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Abstract

Reliable yet efficient evaluation of generalisation performance of a proposed archi-
tecture is crucial to the success of neural architecture search (NAS). Traditional
approaches face a variety of limitations: training each architecture to completion
is prohibitively expensive, early stopped validation accuracy may correlate poorly
with fully trained performance, and model-based estimators require large train-
ing sets. We instead propose to estimate the final test performance based on a
simple measure of training speed. Our estimator is theoretically motivated by
the connection between generalisation and training speed, and is also inspired by
the reformulation of a PAC-Bayes bound under the Bayesian setting. Our model-
free estimator is simple, efficient, and cheap to implement, and does not require
hyperparameter-tuning or surrogate training before deployment. We demonstrate
on various NAS search spaces that our estimator consistently outperforms other
alternatives in achieving better correlation with the true test performance rankings.
We further show that our estimator can be easily incorporated into both query-based
and one-shot NAS methods to improve the speed or quality of the search.

1 Introduction

Reliably estimating the generalisation performance of a proposed architecture is crucial to the success
of Neural Architecture Search (NAS) but has always been a major bottleneck in NAS algorithms [13].
The traditional approach of training each architecture for a large number of epochs and evaluating it
on validation data (full training) provides a reliable performance measure, but requires prohibitively
large computational resources on the order of thousands of GPU days [55, 39, 56, 38, 13]. This
motivates the development of methods for speeding up performance estimation to make NAS practical
for limited computing budgets.

A popular simple approach is early-stopping, which offers a low-fidelity approximation of generalisa-
tion performance by training for fewer epochs [27, 14, 25]. However, if we stop training early and
evaluate the set of models on validation data, their relative performance ranking may not correlate
well with the performance ranking of the fully-trained models [53], i.e. their relative performance on
the test set after the entire training budget has been used. Another line of work focuses on learning
curve extrapolation [10, 23, 3], which trains a surrogate model to predict the final generalisation
performance based on the initial learning curve or meta-features of the architecture. However, the
training of the surrogate often requires hundreds of fully evaluated architectures to achieve satisfac-
tory extrapolation performance and the hyper-parameters of the surrogate also need to be optimised.
Alternatively, the idea of weight sharing is adopted in one-shot NAS methods to speed up evaluation
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[36, 28, 47]. Despite leading to significant cost-saving, weight sharing heavily underestimates the
true performance of good architectures and is unreliable in predicting the relative ranking among
architectures [49, 52]. A more recent group of estimators claim to be zero-cost [32, 1]. Yet, their
performance is often not competitive with the state of the art, inconsistent across tasks and cannot be
further improved with greater training budgets.

In view of the above limitations, we propose a simple model-free method, Training Speed Estimation
(TSE), which provides a reliable yet computationally cheap estimate of the generalisation performance
ranking of a set of architectures. Our method is inspired by recent empirical and theoretical results
linking training speed and generalisation [17, 30] and measures the training speed of an architecture
by summing the training losses of the commonly-used SGD optimiser during training. We empirically
show that our estimator can outperform strong existing approaches to predict the relative performance
ranking among architectures, and can remain effective for a variety of search spaces and datasets.
Moreover, we verify its usefulness under different NAS settings and find it can speed up query-based
NAS approaches significantly as well improve the performance of one-shot and differentiable NAS.
Our code is available at https://github.com/rubinxin/TSE.

2 Method

Motivation The theoretical relationship between training speed and generalisation is described
in a number of existing works. Stability-based generalisation bounds for SGD [17, 29] bound the
generalisation gap of a model based on the number of optimisation steps used to train it. These
bounds predict that models which train faster obtain a lower worst-case generalisation error. In
networks of sufficient width, a neural tangent kernel-inspired complexity measure can bound both
the worst-case generalisation gap and the rate of convergence of (full-batch) gradient descent [2, 6].
However, these bounds cannot distinguish between models that are trained for the same number of
steps but attain near-zero loss at different rates as they ignore the training trajectory.

We instead draw inspiration from another approach which incorporates properties of the trajectory
taken during SGD, seen in the information-theoretic generalisation bounds of [33] and [34]. These
bounds depend on the variance of gradients computed during training, a quantity which provides a
first-order approximation of training speed by quantifying how well gradient updates computed for
one mini-batch generalize to other points in the training set. In view of this link, the empirical and
theoretical findings in recent work [15, 43], which show that a notion of the variance of gradients
over the training data is correlated with generalisation, become another piece of supporting evidence
for training speed as a measure of generalisation.

