
A Critical Look at the Consistency of Causal
Estimation with Deep Latent Variable Models

Severi Rissanen
Department of Computer Science

Aalto University
Espoo, Finland

severi.rissanen@aalto.fi

Pekka Marttinen
Department of Computer Science

Aalto University
Espoo, Finland

pekka.marttinen@aalto.fi

Abstract

Using deep latent variable models in causal inference has attracted considerable
interest recently, but an essential open question is their ability to yield consistent
causal estimates. While they have demonstrated promising results and theory exists
on some simple model formulations, we also know that causal effects are not even
identifiable in general with latent variables. We investigate this gap between theory
and empirical results with analytical considerations and extensive experiments
under multiple synthetic and real-world data sets, using the causal effect variational
autoencoder (CEVAE) as a case study. While CEVAE seems to work reliably
under some simple scenarios, it does not estimate the causal effect correctly with
a misspecified latent variable or a complex data distribution, as opposed to its
original motivation. Hence, our results show that more attention should be paid to
ensuring the correctness of causal estimates with deep latent variable models.

1 Introduction

Figure 1: (a) The direct con-
founding causal graph. (b)
The causal graph with an un-
observed confounder z, and
proxy variables x.

Causal inference, dealing with the questions of when and how we
can make causal statements based on observational data, has been
a topic of growing interest in the deep learning community recently.
On the one hand, causal inference promises to provide traditional
machine learning and AI with methods for explainability, domain
adaptation, and causal reasoning capabilities in general [Pearl, 2019].
On the other hand, many deep learning methods for improving causal
inference have been proposed. Some of the models have been de-
signed under the assumption of no unobserved confounding [Shalit
et al., 2017, Yoon et al., 2018, Shi et al., 2019], while others utilize
latent variables in one way or the other to account for unobserved
confounders [Louizos et al., 2017, Rakesh et al., 2018, Pfohl et al.,
2019, Madras et al., 2019, Mayer et al., 2020, Chen et al., 2020,
Pawlowski et al., 2020, Jesson et al., 2020]. Although some simple models with unobserved con-
founders are known to produce correct results [Angrist et al., 1996, Pearl et al., 2016, Miao et al.,
2018], the consistency, i.e., whether in the limit of large data the correct causal effect is retrieved, is
usually left largely open with deep latent variable models.

In particular, Louizos et al. [2017] proposed the causal effect variational autoencoder (CEVAE) for
performing causal inference in the setting where we have an unobserved confounder, of which only
noisy proxy variables are available. The causal graph is shown in Fig.1b, which contrasts to the
standard "no unobserved confounding", or direct confounding, graph in Fig.1a. The proxy variable
setting has been studied rigorously elsewhere by [Pearl et al., 2016], where the authors provided
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provably correct methods for a few simple types of data with strong assumptions about the data
generating process. They dubbed the process of estimating causal effects in this context as "effect
restoration". CEVAE was proposed to relax these assumptions significantly, but the question of
consistency was left unanswered.

To provide insight into the behavior of deep latent variable models as causal effect estimators, we
use CEVAE as a case study. CEVAE is a natural choice because it is based on the well-established
standard variational autoencoder [Kingma and Welling, 2014, Rezende et al., 2014], and it allows
comparison with analytical, provably correct methods. We conduct rigorous experiments with the
model using various synthetic and semi-synthetic data sets and also provide theoretical statements
in some special cases. Even though generic theoretical results are difficult to get for variational
autoencoders, we provide intuitive conclusions on the assumptions under which the model works or
does not work.

2 Preliminaries

2.1 Model description

The objective in the scenario in Fig.1b is to learn the causal effect between the variables t and y. t is
a variable on which we can perform an intervention, e.g., a treatment on a disease. x is the possibly
multidimensional proxy providing indirect and noisy information about the unobserved confounder z.
The correct interventional distribution p(y|do(t)) is defined with the formula

p(y|do(t)) =
∫
p(y|z, t)p(z)dz, (1)

where the integral is replaced with a sum for a discrete confounder. Note that we denote the latent
variable of a VAE with z as well, even though they are conceptually separate and might not be
distributed in the same way. The distinction should be clear from the context.

