Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes] We mention that we cannot scale to the same cache sizes as prior work as we do not use a CPU based nearest neighbor task and are thus bounded by accelerator memory.
 (c) Did you discuss any potential negative societal impacts of your work? [No]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [Yes]
 (b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes]
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [No] It would take too long to run each experiment multiple times.
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] We mention that we use 8 V2 TPUs, the number of steps, and the steps / second.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes]
 (b) Did you mention the license of the assets? [No]
 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]
Appendix

7 Proof of Theorem 2

Proof. Let \(e_q, = \phi_Q(q_i; \theta_t) \) be the query embedding, \(e_z, = \phi_D(z_i; \theta_t) \) be the document embedding, and \(e_{zj} = \phi_D(z_j; \theta_t) \). Recall that \(\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_m \) be the (potentially stale) embeddings in the cache. Let \(s^+ = e_q, e_{z}, s_j = e_q, \phi_D(z_j; \theta_t), \hat{s}_j = e_q, \mathcal{E}_j \).

Recall that
\[
\mathcal{L}_{CE_i}(\theta_t) = - \log \left(\frac{\exp(\beta s^+)}{\exp(\beta s_t) + \sum_{j \neq \eta_q,} \exp(\beta s_j)} \right).
\]

For simplicity, we use \(\nabla \) and \(\nabla \) to denote \(\nabla \mathcal{L}_{CE_i}(\theta_t) \) and \(\nabla \mathcal{L}_{CE_i}(\theta_t) \) respectively. We first observe that
\[
\nabla = \mathbb{E}_j[g_i] = - \beta \nabla s^+ + \sum_j \hat{p}_j \beta \nabla s_j.
\]

This follows as simple consequence of the Gumbel-Max sampling. Furthermore, we have
\[
\nabla = - \beta \nabla s^+ + \sum_j p_j \beta \nabla s_j.
\]

From the above expression, we have that
\[
\|\nabla - \nabla\|_2 = \beta \sum_j (p_j - \hat{p}_j) \nabla s_j \|_2 \leq \beta \sum_j |p_j - \hat{p}_j| \|\nabla s_j\|_2 \leq \beta M \|p - \hat{p}\|_1.
\]

The last inequality follows from bounded nature of the score \(\|\nabla s_j\| \leq M \). Consider a term \(p_j - \hat{p}_j \).

We have that
\[
p_j - \hat{p}_j = \frac{\exp(\beta s_j)}{\sum_i \exp(\beta s_i)} - \frac{\exp(\beta \hat{s}_j)}{\sum_i \exp(\beta s_i)} \leq \frac{\exp(\beta s_j)}{\sum_i \exp(\beta s_i)} (1 - \exp(-\beta \|\hat{s} - s\|_\infty)) \leq 2p_j \beta \|\hat{s} - s\|_\infty.
\]

Similarly, we have that
\[
\hat{p}_j - p_j \leq 2\hat{p}_j \beta \|\hat{s} - s\|_\infty.
\]

Thus we have that \(|p_i - \hat{p}_i| \leq 2\beta \|\hat{s} - s\|_\infty (p_i + \hat{p}_i) \) and thus
\[
\|p - \hat{p}\|_1 \leq 4\beta \|\hat{s} - s\|_\infty
\]

We bound \(\|\hat{s} - s\|_\infty \) as follows. Suppose it is at most \(k \) updates since any embedding in \(\mathcal{E} \) has been updated. In particular, let \(t_j \) denote the time step when \(j \) was last updated in \(\mathcal{E} \). Then, we have
\[
|\hat{s}_j - s_j| = |e_q \cdot \mathcal{E}_j - e_q \cdot e_{zj}| \leq \|e_q\|_2 \|\mathcal{E}_j - e_{zj}\|_2 \leq \|\mathcal{E}_j - e_{zj}\|_2 \leq \|\phi_D(z_j; \theta_t) - \phi_D(z_j; \theta_t)\| \leq L \|\theta_t - \theta_t\| \leq \eta \beta LM (t - t_j)
\]

Thus we have that \(\|\nabla - \nabla\|_2 \leq 4\eta \beta^3 LM^2 k \). When using the refresh fraction of \(\rho \), it can be shown the \(k \) is in expectation of the order \(\frac{1}{\rho} - 1 \), which completes the proof.
8 Proof of Theorem 3

To prove Theorem 3, we start with the following result.