Finally, [30] prove that, in the setting of linear models and infinitely wide deep models performing
Bayesian updates, the marginal likelihood, which is a theoretically-justified tool for model selection
in Bayesian learning, can be bounded by a notion of training speed. This notion of training speed is
defined as a sum of negative log predictive likelihoods, terms that resemble the losses on new data
points seen by the model during an online learning procedure. Maximising the marginal likelihood is
also equivalent to minimising a PAC-Bayesian bound on the generalisation error of a model, as shown
by [16]. In particular, this suggests that using the TSE approach for model selection in Bayesian
models is equivalent to minimizing an estimate of a PAC-Bayes bound. Because the NAS settings
we consider in our experiments use neural networks rather than Bayesian models and due to space
constraints, we defer the statement and proof of this result to Appendix A.

Training Speed Estimation The results described above suggest that leveraging a notion of training
speed may benefit model selection procedures in NAS. Many such notions exist in the generalisation
literature: [18] count the number of optimisation steps needed to attain a loss below a specified
threshold, while [17] consider the total number of optimisation steps taken. Both measures are strong
predictors of generalisation after training, yet neither is suitable for NAS, where we seek to stop
training as early as possible if the model is not promising.

We draw inspiration from the Bayesian perspective and the PAC-Bayesian bound discussed above and
present an alternate estimator of training speed that amounts to the area under the model’s training
curve. Models that train quickly attain a low loss after few training steps, and so will have a lower
area-under-curve than those which train slowly. This addresses the shortcomings of the previous two
methods as it is able to distinguish models both early and late in training.
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Definition 1 (Training Speed Estimator). Let ` denote a loss function, fθ(x) the output of a neural
network f with input x and parameters θ, and let θt,i denote the parameters of the network after t
epochs and i mini-batches of SGD. After training the network for T epochs2, we sum the training
losses collected so far to get the following Training Speed Estimate (TSE):

TSE =

T∑
t=1

[
1

B

B∑
i=1

`
(
fθt,i(Xi),yi

)]
(1)

where l is the training loss of a mini-batch (Xi,yi) at epoch t and B is the number of training steps
within an epoch.

This estimator weights the losses accumulated during every epoch equally. However, recent work
suggests that training dynamics of neural networks in the very early epochs are often unstable and
not always informative of properties of the converged networks [24]. Therefore, we hypothesise
that an estimator of network training speed that assigns higher weights to later epochs may exhibit a
better correlation with the true generalisation performance of the final trained network. On the other
hand, it is common for neural networks to overfit on their training data and reach near-zero loss after
sufficient optimisation steps, so attempting to measure training speed solely based on the epochs near
the end of training will be difficult and likely suffer degraded performance on model selection.

To verify whether it is beneficial to ignore or downplay the information from early epochs of training,
we propose two variants of our estimator. The first, TSE-E, treats the first few epochs as a burn-in
phase for θt,i to converge to a stable distribution P (θ) and starts the sum from epoch t = T − E + 1
instead of t = 1. In the case where E = 1, we start the sum at t = T and our estimator corresponds
to the sum over training losses within the most recent epoch t = T .

TSE-E =

T∑
t=T−E+1

[
1

B

B∑
i=1

`
(
fθt,i(Xi),yi

)]
, TSE-EMA =

T∑
t=1

γT−t

[
1

B

B∑
i=1

`
(
fθt,i(Xi),yi

)]

The second, TSE-EMA, does not completely discard the information from the early training trajectory
but takes an exponential moving average of the sum of training losses with γ = 0.9, thus assigning
higher weight to the sum of losses obtained in later training epochs.

We empirically show in Section 4.2 that our proposed TSE and its variants (TSE-E and TSE-EMA),
despite their simple form, can reliably estimate the generalisation performance of neural architectures
with a very small training budget, can remain effective for a large range of training epochs, and
are robust to the choice of hyperparameters such as the summation window E and the decay rate
γ. However, our estimator is not meant to replace the validation accuracy at the end of training or
when the user can afford large training budget. In those settings, validation accuracy remains as
the gold standard for evaluating the true test performance of architectures. Ours is just a speedy
performance estimator for NAS, aimed at giving an indication early in training about an architecture’s
generalisation potential under a fixed training set-up.

