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Abstract

Recently, deep multi-agent reinforcement learning (MARL) has shown the promise
to solve complex cooperative tasks. Its success is partly because of parameter
sharing among agents. However, such sharing may lead agents to behave similarly
and limit their coordination capacity. In this paper, we aim to introduce diversity in
both optimization and representation of shared multi-agent reinforcement learning.
Specifically, we propose an information-theoretical regularization to maximize the
mutual information between agents’ identities and their trajectories, encouraging
extensive exploration and diverse individualized behaviors. In representation,
we incorporate agent-specific modules in the shared neural network architecture,
which are regularized by L1-norm to promote learning sharing among agents while
keeping necessary diversity. Empirical results show that our method achieves
state-of-the-art performance on Google Research Football and super hard StarCraft
II micromanagement tasks’.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has drawn increasing interest in recent
years, which provides a promise for solving many real-world challenging problems, such as sensor
networks [1]], traffic management [2], and coordination of robot swarms [3]. However, learning
effective policies for such complex multi-agent systems remains challenging. One central problem is
that the joint action-observation space grows exponentially with the number of agents, which imposes
high demand on the scalability of learning algorithms.

To address this scalability challenge, policy decentralization with shared parameters (PDSP) is widely
used, where agents share their neural network weights. Parameter sharing significantly improves
learning efficiency because it dramatically reduces the total number of policy parameters, while
experiences and gradients of one agent can be used to train others. Enjoying these advantages, many
advanced deep MARL approaches adopt the PDSP paradigm, including value-based methods [4H8]],
policy gradients [9-13] and communication learning algorithms [[14}[15]]. These approaches achieve
state-of-the-art performance on tasks such as StarCraft II micromanagement [[16].

While parameter sharing has been proven to accelerate training [[17], its drawbacks are also apparent
in complex tasks. These tasks typically require substantial exploration and diversified strategies
among agents. When parameters are shared, agents tend to acquire homogeneous behaviors because
they typically adopt similar actions under similar observations, preventing efficient exploration and
the emergence of sophisticated cooperative policies. This tendency becomes particularly problematic
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for many challenging multi-agent coordination tasks, hindering deep MARL from broader applica-
tions. For example, the unsatisfactory performance of state-of-the-art MARL algorithms on Google
Research Football (Fig. [T} and [18]]) highlights an urgent demand for diverse behaviors.

Notably, sacrificing the merits of parameter shar-
ing for diversity is also unfavorable. Like hu-
mans, sharing necessary experience or under-
standing of tasks can broadly accelerate coop-
eration learning. Without parameter sharing,
agents search in a much larger parameter space,
which may be wasteful because they do not need
to behave differently all the time. Therefore, the
question is how to adaptively trade-off diversity
and sharing. In this paper, we solve this dilemma
by proposing several structural and learning nov-
elties.

To encourage diversity, we propose a novel
information-theoretical objective to maximize
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Figure 1: Shared parameters induce behaviors
(left) and can hardly learn successful policies on
the challenging Google Research Football task.
Our method learns sophisticated cooperative strate-
gies by trading off diversity and sharing (right).

the mutual information between agents’ identi-
ties and trajectories. This objective enables each agent to distinguish themselves from others and
thus involves the contribution of all agents. Accordingly, we derive an intrinsic reward for motivating
diversity and optimize it with the global environmental reward by learning the total Q-function as a
combination of individual Q-functions. Structurally, we further decompose individual Q-functions
as the sum of shared and non-shared local Q-functions for sharing experiences while maintaining
representation diversity. We hope agents can use and expand shared knowledge whenever possible.
Thus we introduce L1 regularization on each non-shared Q-function, encouraging agents to share
and be diverse when necessary on several critical actions. Combining these novelties achieves a
dynamic balance between diversity and homogeneity, efficiently catalyzing adaptive and sophisticated
cooperation.

We benchmark our approach on Google Research Football (GRF) [[18], and StarCraft II micro-
management tasks (SMAC) [16]. The extraordinary performance of our approach on challenging
benchmarking tasks shows that our approach achieve significantly higher coordination capacity than
baselines while using diversity as a catalyst for more robust and talent policies. To our best knowledge,
our approach achieves state-of-the-art performance on SMAC super hard maps and challenging GRF
multi-agent tasks like academy_3_vs_1_with_keeper, academy_counterattack_hard, and a
full-field scenario 3_vs_1_with_keeper (full field).