Lemma 6. Let \(\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}_{C_E} \). Assume that a loss function \(\mathcal{L}_{C_E}(\theta) \) satisfies:

- (Bounded Gradients) We have that \(\| \mathcal{L}_{C_E}(\theta) \| \leq 2M \) for all parameters \(\theta \in \mathbb{R}^p \).
- (Smoothness) We have that \(\| \nabla \mathcal{L}_{C_E}(\theta) - \nabla \mathcal{L}_{C_E}(\theta') \|_2 \leq S \| \theta - \theta' \|_2 \).

Furthermore, suppose we run an approximate stochastic gradient descent with stochastic gradient with bounded bias, \(\| \mathbb{E}[g_t \mid \theta_t] - \nabla \mathcal{L}(\theta_t) \|_2 \leq \Delta_t \), and additionally \(\| g_t \| \leq M \) for all \(t \in [T] \). If we update our parameters with a stepsize \(\eta \), we have that

\[
\frac{1}{T} \sum_{t=0}^{T} \mathbb{E}[\| \nabla \mathcal{L}(\theta_t) \|_2^2] \leq \frac{\mathcal{L}(\theta_0) - \mathcal{L}(\theta^*)}{\eta T} + \frac{1}{2T} \sum_{t=0}^{T} \Delta_t^2 + 2\eta SM^2.
\]

Proof. From the Lipschitz continuous nature of the function \(\mathcal{L} \), we have

\[
\mathbb{E}[\mathcal{L}(\theta_{t+1})] \leq \mathbb{E} \left[\mathcal{L}(\theta_t) + \nabla \mathcal{L}(\theta_t) \cdot (\theta_{t+1} - \theta_t) + \frac{S}{2} \| \theta_{t+1} - \theta_t \|_2^2 \right]
\]

\[
= \mathbb{E} \left[\mathcal{L}(\theta_t) - \eta \nabla \mathcal{L}(\theta_t) \cdot g_t + \frac{\eta^2 S}{2} \| g_t \|_2^2 \right] \leq \mathbb{E} \left[\mathcal{L}(\theta_t) - \eta \| \nabla \mathcal{L}(\theta_t) \|_2^2 + \eta \nabla \mathcal{L}(\theta_t) \cdot g_t + \eta S |g_t| \right] + \frac{4\eta^2 SM^2}{2} \leq \mathbb{E} \left[\mathcal{L}(\theta_t) - \eta \| \nabla \mathcal{L}(\theta_t) \|_2^2 + \eta \Delta_t \| \nabla \mathcal{L}(\theta_t) \|_2 + 2\eta^2 SM^2. \right.
\]

The second inequality follows from bounded nature of \(g_t \). The above inequality can be further bounded in the following manner:

\[
\mathbb{E}[\mathcal{L}(\theta_{t+1})] \leq \mathbb{E} \left[\mathcal{L}(\theta_t) - \eta \| \nabla \mathcal{L}(\theta_t) \|_2^2 + \eta \Delta_t \| \nabla \mathcal{L}(\theta_t) \|_2 \right] + 2\eta^2 SM^2 \leq \mathbb{E}[\mathcal{L}(\theta_t)] - \frac{\eta}{2} \mathbb{E}[\| \nabla \mathcal{L}(\theta_t) \|_2^2] + \frac{\eta}{2} \Delta_t^2 + 2\eta^2 SM^2.
\]

The second inequality follows from the fact that \(ab \leq (a^2 + b^2)/2 \). Summing over all \(t \in [0, T] \) and using telescoping sum, we have

\[
\frac{1}{T} \sum_{t=0}^{T} \mathbb{E}[\| \nabla \mathcal{L}(\theta_t) \|_2^2] \leq \frac{\mathcal{L}(\theta_0) - \mathcal{L}(\theta_T)}{\eta T} + \frac{1}{2T} \sum_{t=0}^{T} \Delta_t^2 + 2\eta SM^2. \tag{3}
\]

This completes the proof of the lemma.

We now focus on the proof of Theorem 3.

Proof. We first note that under the assumptions of Theorem 3, \(\| \nabla \mathcal{L}_{C_E}(\theta_t) \| \leq 2M \) and \(\| g_t \| \leq 2M \). This simply follows from the structure of \(\nabla \mathcal{L}_{C_E} \). Using the above lemma, we have the following:

\[
\frac{1}{T} \sum_{t=0}^{T} \mathbb{E}[\| \nabla \mathcal{L}_{C_E}(\theta_t) \|_2^2] \leq \frac{\mathcal{L}_{C_E}(\theta_0) - \mathcal{L}_{C_E}(\theta^*)}{\eta T} + 8\eta^2 \beta^6 L^2 M^4 \left(\frac{1}{\rho} - 1 \right)^2 + 2\eta SM^2.
\]