Our choice of using the training loss, instead of the validation loss, to measure training speed is
an important component of the proposed method. While it is possible to formulate an alternative
estimator, which sums the validation losses of a model early in training, this estimator would no longer
be measuring training speed. In particular, such an estimator would not capture the generalisation
of gradient updates from one mini-batch to later mini-batches in the data to the same extent as TSE
does. Indeed, we hypothesise that once the optimisation process has reached a local minimum, the
sum over validation losses more closely resembles a variance-reduction technique that estimates
the expected loss over parameters sampled via noisy SGD steps around this minimum. We show in
Figure 1 and Appendix C that our proposed sum over training losses (TSE) outperforms the sum over
validation losses (SoVL) in ranking models in agreement with their true test performance.

3 Related Work

Various approaches have been developed to speed up architecture performance estimation, thus
improving the efficiency of NAS. Low-fidelity estimation methods accelerate NAS by using the

2T can be far from the total training epochs Tend used in complete training
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validation accuracy obtained after training architectures for fewer epochs (namely early-stopping)
[27, 14, 56, 53], training a down-scaled model with fewer cells during the search phase [56, 38],
or training on a subset of the data [22]. However, low-fidelity estimates underestimate the true
performance of the architecture and can change the relative ranking among architectures [13]. This
undesirable effect on relative ranking is more prominent when the cheap approximation set-up is
dissimilar to the full training procedure [53]. As shown in Fig. 1 below, the validation accuracy at
early epochs of training suffers low rank correlation with the final test performance. Another class
of performance estimation methods trains a regression model to extrapolate the learning curve from
what is observed in the initial phase of training or predict the final test accuracy purely based on
architecture structure. Regression model choices that have been explored include Gaussian processes
with a tailored kernel function [41, 19], an ensemble of parametric functions [10] , tree-based models
[7, 20, 50], a Bayesian neural network [23] and a ν-support vector machine regressor (ν-SVR)[3]
which achieves state-of-the-art prediction performance [45]. Although these model-based methods
can often predict the performance ranking better than their model-free early-stopping counterparts,
they require a relatively large amount of fully evaluated architecture data (e.g. 100 fully evaluated
architectures in [3]) to train the regression surrogate properly and optimise the model hyperparameters
in order to achieve a good prediction performance. The high computational cost of collecting the
training set makes such model-based methods less favourable for NAS unless the practitioner has
already evaluated hundreds of architectures on the target task. Moreover, both low-fidelity estimates
and learning curve extrapolation estimators are empirically developed and lack theoretical motivation.

Weight sharing is employed in one-shot or gradient-based NAS methods to reduce computational costs
[36, 28, 47]. Under the weight-sharing setting, all architectures are considered as subnetworks of a
supernetwork. Only the weights of the supernetwork are trained while the architectures (subnetworks)
inherit the corresponding weights from the supernetwork. This removes the need for retraining
each architecture during the search and thus achieves a significant speed-up. However, the weight
sharing ranking among architectures often correlates poorly with the true performance ranking
[49, 52, 54], meaning architectures chosen by one-shot NAS are likely to be sub-optimal when
evaluated independently [54]. In Section 4.4, we demonstrate that we improve the performance of
weight sharing in correctly ranking architectures by combining our estimator with it.

Recently, several works propose to estimate network performance without training by using methods
from the pruning literature [1] or examining the covariance of input gradients across different input
images [32]. Such methods incur near-zero computational costs but their performances are often
not competitive and do not generalise well to larger search spaces, as shown in Section 4.2 below.
Moreover, these methods can not be improved with additional training budget. Another line of work
studies the effect of architecture encoding on speeding up the search [48, 44, 40]. However, learning
better latent representation for architectures is orthogonal to the performance estimation.