2 Background

A fully cooperative multi-agent task can be formulated as a Dec-POMDP [19]], which is defined as a
tuple G = hN; S; A;P;R; O; ;n; 1, where N is a finite set of n agents, S 2 S is the true state of
the environment, A is the set of actions, and 2 [0; 1) is a discount factor. At each time step, each
agent i 2 N receives his own observation 0; 2  according to the observation function O(Ss; i), and
selects an action @; 2 A, which results in a joint action vector a. The environment then transitions to
a new state S’ based on the transition function P (s'js; @), and inducing a global reward r = R(s; @)
shared by all the agents. Each agent has its own action-observation history j 2 Ti = ( ; A)*. Due
to partial observability, each agent conditions its policy F.;(a.j I) on j. The joint pohcy induces

the joint action-value function Q¢(S;@) = Esyq:a04 [ 120 TtiSo=S;a0=2a; |

2.1 Centralized Training with Decentralized Execution

Our method adopts the framework of centralized training with decentralized execution (CTDE) [9,
20, 41 150 211 221 16, [11]. This framework tackles the exponentially growing joint action space by
decentralizing the control policies while adopting centralized training to learn cooperation. Agents
learn in a centralized manner with access to global information but execute based on their local
action-observation history. One promising approach to implement the CTDE framework is value
function factorization. The IGM (individual-global-max) principle [21] guarantees the consistency
between the local and global greedy actions. When IGM is satisfied, agents can obtain the optimal



global action by simply choosing the local greedy action that maximizes each agent's individual
utility function Q;. Some algorithms have successfully used the IGM princkilé,[23] to push
forward the progress of MARL.

3 Method

In this section, we present a novel diversity-driven MARL framework (Fig. 2) that balances each
agent's individuality with group coordination, which is a general approach that can be combined with
existing CDTE value factorization methods.

3.1 Identity-Aware Diversity

We rst introduce how to encourage

behavioral diversity by designing in-

trinsic motivations. Intuitively, to

encourage the specialty of individ-

ual trajectories, agents need to be-

have differently to highlight them-

selves from others, taking different

actions and visiting different local ob-

servations. To achieve this goal, we

use an information-theoretic objective

for maximizing the mutual informa- . )
tion between individual trajectory and Figure 2: Schematics of our approach.
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Term 1 is determined by the environment, and we can ignore it when optimizing the mutual
information. The second term quanti es the information gain about agent's action selection when
the identity is given, which measurastion-aware diversity asl (a;idj ). Howeverp(a;j ¢;id) is
typically the distribution induced by-greedy, which only distinguishes the action with the highest
possibility. Therefore, directly optimizing this term conceals most information about the local Q-
functions. To solve this problem, we use the Boltzmann softmax distribution of local Q values to
replacep(a;j ¢;id), which forms a lower bound of terr2 ;

p(aij ¢;id) SoftMax(+Q(a] t;id))
—_— Eid; Iog -

p(ad ) p(aj )
The inequity holds because the KL divergerizg (p(j ;id)kSoftMax(1Q(j ¢;id))) is non-
negative. We maximize this lower bound to optimize Te2m Inspired by variational inference

approaches4], we derive and optimize a tractable lower bound for TeBnat each timestep by
introducing a variational posterior estimatprparameterized by:

Eia; log

3)
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Similar to the second term, the inequality holds because for gqnythe KL divergence
Dk (p(] t;a;id)kg (] t;a;id)) is non-negative. Intuitively, optimizing Eq. 4 encourages agents

Eid; |Og Eid; |Og (4)



to have diverse observations that are distinguishable by agents' identi cation and thus measures
observation-aware diversityasl (0% idj ;a). To tighten the this lower bound, we minimize the KL
divergence with respect to the parameter3he gradient for updating is:

. . . . 0j ;a;id
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5
Based on the lower bounds shown in Eq. 3 and Eg. 4, we introduce intrinsic rewards to optimise the
information-theoretic objective (Eq. 1) for encouraging diverse behaviors:

r' = Eig [ 2Dk (SoftMax( 1Q(j ¢;id))jip(j 1))
+ 1logq (o+1]) t;a;id)  logp(o+sj t;a)]:

We introduce two scaling factorg; > 0when calculating intrinsic rewards. Whenis 0, we
only optimize the entropy terd ( 1) in the mutual information objective (Eq. 1), is used to
adjust the importance of policy diversity compared with transition diversity. In Appendix A, we
discuss and compare two different approaches for estimpfiag ;) andp(o+1] ¢; a).

(6)

3.2 Action-Value Learning for Balancing Diversity and Sharing

In the previous section, we introduce an information-theoretic objective for encouraging each agent
to behave differently from general trajectories. However, the shared local Q-function does not have
enough capacity to present different policies for each agent. For solving this problem, we additionally
equip each ageritwith an individual local Q-functior®! . De ning experiences that need to be
shared or exclusively learned is inef cient and usually can not generalize. Therefore, we let agents
adaptively decide whether to share experiences by decompQgiag.