At its core, the causal effect variational autoencoder is simply a regular variational autoencoder with
two additional assumptions. First, we assume that the latent variable z corresponds to the unobserved
confounder in some way so that after training, we can get the causal effect p(y|do(t)) by estimating
with the adjustment formula:

p(y|do(t)) ≈ pθ(y|do(t)) =
∫
pθ(y|z, t)p(z)dz, (2)

where θ are learned decoder parameters and p(z) is the VAE prior. Second, we assert some additional
restrictions on the structure of the decoder. The idea is that the quantities reconstructed during
training should follow the conditional independencies specified by the causal graph in Fig.1b so that
the conditional probability of observed variables given the latent variable factorizes as

pθ(x
i, ti, yi|z) = pθ(x

i|z)pθ(ti|z)pθ(yi|z, ti), (3)

where superscript i refers to the i:th observation. Thus, we can write the ELBO for the model as

L(θ, φ) =
∑
i

[
Eqφ(z|xi,ti,yi)[log pθ(x

i|z) + log pθ(t
i|z)

+ log pθ(y
i|z, ti)]− KL[qφ(z|xi, ti, yi)||p(z)]

]
, (4)

where xi, ti and yi are observed quantities. Thus, we have to define at least four neural networks:
The encoder network qφ(z|xi, ti, yi) and three decoder networks corresponding to the conditionals in
Eq.3. The original paper also suggested composing the encoder of multiple networks chosen based on
the value of the treatment, but that is not strictly necessary and was not motivated by the causal graph.
Note that the decoder differs from usual VAE decoders in that the observed treatment value ti has to
be given as input to the network corresponding to pθ(y|z, t). The original paper seemed to suggest
that the input should be sampled from the pθ(t|z) distribution during training (Fig.2b in [Louizos
et al., 2017]), but the factorization in Eq.3 suggests that the observed t should be used instead.

In terms of the problem statement, CEVAE is perhaps most closely connected to the methods of
effect restoration first proposed by Kuroki and Pearl [2014]. They offered provably correct, analytical
solutions to the proxy variable problem in Fig.1b when all variables are jointly normal or categorical
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and x consists of two variables conditionally independent of each other given z. The setting was
further studied in [Miao et al., 2018]. Note that since CEVAE assumes a different causal graph from
the direct confounding graph in Fig.1a, it can’t be assumed to give correct results if the true data
generating process is the direct confounding graph. For example, Kuroki and Pearl [2014] showed
that an observed p(x, t, y) can map to two completely different causal effects by assuming either
the direct or the unobserved confounding graphs. As the original CEVAE paper experimented on
data with no unobserved confounding in addition to data sets with the unobserved confounding, we
suspect that this may have been a point of confusion for some.

2.2 Possible issues with estimation

Theorem 1 in [Louizos et al., 2017] states that if CEVAE is able to recover the p(z, x, t, y) distribution,
it is guaranteed to yield correct causal estimates. However, this leaves open the relevant question
about when such an assumption can hold, as recovering p(z, x, t, y) entirely is, strictly speaking,
impossible due to the unidentifiability of VAEs (e.g. [Locatello et al., 2019]). In contrast, we don’t
consider the latent variable of CEVAE to strictly correspond to the true confounder. Instead we
view the process of training CEVAE and applying the adjustment formula in Equation 2 simply as
a statistical estimator for the causal effect, regardless of what the latent variable exactly represents.
That is, we are interested in recovering the correct causal effect and not the true hidden confounder.
Our goal is then to study when the resulting causal effect estimates are consistent. Consistency means
in general that the estimates of the parameters of interest approach their correct values as the amount
of data increases, see, e.g., [Schervish, 2012].