Apart from the above mentioned performance estimators used in NAS, many complexity measures
have been proposed to analyse the generalisation performance of deep neural networks. [18] provides
a rigorous empirical analysis of over 40 such measures. This investigation finds that sharpness-based
measures [31, 21, 35, 12] (including PAC-Bayesian bounds) obtain a good correlation with test set
performance, but their estimation require adding randomly generated perturbations to the network
parameters and the magnitude of the perturbations needs to be carefully optimised with additional
training, making them unsuitable performance estimators for NAS. Optimisation-based complexity
measures, which counts the number of steps required to reach a certain loss value, also perform well
in predicting generalisation. However, as discussed in Section 2, it is closely related to our approach
but not as easy to deploy as our estimators under the NAS setting.

4 Experiments

In this section, we first evaluate the quality of our proposed estimators in predicting the generalisation
performance of architectures against a number of baselines (Section 4.2), and then demonstrate that
simple incorporation of our estimators can significantly improve the search speed and quality of both
query-based and weight-sharing NAS (Sections 4.3 and 4.4).

We measure the true generalisation performance of architectures with their final test accuracy after
being completely trained for Tend epochs. To ensure fair assessment of the architecture performance
only, we adopt the common NAS protocol where all architectures searched/compared are trained
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Table 1: NAS search spaces used. The true test accuracy of architectures from each search space
is obtained after training with SGD on the corresponding image datasets for Tend epochs. Ntotal
denotes the total possible architectures exist in the search space and Nsamples denotes the number of
architectures we sample/generate for our experiments.
Search space Tend Nsamples Ntotal Image datasets

NASBench-201 (NB201) [11] 200 6466 15625 CIFAR10, CIFAR100, ImageNet-16-120
DARTS [28, 42] 100 5000 O(242) CIFAR10
ResNet/ResNeXt [37] 100 50000 O(226) CIFAR10
RandWiredNN (RWNN) [46, 40] 250 69 × 8 O(2378) Flower102

and evaluated under the same set of hyper-parameters. Also following [50] and [11], we compare
different estimators based on their Spearman’s rank correlation which measures how well their
predicted ranking correlates with the true test ranking among architectures.

We compare the following performance estimation methods: our proposed estimators TSE, TSE-
EMA and TSE-E described in Section 2 and simply the training losses at each mini batch
(TLmini). Sum of validation losses over all preceding epochs (SoVL)3 is similar to TSE but
uses the validation losses. Validation accuracy at an early epoch (VAccES) corresponds to the
early-stopping practice whereby the user estimates the final test performance of a network using
its validation accuracy at an early epoch T < Tend. The learning curve extrapolation (LcSVR)
method is the state-of-the-art extrapolation approach proposed in [3] which trains a ν-SVR on previ-
ously evaluated architecture data to predict the final test accuracy of new architectures. The inputs
for the SVR regression model comprise architecture meta-features and learning curve features up to
epoch T . In our experiments, we optimise the SVR hyperparameters via cross-validation following
[3]. Three recently proposed zero-cost baselines are also included: an estimator based on input
Jacobian covariance (JavCov) [32] and two adapted from pruning techniques SNIP and SynFlow
[1]. We also compared to XGBoost [7] and LGBoost [20] in Appendix H.

We run experiments on architectures generated from a diverse set of NAS search spaces listed in
Table 1 to show that our estimators generalise well (more details are provided in Appendix B). Note
Nsamples = 6466 for NASBench-201 (NB201) as it is the number of unique architectures in the
space. We use the architecture information released in NAS-Bench-301 [42] for DARTS and in
[37] for ResNet and ResNeXt. As for RandWiredNN (RWNN) search space [46, 40], although the
number of possible randomly wired architectures are immense, they are generated via a random
graph generator which is defined by 3 hyperparameters. We thus uniformly sampled 69 sets of
hyperparameter values for the generator and generated 8 randomly wired neural networks from each
hyperparameter value, leading to Nsamples = 69×8 = 552. Due to space constraints, we include the
results on selecting among the generator hyperparameters for RWNN in Appendix E. All experiments
were conducted on an internal cluster of 16 RTX2080 GPUs.

