y,x)} \left[\log \left(\frac{p(z)}{q_{\phi_2}(z|y,x)} \right) \right]
\]
\[
= \mathbb{E}_{y \sim q_{\phi_1}(Y|x)} \left[\log \left(\frac{p(y)}{q_{\phi_1}(y|x)} \right) \right] + \mathbb{E}_{y \sim q_{\phi_1}(Y|x)} \mathbb{E}_{z \sim q_{\phi_2}(Z|y,x)} \left[\log \left(\frac{p(z)}{q_{\phi_2}(z|y,x)} \right) \right]
\]
\[
= \mathbb{E}_{y \sim q_{\phi_1}(Y|x)} \left[\log \left(\frac{p(y)}{q_{\phi_1}(y|x)} \right) \right] + \mathbb{E}_{y \sim q_{\phi_1}(Y|x)} \left[k\ell(q_{\phi_2}(Z|y,x)\|p(Z)) \right],
\]
(3)

By combining Eq. 1, Eq. 2 and Eq. 3, we get
\[
\hat{\text{ELBO}}(x, \hat{y}) = \mathbb{E}_{(z,y) \sim q_\phi(Z,Y|x)} \left[\log p_\theta_1(x|y,z) \right] + \mathbb{E}_{y \sim q_{\phi_1}(Y|x)} \left[\log p_\theta_2(\hat{y}|y,x) \right] \\
- k\ell(q_{\phi_1}(Y|x)\|p(Y)) + \mathbb{E}_{y \sim q_{\phi_1}(Y|x)} \left[k\ell(q_{\phi_2}(Z|y,x)\|p(Z)) \right],
\]
which is the ELBO in our main paper.

Appendix B: Loss Functions

In this section, we provide the empirical solution of the ELBO and co-teaching loss. Remind that our encoder networks and decoder networks in the the first branch are defined as follows
\[
Y_1 = \hat{q}_{\phi_1}(X), \quad Z_1 \sim \hat{q}_{\phi_2}(X, Y_1), \quad X_1 = \hat{p}_{\theta_1}(Y_1, Z_1), \quad \hat{Y}_1 = \hat{p}_{\theta_2}(X_1, Y_1).
\]

Let S be the noisy training set, and d^2 be the dimension of an instance x. Let y_1 and z_1 be the estimated clean label and latent representation for the instance x, respectively, by the first branch. As mentioned in our main paper (see Section 3.2), the negative ELBO loss is to minimize 1), a reconstruction loss between each instance x and $\hat{p}_{\theta_1}(x, y_1)$; 2) a cross-entropy loss between noisy labels $\hat{p}_{\theta_2}(x, y_1)$ and \hat{y}_1; 3) a cross-entropy loss between $\hat{q}_{\phi_2}(x, y_1)$ and uniform distribution $P(Y)$; 4) a cross-entropy loss between $\hat{q}_{\phi_2}(x, y_1)$ and Gaussian distribution $P(Z)$. Specifically, the empirical version of the ELBO for the first branch is as follows.
\[
\sum_{(x, \hat{y}) \in S} \hat{\text{ELBO}}^1(x, \hat{y}) = \sum_{(x, \hat{y}) \in S} \left[\beta_0 \frac{1}{d^2} \| x - \hat{p}_{\theta_1}(y_1, z_1) \|_1 - \beta_1 \hat{y} \log \hat{p}_{\theta_2}(x_1, y_1) \\
+ \beta_2 \hat{q}_{\phi_1}(x) \log \hat{q}_{\phi_1} + \beta_3 \sum_{j=1}^J (1 + \log((\sigma_j)^2) - (\mu_j)^2 - (\sigma_j)^2) \right].
\]

The hyper-parameter β_0 and β_1 are set to 0.1, and β_2 and β_3 are set to 1 to 5 because encouraging the distribution to be uniform on a small mini-batch (i.e., 128) could have a large estimation error. The hyper-parameter β_3 are set to 0.01. The empirical version of the ELBO for the second branch shares the same settings as the first branch.

For co-teaching loss, we directly follow Han et al. [1]. Intuitively, in each mini-batch data, both encoders $\hat{q}_{\phi_1}(X)$ and $\hat{q}_{\phi_2}(X)$ select their small-loss instances as the useful knowledge and exchange the knowledge to each other by a cross-entropy loss. The number of the small-loss instances used for training decays with respect to the training epoch. The experimental settings for co-teaching loss are the same as the settings in the original paper [1].

Appendix C: More Experimental Settings

In this section, we summarize the network structures for different datasets. The network structure for modeling $q_{\phi_1}(Y|X)$ and the dimension of the latent representation Z has been discussed in our main paper. For the optimization method, we use Adam with the default learning rate $1e-3$ in Pytorch. The source code has been included in our supplementary material.
For FashionMNIST [3], SVHN [2], CIFAR10 and CIFAR100, we use the same number of hidden layers and feature maps. Specifically, 1). we model $q_{\phi_2}(Z|Y,X)$ and $p_{\theta_2}(\tilde{Y}|Y,X)$ by two 4-hidden-layer convolutional networks, and the corresponding feature maps are 32, 64, 128 and 256; 2). we model $p_{\theta_1}(X|Y,Z)$ by a 4-hidden-layer transposed-convolutional network, and the corresponding feature maps are 256, 128, 64 and 32. We ran 150 epochs for each experiment on these datasets.

For Clothing1M [4], 1). we model $q_{\phi_2}(Z|Y,X)$ and $p_{\theta_2}(\tilde{Y}|Y,X)$ by two 5-hidden-layer convolutional networks, and the corresponding feature maps are 32, 64, 128, 256, 512; 2). we model $p_{\theta_1}(X|Y,Z)$ by a 5-hidden-layer transposed-convolutional network, and the corresponding feature maps are 512, 256, 128, 64 and 32. We ran 40 epochs on Clothing1M.

References