For consistency to be possible, the model also has to be identifiable with respect to causal effect
estimates, so that minimizing the loss (e.g. maximizing the likelihood or the ELBO) does not map to
multiple data generating parameters θ that correspond to different pθ(y|do(t)), see, e.g., [Murphy,
2012]. This is not to be confused with the common usage of the word "identifiability" in causal
inference literature, where the question is instead whether it is possible in principle to estimate some
causal effect from an observed distribution, e.g., using the techniques of the famous do-calculus
[Pearl, 2009]. In the presence of unobserved variables, results on causal identifiability often rely on
parametric knowledge about the underlying data generating process. We refer to the identifiability
of CEVAE as a statistical estimator as the model identifiability, to distinguish it from the causal
identifiability. Note that model identifiability as defined here guarantees only that a unique causal
effect estimate is obtained, but not necessarily that it is consistent, for example if the model is
misspecified.

The original CEVAE paper suggested multiple scenarios as the motivation for the model, including
the case where we have very few parametric assumptions about the data generating process and the
case where the distribution of the proxies is complex, as is often reasonable to assume with real-world
data. Our aim here is to study how well the model works as we reduce the number of assumptions
and move further into the territory envisioned in the paper. Based on the motivating scenarios, we
can conceptually separate three goals for CEVAE:

1. It should produce correct estimates with minimal knowledge about the parametric forms of
the data generating p(x|z), p(t|z) and p(y|z, t) distributions.

2. It should work if we don’t know the form of the unobserved confounder’s distribution, which
could be categorical or Gaussian, for instance.

3. It should work with an arbitrarily complex distribution of proxies.

With the first goal, the hope is that neural networks will estimate the conditionals correctly enough to
estimate the causal effects. With the second goal, the hope is that the true confounder is represented
well enough with the standard Gaussian prior of the VAE.

In practice, correct estimation could be prevented by many factors. For real-world data sets, it is
possible that the causal effect is not identifiable at all from the data, even if we know the parametric
form of the data generating process. If it is identifiable in principle, CEVAE might still fail due to
inherent model nonidentifiability caused by the nonparametric assumptions and because we don’t
have a guarantee that finding a unique global optimum for the ELBO leads to a correct causal
estimate. Local minima or other issues with optimization could cause further practical problems with
the correctness of the results.
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We focus on the estimation of p(y|do(t)) instead of individual-level causal effects p(y|do(t), x) as that
makes the analysis more straightforward. Note that while the average treatment effect (ATE), defined
as E[y|do(t = 1)] − E[y|do(t = 0)], is a common metric, we are interested in p(y|do(t)) directly
because the estimated ATE can have the correct value even when the estimates of p(y|do(t = 1)) and
p(y|do(t = 0)) are not correct, and furthermore our analysis extends to continuous t.

3 Results

3.1 Setup with provably identifiable simple synthetic data

As a first step, we studied the simplest possible cases where we know from theory that the causal
effects are identifiable in principle and provably correct analytical estimation methods exist, i.e., the
two data types discussed in [Kuroki and Pearl, 2014]. Aside from being important basic cases, these
data sets are interesting because they are relatively simple to study, we can compare CEVAE results
to the analytical methods, and we can try to extract some qualitative understanding from the results.

Linear-Gaussian data The first data type was the linear-Gaussian, where the true data generating
distribution is such that all variables are jointly normally distributed, but respecting the conditional
independences of graph 2 in Fig.1b. The proxy x also consists of two variables x1 and x2 that are
conditionally independent given z:

z ∼ N(0, 1), x1|z ∼ N(c1z, σx1
), x2|z ∼ N(c2z, σx2

)

t|z ∼ N(ctt, σt), y|z, t ∼ N(cyzz + cytt, σy)

Here, ci and σi are predefined parameters. To avoid jumping to conclusions based on arbitrary choices
of data generating parameters, we sampled them randomly from a distribution that should provide a
wide range of different generating processes. We detail the sampling method in the Supplementary
Material.