This follows simply from the bias bounded obtained in Theorem 2. Using \(\eta = \sqrt{\frac{\mathcal{L}_{C_E}(\theta_0) - \mathcal{L}_{C_E}(\theta^*)}{2T S M}} \) specified in the theorem, we obtain

\[
\frac{1}{T} \sum_{t=0}^{T} \mathbb{E}[\| \nabla \mathcal{L}_{C_E}(\theta_t) \|_2^2] \leq 4M \sqrt{\frac{S(\mathcal{L}_{C_E}(\theta_0) - \mathcal{L}_{C_E}(\theta^*))}{T}} + \frac{4\beta^6 L^2 M^2 (\mathcal{L}_{C_E}(\theta_0) - \mathcal{L}_{C_E}(\theta^*))}{ST} \left(\frac{1}{\rho} - 1 \right)^2.
\]

This completes the proof of Theorem 3.
9 Proof of Lemma 4 and Theorem 5

We use the following lemma in the proof of Lemma 4.

Lemma 7 (Lemma 5 in [30]). Given a random variable $V \geq a > 0$, we have that

$$\frac{1}{E[V]} \leq E \left[\frac{1}{V} \right] \leq \frac{1}{E[V]} + \frac{\text{Var}(V)}{a^3}.$$

We now prove Lemma 4.

Proof. Our proof follows the proof approach in Theorem 1 in [30], modified to work with an ℓ_2 bound on the score gradients and simplified for our sampling scheme.

Assume that the positive element is z_1 and thus the negative elements are z_2, \ldots, z_m.

Let $U = \exp(\beta s_1) \beta \nabla s_1 + \frac{1}{\alpha} \sum_{j \in S} \exp(\beta s_j) \beta \nabla s_j$ and $V = \exp(\beta s^+) + \frac{1}{\alpha} \sum_{j \in S} \exp(\beta s_j)$. We have that $-\beta \nabla s_1 + E[U] = \nabla \mathcal{L}[\xi_1]$ and $E[g] = -\beta \nabla s_1 + E[V]$. We thus want to show that $E[\frac{U}{V}] \approx \frac{E[U]}{E[V]}$.

Let k_1, k_2, \ldots, k_c be the c elements of S. We have that

$$E \left[\frac{U}{V} \right] = E \left[\frac{\exp(\beta s_1) \beta \nabla s_1 + \frac{1}{\alpha} \sum_{j=1}^c \exp(\beta s_j) \beta \nabla s_j}{\exp(\beta s_1) + \frac{1}{\alpha} \sum_{j=1}^c \exp(\beta s_j)} \right] = \exp(\beta s_1) \beta \nabla s_1 E \left[\frac{1}{V} \right] + E \left[\frac{1}{\alpha} \sum_{j=1}^c \exp(\beta s_j) \beta \nabla s_j \right] \quad (4)$$

We first bound the first term in Equation (4) from above and below.

We have that $V \geq m \exp(-\beta)$ and $\text{Var}(V) \leq \frac{c \exp(2\beta)}{\alpha^2}$. Thus by Lemma 7 we have that

$$\frac{1}{E[V]} \leq E \left[\frac{1}{V} \right] \leq \frac{1}{E[V]} + \frac{c \exp(2\beta)}{\alpha^2 E[V]} = \frac{1}{E[V]} + \frac{\exp(5\beta)}{\alpha m^2}.$$

This implies that

$$\frac{\exp(\beta s_1) \beta \nabla s_1}{Z} \leq \exp(\beta s_1) \beta \nabla s_1 E \left[\frac{1}{V} \right] \leq \frac{\exp(\beta s_1) \beta \nabla s_1}{Z} + \frac{\exp(6\beta) \beta \nabla s_1}{\alpha m^2} \quad (5)$$

We now bound the second equation in Equation (4).

Let $S_{c-1} = \sum_{j=1}^{c-1} \exp(\beta s_j)$. We have that

$$E \left[\frac{\frac{1}{\alpha} \sum_{j=1}^c \exp(\beta s_j) \beta \nabla s_j}{\exp(\beta s_1) + \frac{1}{\alpha} \sum_{j=1}^c \exp(\beta s_j)} \right] = \frac{c}{\alpha} E \left[\frac{\exp(\beta s_{c-1}) \beta \nabla s_{c-1}}{\exp(\beta s_1) + \frac{1}{\alpha} S_{c-1} + \frac{1}{\alpha} \exp(\beta s_1)} \right] = \frac{c}{\alpha m} \sum_{i=2}^m \exp(\beta s_i) \beta \nabla s_i \left[\frac{1}{\exp(\beta s_1) + \frac{1}{\alpha} S_{c-1} + \frac{1}{\alpha} \exp(\beta s_1)} \right]$$

$$= \sum_{i=2}^m \exp(\beta s_i) \beta \nabla s_i \left[\frac{1}{\exp(\beta s_1) + \frac{1}{\alpha} S_{c-1} + \frac{1}{\alpha} \exp(\beta s_1)} \right] \quad (6)$$