4.1 Hyperparameter of TSE estimators

Our proposed TSE estimators require very few hyperparameters: the summation window size E
for TSE-E and the decay rate γ for TSE-EMA, and we show empirically that our estimators are
robust to these hyperparameters. For the summation window size E, we test different size values,
E ∈ [1, 10, 20, . . . , 70], on various search spaces and image datasets in Appendix D and find
that E = 1 consistently gives the best results across all cases. This, together with the almost
monotonic improvement of our estimator’s rank correlation score over the training budgets, supports
our hypothesis discussed in Section 2 that training information in the more recent epochs is more
valuable for performance estimation. Note that TSE-E with E = 1 corresponds to the sum of training
losses over all the mini-batches in one single epoch. We also conducted an ablation study on summing
training losses below one epoch, E ∈ [0.1, 0.3, 0.5, 0.7]4, in Appendix D. We observe again that
summing over the entire epoch (E = 1) gives the best performance; this might be because E = 1

3Note, we flip the sign of TSE/TSE-EMA/TSE-E/SoVL/TLmini (which we want to minimise) to compare to
the Spearman’s rank correlation of the other methods (which we want to maximise).

4For example, E = 0.1 corresponds to the sum of training losses over the last 10% of the mini-batches in an
epoch
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Figure 1: Rank correlation performance of various baselines for architectures from a variety of search
spaces: (a) to (c) NB201 architectures on three image datasets, (d) RWNNs on Flowers102 and (e) to
(h) ResNet and ResNeXt architectures on CIFAR10. In all cases, our TSE-EMA and TSE-E achieve
superior rank correlation with the true test performance in much fewer epochs than other baselines.
In (f) and (g), we evaluate estimators on the top 1% of the ResNet/ResNeXt architectures and show
that our TSE-EMA and TSE-E can remain competitive on ranking among top architectures, which
are particularly desirable for NAS. In (a) and (c), we mark SNIP in a violet dotted line labelled with
its rank correlation value as it falls out of the plotted range.

covers the entire training set as is done by the Bayesian marginal likelihood and PAC-Bayes bounds,
which are the theoretical inspirations for our method. On the other hand, we observe that E ≥ 0.3
can achieve relatively close performance as E = 1, thus motivating our use of a small number of
mini-batches to estimate TSE in one-shot and gradient-based NAS in Section 4.4.

As for γ, we show in Appendix D that TSE-EMA is robust to a range of popular choices γ ∈
[0.9, 0.95, 0.99, 0.999] across various datasets and search spaces. Specifically, the performance
difference among these γ values are almost indistinguishable compared to the difference between
TSE-EMA and TSE-E. Thus, we set E = 1 and γ = 0.999 in all the following experiments and
recommend them as the default choice for potential users who want to apply TSE-E and TSE-EMA
on a new task without additional tuning.

4.2 Comparison of Performance Estimation Quality

Robustness across different NAS search spaces We now compare our TSE estimators against
a variety of other baselines. To mimic the realistic NAS setting [13], we assume that all of the
estimators can only use the information from early training epochs and limit the maximum budget
to T ≤ 0.5Tend in this set of experiments. This is because NAS methods often need to evaluate
hundreds of architectures or more during the search and thus rarely use evaluation budget beyond
0.5Tend so as to keep the search cost practical/affordable. The results on a variety of the search
spaces are shown in Fig. 1. Our proposed estimator TSE-EMA and TSE-E, despite their simple form
and cheap computation, outperform all other methods under limited evaluation budget T < 0.5Tend
for all search spaces and image datasets. They also remain very competitive on ranking among the
top 1% ResNet/ResNeXt architectures as shown in Fig. 1(f) and (g). This is particularly desirable for
NAS for which we need to distinguish not only the good architectures from the bad ones but more
importantly the top architectures from the merely good ones.

It is worth highlighting that TSE-EMA achieves superior performance over TSE-E especially when
T is small. This suggests that although the training dynamics at early epochs might be noisy, they
still carry some useful information for explaining the generalisation performance of the network.
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Figure 2: Rank correlation performance of various baselines for 5000 small 8-cell architectures
(a) and 150 large 20-cell architectures (b) to (d) from DARTS search space on CIFAR10. We use
NAS-Bench-301 dataset(NAS301) for computing (a) and for large architectures, we test three training
hyperparameter set-ups with different initial learning rates, learning rate schedulers and batch sizes as
denoted in the subcaptions. On all four settings, our TSE-E again consistently achieves superior rank
correlation in fewer epochs than other baselines. Note all three zero-cost estimators perform poorly
(below the plotted range) on DARTS search space across all settings. We denote them in dotted lines
with their rank correlation value labelled.