Binary data In the other type of data, all variables were binary, and in particular, x consisted of
two binary variables x1 and x2 that were conditionally independent given z. We sampled the data
generating process from a distribution explained in the Supplementary Material. The binary data
also tests the ability of CEVAE to perform correctly even if the assumption of a normally distributed
unobserved confounder is not valid.

To estimate the correctness of causal effect estimates using neural networks with the linear-Gaussian
data, standard metrics such as ATE error do not apply because the treatment variable is not binary.
Instead, we define the Average Interventional Distance (AID):

AID =

∫
p(t)

∫
|pθ(y|do(t))− p(y|do(t))|dydt (5)

where the integrals can be changed to sums for discrete variables. In addition to being defined for
continuous treatments, this metric has the advantage that it will only approach zero if pθ(y|do(t))
approaches p(y|do(t)) for all values of t that we have data from, and it follows the intuition that we
should be more confident for values of t for which we have lots of data.

Estimation models In the experiments, we refer to the "full CEVAE" as a model where all conditional
distributions are parameterized with three-layer MLPs with layer width 30 and a latent variable
dimension of 10. With the linear-Gaussian data, the standard deviations of the Gaussian conditionals
were individually estimated for each data point, using the standard assumption of diagonal covariance
in the encoder and decoder. For the linear-Gaussian data, we also considered the "linear CEVAE", a
model with conditional distributions represented by simple linear layers and single standard deviations,
shared between all data points and estimated for each conditional. We tried latent dimensionalities of
1, 2, and 10 for these linear models. Further details are provided in the Supplementary Material.

3.1.1 Results with linear-Gaussian data

It is, in fact, possible to show that the one-dimensional linear CEVAE is consistent in this situation,
as encapsulated in the following proposition:
Proposition 1. A linear CEVAE with a one-dimensional latent space estimates the causal effect
correctly, given that it reaches the global optimum of the ELBO with infinite data.
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Figure 2: Top row, linear-Gaussian generative model: (a) AID values for the full CEVAE (NN
conditionals and 10D latent space), for the simpler CEVAE with linear conditionals and 1D latent
space, and for the analytical method. (b) Weight vectors of the different conditional distribution mean
functions for a linear CEVAE with a two-dimensional latent space. Here parameters were initialized
manually, and estimation failed. (c) The same parameter estimates for a model that estimated causal
effects correctly. Here, only one latent dimension is used. Bottom row, binary generative model: (d)
AID values for the full CEVAE and the analytical method with respect to sample size. (e) Estimates
of the p(y|do(t)) values for full CEVAE. (f) The same estimates with the analytical method.

The proof, which relies on the earlier result by [Kuroki and Pearl, 2014], is provided in the Sup-
plementary Material. Thus, a well-specified CEVAE model can result in correct estimation. The
question then remains whether overparameterization by neural networks breaks the consistency.

Figure 2a shows the AID of the different models and the analytical method of [Kuroki and Pearl,
2014] as a function of sample size, for one data generating distribution. Analytical estimates for
some of the required parameters for calculating p(y|do(t)) were not provided in the original paper,
but we derive them in the Supplementary Material. While the analytical method and the linear
CEVAE with a 1D latent variable perform better than the full CEVAE, all of them seem to converge
towards the correct p(y|do(t)) distribution. We show in the Supplementary Material that the result
is robust, as the estimates converge to the correct distribution for other data-generating parameters.
Thus, overparameterizing the conditional distributions with NNs or using a larger than required latent
variable dimension doesn’t necessarily break the estimation of the causal effect.