Qi(aj )= Q%a&j i)+ Q (a&j i); (7)
whereQS is the shared Q-function among agents. In its current form, agents may learn to decompose
their local Q-function arbitrarily. On the contrary, we expect that agents can share as much knowledge
as possible so that we apply an L1 regularization on individual local Q-fun€tioas shown in Fig.2.

Such a regularization can also prevent agents from being too diverse and ignore cooperating to nish

the task. In our experiments, we show that the L1 regularization is critical to achieving a balance
between diversity and cooperation.

3.3 Overall Learning Objective

In this section, we discuss how to use the diversity-encouraging reward to train the proposed learning
framework. Since the intrinsic rewards inevitably involves the in uence from all agents, we add
r' to environment rewards® and use the following TD loss:

h I'2
Lro()= r®+ r'+ maxQq sa’ Qut(sia; ) (8)

where is the parameters in the whole framework, is periodically frozen parameters copied from
for a stable update, andis a hyper-parameter adjusting the weight of intrinsic rewards compared

with environment rewards. We use QPLEX to decomp@ge as mixing of local Q-function®);

and train the framework end-to-end by minimizi)r(19 the loss:

L()=Lrmo()+ L, (Qi (1) ©)
i
where ! is the parameters @!, L, (Q!) is the L1 regularization term for independent Q-functions,
and is a scaling factor.

4 Case study: outperforming by being diverse only when necessary

We designPac-Menshown in Fig. 3 to demonstrate how our approach works. In this task, four
agents are initialized at the center room and can only observe&dsid around them. Three dots



are initialized randomly in each edge room. To make this environment more challenging, paths to
different rooms have different lengths, which are down : left: up : right=4:8: 12 : 8. Three out
of four paths are outside agents' observation scope, which brings about the dif culty of exploration.
Dots will refresh randomly after all rooms are empty. An ineffective competition between agents
occurs when they come together in one room. The total environmental reward is the number of dots
eaten in one step or -0.1 if no one eats dots. The time limit of this environment is set to 100 steps.

Figure 3: Why does our method work? The balance between identity-aware diversity and experience
sharing encourages sophisticated strategies.

Fig. 3-middle demonstrates the learned strategies of our approach, with a heatmap showing the
visitation number. Driven by the objective of mutual information between individual trajectory and
identity, agents achieve diversity and scatter in different rooms to eat dots. We further analyze the role
of independent and shared Q-functions during different stages in Fig. 3 right. We visualize the value
of SD(Q! ())=SD(QS()), where SD denotes the standard deviation (SD) of Q values for different
actions. A higher SD ratio indicates the independent Q-functions play a leading role, while a lower
SD ratio indicates the shared Q function's domination.

We notice that the SD ratio is considerably larger in the central room and four paths than in four edge
rooms. This observation means that agents use independent Q networks to reach different rooms
while use the shared Q network to search for dots in them. The result shows that our method achieves
a good balance between diversity and knowledge sharing. Taking this advantage, our approach
outperforms baselines (Fig. 3 left, baselines are introduced in Sec. 6). Other methods, such as
variational exploration (MAVEN25]) and individuality emergence (EOR§]), are slower to learn

optimal strategies.

5 Related Work

Deep multi-agent reinforcement learning algorithms have witnessed signi cant advances in recent
years. COMA R0Q], MADDPG [9], PR2 27], and DOP LL(Q] study the problem of policy-based
multi-agent reinforcement learning. They use a (decomposed) centralized critic to calculate gradients
for decentralized actors. Value-based algorithms decompose the joint value function into individual
utility functions in order to enable ef cient optimization and decentralized execution. VAN [
QMIX [5], and QTRAN R1] progressively expand the representation capabilities of the mixing
network. QPLEX ] implements the full IGM class1] by encoding the IGM principle into a duplex
dueling network architecture. Weighted QMIXJ] proposes weighted projection to decompose any
joint action-value functions. There are other works that investigate into MARL from the perspective
of coordination graphs [28-30], communication [31, 32, 15], and role-based learning [17, 33].

Knowledge sharing in MARL From IQL [34] to QPLEX, many works focus on designing mixing
network structures and have provided promising empirical and theoretical results. For these works,
experience sharing among agents has been an important component. Learning from others is one
essential skill engraved in humans' genes to survive in society. Based on the relationship between
teachers and students in human society, a series of research work hopes each agent can learn from
others or selectively share its knowledge with oth&5-87]. But it is challenging to specify
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