The learning curve extrapolation method, LcSVR, is competitive. However, the method requires 100
fully trained architecture data to fit the regression surrogate and optimise its hyperparamters via cross
validation; a large amount of computational resources are needed to collect these training data in
practice. The zero-cost measures JacCov and SynFlow achieve good rank correlation at initialisation
but are quickly overtaken by TSE-EMA and TSE-E once the training budget exceeds 6-7 epochs.
SNIP performs poorly and falls out of the plot range in Fig. 1 (a) and 1 (c).

We further validate on the architectures from the more popular search space used in DARTS. One
potential concern is that if models are trained using different hyperparameters that influence the
learning curve (e.g. learning rate), the prediction performance of our proposed estimators will
be affected. However, this is not a problem in NAS because almost all existing NAS methods
[11, 50, 46, 28, 42, 45] search for the optimal architecture under a fixed set of training hyperparameters.
We also follow this fixed-hyperparamter set-up in our work. Verifying the quality of various estimators
for predicting the generalisation performance across different hyperparameters lies outside the scope
of this paper but present an interesting direction for future work.

Robustness across different NAS set-ups Here, we conduct experiments to verify the robustness
of our estimators across different NAS set-ups. The relative test performance ranking among the
same set of architectures can vary across different set-ups [49]. On top of the architecture data
from NAS-Bench-301 [42], we also generate several additional architecture datasets; each dataset
correspond to a different set-up (e.g. different architecture depth, initial learning rate, learning rate
scheduler and batch size) and contains 150 large 20-cell architectures which are randomly sampled
from the DARTS space and evaluated on CIFAR10. The results in Fig. 2 show that our estimator
consistently outperforms all the competing methods in comparing architectures under different NAS
set-ups. Note here the curve of TLmini corresponds to the average rank correlation between final
test accuracy and the mini-batch training loss over the epoch. The clear performance gain of our TSE
estimators over TLmini supports our claim that it is the sum of training losses, which measures the
training speed and thus carries the theoretical motivations explained in Section 2, instead of simply
the training loss at a single mini-batch, that gives a good estimation of generalisation performance.
Note the rank correlation of all zero-cost measures drop significantly (e.g. SynFlow drops from 0.74
on NB201 to below 0.2) on the DARTS search space, and even do worse than the training losses at
the first few mini-batches (TLmini at T=1). Also zero-cost measures do not take into account the
training set-up when estimating architecture performance and thus their rank correlation with the true
test accuracy varies largely across the set-ups. Such inconsistent prediction performance, especially
given the measures’ weak performance on the more practical search space, might be undesirable for
real-world NAS applications.
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large training budget, they can estimate the effective range of our estimators based on the minimum
epoch To when overfitting happens among the Ns observed architectures. They can then stop our
estimators early at 0.9To(marked by vertical lines) or switch back to validation accuracy beyond that.
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(b) Bayesian Optimisation (BO)

Figure 4: NAS performance of RE and BO in combined with final validation accuracy Val Acc
(T=200), early-stopping validation accuracy Val Acc (T=10) and our estimator TSE-EMA(T=10) on
NB201. For each subplot, we experiment on the three image datasets: on CIFAR10 (left), CIFAR100
(middle) and ImageNet (right). TSE-EMA leads to the fastest convergence to the top performing
architectures in all cases. The black dashed line is to facilitate the comparison of runtime taken to
reach a certain test error among different variants.

Procedure to decide the effective training budget We include two examples showing the perfor-
mance of our estimator for training budgets beyond 0.5Tend in Fig. 3. Our estimators can outperform
the early-stopping validation accuracy for a relatively wide range of training budgets. Although
they will eventually be overtaken by validation accuracy as the training budget approaches Tend
as discussed in Section 2, the large training budget regime is less interesting for NAS where we
want to maximise the cost-saving by using performance estimators. However, if the user wants
to apply our estimators with a relatively large training budget, we propose a simple method here
to estimate when our estimators would be less effective than validation accuracy. We notice that
that our estimators, TSE-EMA and TSE-E, become less effective when the architectures compared
start to overfit because both of them rely heavily on the lastest-epoch training losses to measure
training speed, which is difficult to estimate when the training losses become too small. Thus, if we
observe one of the architectures compared overfits beyond To < Tend, we can stop the computation
of TSE-E and TSE-EMA early by reverting to a checkpoint at T = 0.9To. We randomly sample
Ns = 10, 50, 100, 500 architectures out of all architectures compared and assume that we have access
to their full learning curves. We then decide the threshold training budget 0.9To (vertical lines) as the
minimum training epoch that overfitting happens among these Ns architectures. We repeat this for
100 random seeds and plot the mean and standard error of the threshold for each Ns in Fig. 3. It is
evident that we can find a quite reliable threshold with a sample size as small as Ns = 10. Please
refer to Appendix F for more analyses.