To highlight that the result is not obvious, we ran additional experiments with a model using linear
conditional distributions but with a two-dimensional latent space, i.e., with one redundant dimension.
With some initializations, the model ended up estimating the causal effect incorrectly, but with
an indistinguishable ELBO compared to a model with the correct causal effect. The initialization
and other details are given in the Supplementary Material. Figure 2b visualizes the minimum
with the wrong result. Essentially, the model uses only one latent dimension to reconstruct the
proxies x while treatment t and outcome y are reconstructed partly with the other dimension as
well, preventing correct modeling of dependencies between observed variables. In practice, with a
random initialization, this happens only rarely and not at all with the full CEVAE due to the tendency
of posterior collapse in VAEs, causing the model to use one dimension only. An example for the
2D linear CEVAE is shown in Fig.2c. Hence, whereas the posterior collapse is often an unwanted
characteristic of VAEs [He et al., 2018, Razavi et al., 2019, Dai et al., 2020], it here seems to save
the day, although an unnecessarily high latent dimension could still cause issues in principle. In the
Supplementary Material, we visualize the posterior collapse phenomenon for the full CEVAE and
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also show that the 10D linear CEVAE causal effect estimates become systematically incorrect if we
prevent posterior collapse using KL divergence annealing.

Conclusion Overparameterizing the conditionals with neural networks does not necessarily prevent
correct estimation, but a too high-dimensional latent variable could in principle. Posterior collapse
usually resolves the problem, however.

3.1.2 Results with binary data

The AID values and corresponding causal effect estimates for the full CEVAE and the analytical
method by [Miao et al., 2018] are plotted as a function of sample size in Fig.2d. CEVAE, which
incorrectly assumes a Gaussian latent variable, produces reasonable results but fails to converge to
the correct causal effect. In contrast, when using the analytical method, the estimate gets better and
better as the sample size increases. We show in the Supplementary Material that similar results are
obtained for different data generating distributions. Note that the binary data generating process is
possibly the simplest process where the actual confounder is not normally distributed and the causal
effects are identifiable in principle. We conclude that CEVAE does not, in general, estimate the causal
effect correctly when the latent variable is not specified appropriately in advance, and the second goal
of CEVAE, mentioned in Sec.2.2, is not met. In the Supplementary Material, we also show that a
version of CEVAE with a binary latent variable can produce correct causal estimates, although it is
prone to get stuck in local minima for some data sets.

Conclusion CEVAE does not estimate causal effects correctly if the latent variable is misspecified,
in general.

3.2 Illustration of difficulties with complex data

This section describes two additional experiments with synthetic data, illustrating issues that can
reasonably be assumed to come up with real data as well. The causal effects are identifiable with
these data sets because they are based on the linear-Gaussian data. The estimation model is the same
as the full CEVAE as specified in the previous section unless mentioned otherwise.

3.2.1 Data with irrelevant variation in the proxies

The former experiments with linear-Gaussian data showed that an unnecessarily high-dimensional
latent variable could cause issues, especially with the simpler linear CEVAE which did not exhibit
posterior collapse, but the problem could be avoided by using a 1D latent. To see how a higher-
dimensional latent variable could be necessary with complex data, we used the linear-Gaussian data
set but added a third proxy variable that contained irrelevant, high-variance noise. After generating the
proxies, an additional rotation was applied to them in the three-dimensional space so that the relevant
variation was "hidden" in a specific two-dimensional subspace. The process is illustrated in Fig.3a.
Here, with the standard assumption of diagonal covariance in the decoder, we can expect a 1D CEVAE
to focus on modeling the noise because that dominates the loss. In contrast, a higher-dimensional
CEVAE has the option to explain the noise with one and the signal with another dimension, enabling
correct inference.

Figure 3b shows the full CEVAE AID as a function of sample size for one- and two-dimensional
latent variables. As expected, the model with a two-dimensional latent variable estimates the causal
effect correctly, while the one-dimensional model does not.

Conclusion A high-dimensional latent variable can be necessary to estimate the causal effect correctly
using very noisy proxies, even if the actual confounder is one-dimensional.