Now we have that

$$E \left[\exp(\beta s_1) + \frac{1}{\alpha} S_{c-1} + \frac{1}{\alpha} \exp(\beta s_1) \right] = \exp(\beta s_1) + \frac{c - 1}{c} Z^+ + \frac{1}{\alpha} \exp(\beta s_1)$$

$$= Z - \frac{1}{c} Z^+ + \frac{1}{\alpha} \exp(\beta s_1).$$
where \(Z^- \) is the partition function restricted to just the negatives.

Using \(Z \geq Z^- \) and \(m \exp(-\beta) \leq Z \leq m \exp(\beta) \), we have that
\[
Z \left(1 - \frac{1}{c} \right) \leq Z - \frac{1}{c} Z^- + \frac{1}{\alpha} \exp(\beta s_i) \leq Z \left(1 + \frac{\exp(2\beta)}{c} \right),
\]
and thus by Lemma 7 we have that
\[
\frac{1}{Z} \left(1 - \frac{\exp(2\beta)}{c} \right) \leq E \left[\frac{1}{\exp(\beta s_1) + \frac{1}{\alpha} S_{c-1} + \frac{1}{\alpha} \exp(\beta s_1)} \right] \leq \frac{1}{Z(1 - \frac{1}{c})} + \frac{1}{\alpha^2} m \exp(-3\beta)
\leq \frac{1}{Z(1 - \frac{1}{c})} + \exp(5\beta)
\leq \frac{1}{Z} \left(1 + O\left(\frac{1}{c} \right) \right) + \frac{\exp(5\beta)}{\alpha m^2}
= \frac{1}{Z} + \frac{\exp(O(\beta))}{\alpha m^2}.
\]

We conclude that
\[
E \left[\frac{1}{\exp(\beta s_1) + \frac{1}{\alpha} S_{c-1} + \frac{1}{\alpha} \exp(\beta s_1)} \right] = \frac{1}{Z} \pm \frac{\exp(O(\beta))}{\alpha m^2}. \tag{7}
\]

Continuing Equation (6) by applying Inequality (7), we have that
\[
E \left[\frac{1}{\exp(\beta s_1)} \sum_{j=1}^{c} \exp(\beta s_{k_j}) \frac{\beta \nabla s_{k_j}}{Z} + \frac{1}{\alpha} \sum_{j=1}^{c} \exp(\beta s_{k_j}) \frac{\beta \nabla s_{k_j} \exp(\beta)}{\alpha m^2} \right]
= \sum_{i=2}^{m} \left(\frac{\exp(\beta s_i) \beta \nabla s_i}{Z} \pm \frac{\exp(\beta s_{k_j}) \beta \nabla s_{k_j} \exp(\beta)}{\alpha m^2} \right)
= \left(\sum_{i=2}^{m} \frac{\exp(\beta s_i) \beta \nabla s_i}{Z} \right) \pm \frac{\exp(O(\beta))}{\alpha m^2} \sum_{i=2}^{m} \exp(\beta s_i) \nabla s_i
= \left(\sum_{i=2}^{m} \frac{\exp(\beta s_i) \beta \nabla s_i}{Z} \right) \pm \frac{\exp(O(\beta))}{\alpha m^2} \sum_{i=2}^{m} \nabla s_i. \tag{8}
\]

Combining Inequalities (5) and (8), we have that
\[
E \left[\frac{U}{V} \right] - E \left[\frac{U}{V} \right] = \pm \frac{\exp(O(\beta))}{\alpha m^2} \sum_{i=1}^{m} \nabla s_i,
\]
and thus
\[
\left\| E \left[\frac{U}{V} \right] - E \left[\frac{U}{V} \right] \right\|_2 = \frac{\exp(O(\beta))}{\alpha m^2} \sum_{i=1}^{m} \| \nabla s_i \|
= \frac{\exp(O(\beta)) M}{\alpha m}.
\]

We can now prove Theorem 5.

Proof. We use Theorem 2 to bound the bias due to the staleness of the cache and Lemma 4 to bound the bias due to using a sampled cache. We can then apply Lemma 6 to finish the proof. \(\square \)