4.3 Speed up Query-based NAS

In this section, we demonstrate the usefulness of our estimator for NAS by incorporating TSE-EMA,
at T = 10 into several query-based NAS search strategies: Regularised Evolution [38] (a) in Fig.
4), Bayesian Optimisation [5] (b) in Fig. 4) and Random Search [4] (Appendix G). We perform
architecture search on NB201 search space. We compare this against the other two benchmarks
which use the final validation accuracy at T = Tend = 200, denoted as Val Acc (T=200) and the
early-stop validation accuracy at T = 10, denoted as Val Acc (T=10), respectively to evaluate the
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Table 2: Results of performance estimators in one-shot NAS setting over 3 supernetwork training
initialisations. For each supernetwork, we randomly sample 500 random subnetworks for DARTS
and 200 for NB201, and compute their TSE, Val Acc after inheriting the supernetwork weights and
training for B additional mini-batches. Rank correlation measures the estimators’ correlation with
the rankings of the true test accuracies of subnetworks when trained from scratch independently, and
we compute the average test accuracy of the top 10 architectures identified by different estimators
from all the randomly sampled subnetworks.

B Estimator
Rank Correlation Average Accuracy of Top 10 Architectures

NB201-CIFAR10 DARTS NB201-CIFAR10 DARTS

RandNAS FairNAS MultiPaths RandNAS RandNAS FairNAS MultiPaths RandNAS

100 TSE 0.70 (0.02) 0.84 (0.01) 0.83 (0.01) 0.30(0.04) 92.67 (0.12 92.7 (0.1) 92.63 (0.12) 93.64(0.04)
Val Acc 0.44 (0.15) 0.56 (0.17) 0.67 (0.05) 0.11(0.04) 91.47 (0.31) 91.73 (0.21) 91.77 (0.78) 93.20(0.04)

200 TSE 0.70 (0.03) 0.850 (0.01) 0.83 (0.01) 0.32(0.04) 92.70 (0.00) 92.77 (0.06) 92.73 (0.06) 93.55(0.04)
Val Acc 0.41 (0.10) 0.56 (0.17) 0.53 (0.11) 0.09(0.02) 91.53 (0.55) 92.40 (0.10) 92.23 (0.23) 93.34(0.02)

300 TSE 0.71 (0.03) 0.851 (0.00) 0.82 (0.01) 0.34(0.04) 92.70 (0.00) 92.77 (0.06) 92.70 (0.00) 93.65(0.04)
Val Acc 0.44 (0.04) 0.62 (0.08) 0.59 (0.71) 0.06(0.02) 91.20 (0.35) 92.10 (0.50) 91.43 (0.72) 93.31(0.02)

architecture’s generalisation performance. All the NAS search strategies start their search from 10
random initial data and are repeated for 20 seeds. The mean and standard error results over the search
time are shown in Fig. 4. By using our estimator, the NAS search strategies can find architectures
with lower test error given the same time budget or identify the top performing architectures using
much less runtime as compared to using final or early-stopping validation accuracy. The gain of using
our estimator is more significant for NAS methods performing both exploitation and exploration (RE
and BO) than that doing pure exploration (Random Search in Appendix G).

4.4 Improving One-shot and Gradient-based NAS

Different from query-based NAS strategies, which evaluate the architectures queried by training them
independently from scratch, another popular class of NAS methods use weight sharing to accelerate
the evaluation of the validation performance of architectures (subnetworks) and use this validation
information to select architectures or update architecture parameters. Here we demonstrate that our
TSE estimator can also be a plug-in replacement for validation accuracy or loss used in this family of
NAS methods to improve their search performance.