3.2.2 Data with repeated proxies

The second difficulty in complex data can arise when the proxies contain variation relevant to
predicting t and y, but there exist significant correlations in x that are not caused by the confounder.
This can result in the model adjusting directly to x, ignoring the unobserved confounder entirely. As
an example, consider the linear-Gaussian data set, but with a modification that we add two proxies,
x̃1 and x̃2, which are copies of the original two. Here, the following proposition holds:
Proposition 2. With an altered linear-Gaussian data generating process where we have additional
proxies x̃1 = x1 and x̃2 = x2, the value of the ELBO of a 2D CEVAE can approach infinity while the
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Figure 3: (a) Linear-Gaussian data generating process with irrelevant noise and a "hidden" relevant
subspace. (b) AID values with respect to sample size for models using 1D and 2D latent spaces for
the data with irrelevant noise. (c) Data generating process for linear-Gaussian data with copies x̃1
and x̃2. (d) Linear, 1D CEVAE cyt estimate as a function of sample size for the linear-Gaussian data
with copies. (e) The cyt estimates as a function of proxy loss scaling for the linear 1D CEVAE.

causal effect estimate converges to the value that is obtained by adjusting directly to the proxies, that
is,
∫
p(y|x, t)p(x)dx.

The proof is included in the Supplementary Material. The intuition is that whenever the model recon-
structs one of the proxies, it can easily reconstruct the copy as well with the same accuracy, effectively
doubling the importance of the proxy reconstruction loss. If we use the latent representation to
directly represent the proxies with increasing accuracy, the negative KL divergence term in the ELBO
decreases slower than the proxy reconstruction term increases, and the ELBO approaches infinity. At
the same time, the latent space becomes a representation of the proxies, and the y reconstruction term
in the ELBO forces the corresponding predictor pθ(y|z, t) to become an approximation of p(y|x, t).
We hypothesize that the same phenomenon will be an issue with a complicated distribution of proxies
since, most likely, there will be similar correlations that are not directly caused by the unobserved
confounder and that can cause the model to focus too much on proxy reconstruction.

As a simple empirical demonstration of this phenomenon in a more realistic distribution, we experi-
mented with data where a small Gaussian noise is added to x̃1 and x̃2 so that the correlations with
x1 and x2 are not perfect. We modified the full CEVAE to use a linear predictor for the conditional
distribution of y to make the results easier to interpret (the estimated regression coefficient of t should
approach the cyt coefficient in the data generating process, i.e., the true causal effect). Figure 3d
shows the cyt estimate as a function of sample size. As expected, the estimate corresponds to the
direct adjustment value that we would get if we used linear regression to predict y based on x and t.

Given that the loss function with repeated proxies corresponds to the regular loss where the proxy
reconstruction term is multiplied by a factor of two, the most obvious way to resolve the problem
is to adjust the reconstruction loss manually by a factor of one-half. In general, we would scale the
term Eqφ(z|xi,ti,yi)[log pθ(xi|z)] in Eq.4 by some factor λ < 1, forcing the VAE to put less weight
on just reconstructing the proxies. However, in a real-world situation, it is not obvious what this
scaling factor should be. To illustrate the effect of the scaling factor, Figure 3e shows the cyt estimate
as a function of proxy loss scaling for a sample size of 20000. With scaling factors close to one,
the results are close to the direct adjustment results for the reasons explained. When lowering it to
one-half, the estimate abruptly changes and ends up in the true value, as expected. When lowering it
further, however, the results change as well and we start getting incorrect values. As the scaling factor
approaches zero, CEVAE stops using the proxy data at all, and our estimate for cyt becomes equal to
the one we would get by assuming p(y|do(t)) = p(y|t), i.e., no confounding. In the Supplementary
Material, we prove the following proposition, which states that this estimate corresponds to many
global optima of the ELBO where the latent space is either neglected entirely or not used in the
reconstruction of either t or y:

Proposition 3. With the proxy reconstruction loss scaled to zero, one set of global optima to the
CEVAE ELBO is such that pθ(y|do(t)) = p(y|t) and either t or y is not dependent at all on the latent
variable for the linear-Gaussian data.
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The intuition is that if one of the causal links z → t or z → y is removed in CEVAE, then the cyt
estimate is produced as if there was no confounding. While other global optima exist, it seems that
we get these no-adjustment solutions in practice.

Conclusion CEVAE can overemphasize modeling of the proxies with some data sets, leading it to
ignore the unobserved confounder entirely. We may be able to fix this by scaling the reconstruction
loss for proxies, but it is not clear how to choose the scaling in practice.

3.3 Semi-synthetic data

Here we describe two experiments based on real-world data sets. Details on the experimental setup,
data generating processes, and neural network architectures are provided in the Supplementary
Material. Here, we don’t have guarantees that the causal effects are identifiable in principle from the
data, which corresponds to the real-world situation where we can never be sure about identifiability
without access to the parametric form of the data generating process. In any case, the experiments
allow us to highlight issues with estimation failure that are not related to the identifiability of the data.

3.3.1 Proxy IHDP data set

We decided to investigate the performance of CEVAE on a modified version of the Infant Health
and Development Program (IHDP) data set [Hill, 2011], which was created from a study on the
effects of intensive child care on future test scores of premature infants [Brooks-Gunn et al., 1992].
It consists of 25 covariates, some continuous and some categorical, treatments, and synthetically
generated test scores. The IHDP data is a well-known causal inference benchmark, but as such, it
is not suitable for our study because the y values in the data have been generated directly based on
the covariates, and thus the data doesn’t follow the causal graph assumed by CEVAE. To overcome
this, we singled out one of the covariates to be the hidden confounder, leaving the rest as proxies.
The treatment t and the recovery y were then generated using the chosen confounder. Technically
speaking, we don’t know the direction of causalities between the confounder and the proxies defined
this way, but the data is still Markov equivalent to the graph in Fig.1b. Since the original data was
very small (just 747 subjects), we trained a variational autoencoder on the covariates to generate more
data from a distribution that is similar to the original one and which should be realistic enough for our
purposes. The generated data set has the benefit that the distribution of the unobserved confounder
and the proxies is not arbitrarily defined, instead following a real-world distribution that is relevant
for causal inference. In the Supplementary Material, we show that the unobserved confounder is
clearly correlated with many of the proxies, and thus it’s possible that the proxies provide us enough
information to make the causal effects identifiable in principle.

Figure 4a shows that the causal estimate does not approach the correct value as we increase the
sample size, instead corresponding to the value we would get from direct adjustment to proxies,
similarly to Section 3.2.2. Note that although we don’t have strict guarantees that the causal effects
are identifiable with this data set, the result nevertheless shows that the problem of placing too much
weight on proxy reconstruction is relevant in a realistic use-case as well. In Fig.4b we investigate
whether scaling the proxy loss can recover the correct causal effect. The pattern is similar as before:
Scaling with a factor close to one recovers direct adjustment. With a scaling factor close to zero, y is
predicted solely based on t. With intermediate scaling, some estimates are approximately correct, but
this time not consistently for any of the scaling factors.

Conclusion The problem of adjusting directly to the proxies, described in Sec.3.2.2, happens with
real data.

3.3.2 Proxy MNIST data set

In this section, we experiment with a data set where the proxies are images, which is a natural domain
for neural network based models such as CEVAE. To create data that follows the correct causal graph,
we trained a GAN with a three-dimensional latent variable on the MNIST data [LeCun and Cortes],
after which we used the GAN to generate a value between zero and one for each pixel given the
latent value. We interpreted these as probabilities and sampled each pixel from the corresponding
Bernoulli distribution to generate noisy images, which were used as the proxies. We used the first
latent dimension of the GAN as the unobserved confounder z and generated binary t and y values
based on the chosen z for each sampled image. We also generated an additional linear-Gaussian
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Figure 4: (a) E[y|do(t = 1)] estimates for the IHDP data with respect to sample size. (b) E[y|do(t =
1)] estimates for the IHDP data as a function of proxy loss scaling, for a data set of size 20000. The
figures with E[y|do(t = 0)] are included in the Supplementary Material. (c) The data generating
process for the proxy MNIST data set. (d) Causal effect estimates for different image loss scaling
values with respect to training time, for a data set of size 10000.

proxy x1 to increase the chance that the causal effects are identifiable in principle, while not reducing
the problem to trivial. The created data set, illustrated in Fig.4c, then followed the correct causal
graph with a normally distributed unobserved confounder.