One-shot NAS We first experiment on a classic one-shot method, RandNAS [26], which trains
a supernetwork by uniform sampling, then performs architecture search by randomly sampling
subnetworks from the trained supernetwork and comparing them based on their validation accuracy.
We follow the RandNAS procedure for the supernetwork training but modify the search phase: for
each randomly sampled subnetwork, we train it for B additional mini-batches after inheriting weights
from the trained supernetwork to compute our TSE estimator. Note that although this introduces
some additional cost, our estimator eliminates the cost of evaluation on the validation set as it
doesn’t require validation data. Specifically, for a single DARTS architecture evaluated on CIFAR10,
the RandNAS protocol takes on average 6.6 seconds to compute the validation accuracy on entire
validation set, and 7.5 seconds to train for B = 100 additional mini-batches to compute our TSE
estimator. On NB201, the recommended protocol for CIFAR10 takes on average 6.4 seconds per
architecture to compute validation accuracy and only 4.4 seconds to train for B = 100 additional
mini-batches.

In our experiments, to ensure fair comparison, we recompute the validation accuracy of each subnet-
work after the additional training. We also experiment with more advanced supernetwork training
techniques such as FairNAS [9] and MultiPaths [51] and show that our estimators can be applied on
top of these techniques to further improve the rank correlation performance.

We evaluate the rank correlation performance and average test accuracy of the top-10 architectures
recommended by different performance estimators among 500 random subnetworks sampled from the
DARTS supernet5 and 200 random subnetworks from the NB201 supernet. We repeat the experiments

5We use NAS-Bench-301 to compute the true test accuracy of each subnetwork when trained independently
from scratch.
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Figure 5: Test accuracy of the subnetwork recommended by differentiable NAS methods over the
search epochs. Original DARTS, DrNAS (in green) use the gradient of validation loss to update the
architecture parameters but their variants (DARTS-TSE and DrNAS-TSE) (in red) uses that of our
estimator computed over 100 mini-batches. TSE help mitigate the overfitting of DARTS on NB201.

on B = 100, 200, 300 and over 3 different supernetworks training seeds. The mean and standard
deviation results are shown in Table 2. It is evident that our TSE leads to 170% to 300% increase
in rank correlation performance compared to validation accuracy and achieves higher average test
accuracy of the top 10 architectures across all supernetwork training techniques and search spaces.
This implies that our estimator can lead to architectures with better generalisation performance under
the popular weight-sharing setting. We include the results for more estimators in Appendix G.

Differentiable NAS Finally, we briefly demonstrate the use of our estimators on differentiable
NAS. We modify two differentiable approaches, DARTS [28] and DrNAS [8] by directly replacing
the derivative of the validation loss with that of our TSE estimator computed over 100 mini-batches
(B=100 as in one-shot NAS setting above) to update the architecture parameters. We include in
Appendix G additional details of our adaptation. We test both approaches and their TSE variants on
the NB201-CIFAR10 as well as DARTS search space. Again we use NAS-Bench-301 to obtain the
true test performance of searched DARTS architectures on CIFAR10 (DARTS-NB301). The test
accuracy of the subnetwork recommended over each search epoch is shown in Figure 5: we average
over 3 seeds for NB201-CIFAR10 and use the default seed for DARTS-NB301. The results show that
a simple integration of our estimator into the differentiable NAS framework can lead to clear search
performance improvement and even mitigate the overfitting to skip-connections problem suffered by
DARTS on the NB201 search space (a). The results for DARTS architectures found with our TSE
estimator but retrained under the full DARTS training protocol [28] are shown in Appendix G, which
again show the benefit of using our estimator.

5 Conclusion

We propose a simple yet reliable method for estimating the generalisation performance of neural
architectures based on their training speed as measured by the sum of early training losses. Our
estimator is theoretically motivated by the connection between training speed and generalisation, and
outperforms other efficient estimators in terms of rank correlation with the true test performance
under different search spaces as well as different training set-ups. Moreover, it can lead to significant
speed-ups and performance gains when applied to different NAS strategies including one-shot and
differentiable methods. We believe our estimator can be a very useful tool for achieving efficient
neural architecture search. Our estimators, by reducing the computation and time required for
performance evaluation during NAS, can significantly reduce the environmental costs incurred by
NAS as AutoML becomes more widely used in industry. These efficiency gains can further enable
potential users with limited computation budgets to use NAS methods.
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