Since the image data is very complex and high-dimensional, it is reasonable to expect that CEVAE
can put too much weight on image reconstruction in one way or another during training. Thus, we
experimented by scaling the reconstruction loss term of the images to different values. Indeed, figure
4d shows us that without any scaling, the estimated p(y|do(t)) values do not converge to anything
even with 500 epochs. This is possibly due to the reconstruction term being much larger than the rest,
so that fluctuations there overshadow the modeling of the other variables. When scaling the image
loss to lower values, the estimates start to converge but are not quite correct for values 0.1 and 0.01.
For scaling value 0.05, however, we recover almost exactly the correct result. The result is confirmed
in the Supplementary Material with AID values from multiple runs. Thus, it seems that scaling the
loss function appropriately can result in the correct causal effect even with data as complex as images,
if we know the correct scaling.

Conclusion With very complex proxy data, getting an estimate for the causal effect can be difficult.
In some cases, scaling the loss appropriately can result in correct estimation even with real data.

3.3.3 Twins data set

We also ran experiments on the Twins data set presented in the original paper [Louizos et al., 2017,
NCHS, 1996]. It provides an example where the causal effects are identifiable in principle, the
confounder is categorical, and where the distribution of z,t, and y is based on real-world data. In the
Supplementary Material, we show that CEVAE doesn’t return consistent estimates, further reinforcing
our conclusion about incorrect estimates with misspecified latent variables.

4 Discussion

Two of the goals we listed for CEVAE in Section 2.2 were that it should recover causal effects even if
we don’t know the distribution of the confounder and if the distribution of the proxies is complex. It
appears that CEVAE does not work consistently correctly in either case. Thus, while using a deep
latent variable model in this context shows some promise, new solutions are needed to overcome the
issues that come up with real data. Although there is an absence of theory supporting the model in
general, these results were non-obvious to us and we believe that they are useful for many others,
given the large amount of research in the field. The main limitation of our work is that we focused
on CEVAE, but we believe that the qualitative results and recognized problems will be useful in
research on other, similar models. Another limitation is that our study was mainly empirical and we
can not provide theoretical guarantees that the qualitative results transfer to all possible data sets. The
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negative results do, however, serve as counterexamples, and we did attempt to provide intuition for
the phenomena observed, allowing future researchers to assess whether our work is relevant for them.

Finally, our aim is not to discourage research with CEVAE or deep latent variable models for causal
inference in general, but instead, we hope that our results will accelerate progress in the field. The
hope is that our results are a starting point for thinking about the consistency of causal estimation
with similar models and advancing guarantees for it. In any case, our experiments showed that we
should not brush off the issue entirely since the alternative is that the model can produce incorrect
results even with some rudimentary data sets.

5 Impact Statement

If CEVAE and similar machine learning based methods for causal inference become usable and
prevalent in application areas such as epidemiology and the social sciences, this line of work could
have a clear positive social impact by enabling research in these fields with new possibilities and
thus allowing for better decision-making through better understanding of important phenomena.
On the other hand, it’s possible that practitioners become overly reliant on the claims that these
methods estimate causal effects with very few assumptions, becoming less rigorous in considering
the assumptions that are necessary to make (e.g., the causal graph). This could inadvertently have the
negative impact of degrading the quality of research. Researchers in machine learning and causal
inference should strive to avoid this by communicating the limitations realistically to practitioners
and make the necessary assumptions as explicit as possible.
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